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Abstract

Instrumental variable (IV) estimation methods that allow for certain nonlinear func-
tions of the data as instruments are studied. The context of the discussion is the
simple unit root model where certain advantages to the use of nonlinear instruments
are revealed. In particular, certain classes of IV estimators and associated t-tests are
shown to have simpler (standard) limit theory in contrast to the least squares estima-
tor, providing an opportunity for the study of optimal estimation in certain IV classes
and furnishing tests and con…dence intervals that allow for unit root and stationary
alternatives. The Cauchy estimator studied in recent work by So and Shin (1999) is
shown to have such an optimality property in the class of certain IV procedures with
bounded instruments.
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1. Introduction

Instrumental variable (IV) estimation is a traditional tool of econometric analysis
and has found extensive uses throughout the subject, covering both microeconomet-
ric and time series applications. With regard to the latter, the dominant class of
models for which instrumental variable methods have been advocated are stationary,
linear systems, a subject on which there is now a vast literature in both econometrics
and statistics, a classic study being that of Deistler and Hannan (1988). IV tech-
niques have been used in some nonstationary models, including cointegrating system
estimation (Phillips and Hansen, 1990), but even in those cases linear instruments
have been used.

The present paper studies the use of nonlinear IV techniques in which the instru-
ments are nonlinear functions of integrated processes. The context of our discussion
is the simple unit root model and it is shown that here there are certain advantages to
the use of nonlinear instruments. The reason is that nonlinear functions of integrated
processes o¤er a very wide range of alternative time series behavior, allowing for both
attenuation and exaggeration of the e¤ects of nonstationarity. This range of behavior
in potential (nonlinear) instruments in turn gives rise to a variety of possible limit
behavior for IV estimators of the autoregressive coe¢cient. Among these possibil-
ities are included some interesting cases where the IV estimator and its associated
t-ratio have similar asymptotic behavior in unit root and stationary autoregressive
models. Such cases provide an opportunity for developing new methods of testing
and con…dence interval construction that allow for both unit root and stationary
alternatives.

In recent work, So and Shin (1999) suggested the use of the Cauchy (1836) estima-
tor, which uses the sign function as an instrumental variable, in place of the ordinary
least squares (OLS) estimator in autoregressions that included both stationary and
nonstationary cases. Our framework extends the analysis of these authors, providing
a more general analysis of IV estimation in potentially nonstationary autoregressions
and showing that the Cauchy estimator has an optimality property in the class of
certain IV procedures. Our analysis is limited to the AR(1) model but it is hoped
that the results are su¢ciently interesting to warrant further investigation of these
techniques.

The paper is organised as follows. Section 2 lays out the model, assumptions and
gives some background theory. Section 3 classi…es classes of IV estimators according
to the nature of the instrument functions and provides a limit theory for the various
cases. Section 4 considers the issue of optimality and derives optimal estimators for
two classes of instrument functions. Section 5 discusses testing and con…dence interval
construction. Some …nite sample simulations are reported in Section 6. Section 7
concludes the paper and derivations are collected together in Section 8. Notation is
summarized in Section 9.
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2. Assumptions and Background Theory

We consider the unit root autoregression

yt = ®yt¡1 + ut; ® = 1 (1)

with arbitrary initial condition y0 = Op(1). The regression error ut is assumed to
have zero mean and satisfy one of the following conditions.

2.1 Assumption futg is a martingale di¤erence sequence with ¾2 = E(u2t jFt) and
supt¸1 E(jutjpjFt) < 1 a.s. for some p > 2, where Ft = ¾(fusgs·t).

2.2 Assumption futg is an iid (0; ¾2) sequence of random variables with Ejutjp <
1 for some p > 4, and its distribution is absolutely continuous with respect to
Lebesque measure and has characteristic function ' such that lim¸!1 ¸r'(¸) = 0
for some r > 0.

Both Assumptions 2.1 and 2.2 imply that yt¡1 is uncorrelated with ut and regression
(1) is correctly speci…ed. Though our theory may be extended to allow for more
general linear processes that are serially correlated, we will consider this simple case
in the present paper for the brevity of exposition. For some of our subsequent results,
the martingale di¤erence assumption in Assumption 2.1 is su¢cient. For others,
however, we need more restrictive independence and distributional assumptions as in
Assumption 2.2.

We also consider time series with nonzero mean and deterministic trend in the
paper. For these cases, we could consider regression (1) with demeaned or detrended
yt. However, conventional demeaning and detrending invalidates the asymptotics for
nonlinear transformations of unit root processes that is developed in the paper. This
is because the usual procedure utilizes present and future as well as past observations
in demeaning and detrending, with the consequence that transformations of the de-
meaned and detrended series end up being correlated with the regression errors. The
problem is overcome by employing a recursive demeaning and detrending that relies
only on past observations. This approach is discussed in a later section.

De…ne Bn(r) = n¡1=2
P[nr]
t=1 ut: Then an invariance principle holds under Assump-

tion 2.1, i.e.,

Bn !d B; (2)

where B is Brownian motion with variance ¾2. We will sometimes be convenient
to write B = ¾W , where W is standard Brownian motion with unit variance. Our
asymptotic theory also relies on the Brownian local time process (e.g Chung and
Williams, 1990). In general, the local time LM(t; s) of a continuous semimartingle
M is de…ned as

LM(t; s) = lim
²!0

1
2²

Z t
0

1fjM(r) ¡ sj < ²g d[M ](r);
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where [M ] is the quadratic variation process of M . The local time LM(t; s) thus
measures in the unit of [M ] how long M stays in the neighborhood of level s up to
time t. If LB(t; s) and LW (t; s) are the local times of B and W , respectively, then
we may write

LB(t; s) = (1=¾)LW (t; s=¾):

It is often more convenient to use the scaled version L(t; s) de…ned by

L(t; s) = (1=¾2)LB(t; s) = (1=¾3)LW (t; s=¾);

which is called chronological local time (Phillips and Park, 1998) because it refers to
the amount of calendar time spent by the process in the vicinity of a spatial point s
over the time interval [0; t]. In terms of chronological local time, we may represent
the integral of any locally bounded function T of Brownian motion as follows

Z t
0

T (B)dr =
Z t
0

T (¾W ) dr =
Z 1

¡1
T (s)L(t; s)ds; (3)

a formula known as the occupation times formula.
We now introduce two classes of transformations in R which play important roles

in the subsequent development of our theory. First, we de…ne the functions that will
be referred to as regularly integrable in the paper.

2.3 De…nition A transformation T on R is said to be regularly integrable if T is
a bounded integrable function such that for some constants c > 0 and k > 6=(p ¡ 2)
with p > 4 given in Assumption 2.2 jT (x)¡ T (y)j · c jx ¡ yjk on each piece Ai of its
support A =

Sm
i=1 Ai ½ R.

The second class of functions is the class of regular functions introduced in Park
and Phillips (2001). We say that a transformation T is regular if and only if (a) it
is continuous in a neighborhood of in…nity, and (b) for any compact subset K of R
given, there exist for each " > 0 continuous functions T "; T " and ±" > 0 such that
T "(x) · T (y) · T "(x) for all jx¡yj < ±" on K, and such that

R
K(T "¡T ")(x) dx ! 0

as " ! 0. It is easy to see that a piecewise continuous function has this property.
The reader is referred to Park and Phillips (2001) for a more detailed discussion on
this class of regular functions.

It is also necessary to de…ne the order of a function S : R £ R+ ! R with two
arguments (x; ¸), in terms of a function º : R+ ! R with argument ¸. We say that
S is of order smaller than º if and only if we may write: either

(a) S(x; ¸) = a(¸)P (x) with

lim sup
¸!1

a(¸)=º(¸) = 0

and where P is locally bounded with exponentially bounded tails (i.e., jP (x)j · ecjxj

for all large jxj, where c > 0 is a constant); or
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(b) S(x; ¸) = b(¸)Q(x) with

lim sup
¸!1

b(¸)=º(¸) < 1;

and where Q is bounded and vanishes at in…nity (i.e., Q(x) ! 0 as jxj ! 1).

2.4 De…nition A transformation T on R is said to be asymptotically homogeneous
if it can be written as

T (¸x) = ·(¸)H(x) + R(x; ¸);

where H is regular and R is of order smaller than ·. We call · the asymptotic order
and H the limit homogeneous function of F .

Roughly speaking, regularly integrable transformations are integrable functions
that are reasonably smooth on each part of their supports. The required smoothness
depends on the moment condition of the innovation sequence ut. Let p be the max-
imum order of the existing moments. If p > 8, any piecewise Lipschitz continuous
function is allowed. For the indicator function on a compact interval to be regularly
integrable, on the other hand, it is su¢cient to have p > 4.

Asymptotically homogeneous transformations are functions that behave asymp-
totically as homogeneous functions. Of course, homogeneous functions are asymptoti-
cally homogeneous and, therefore, functions such as the sign function, sgn(x); and the
power function, jxjk; are asymptotically homogeneous. A much wider class of trans-
formations, however, are asymptotically homogeneous. For instance, the functions
log(x) and arctan(x) are asymptotically homogeneous, with respective asymptotic or-
ders º(¸) = log ¸ and 1, and limit homogeneous functions H(x) = 1 and (¼=2) sgn(x).
Also, all distribution function-like transformations are asymptotically homogeneous
with the same asymptotic order º(¸) = 1 and the same limit homogeneous function
H(x) = 1 fx ¸ 0g.

The asymptotic behavior of nonlinear functions of an integrated time series yt
generated as in (1) are analyzed by Park and Phillips (1999, 2001). In particular,
they provide the relevant asymptotic theory for the sample moments

Pn
t=1 T (yt) andPn

t=1 T (yt¡1)ut, which are referred to as mean and covariance asymptotics, respec-
tively, for various types of function T including the regularly integrable and asymp-
totically homogeneous functions considered here.

The present paper considers IV estimation of the autoregression (1) with an in-
strument given by zt = F (yt¡1) for a nonlinear function F . The transformation F
will be called the instrument generating function (IGF) throughout the paper. Our
theory therefore concentrates on the covariance asymptotics for the IGF F , and the
mean asymptotics for the function ¶F given by

¶F(x) = xF (x); (4)

i.e., the product of F with identity. Note that we need to analyze the product moment
of zt and ut; and that of zt and yt¡1, for the IV estimation.
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If F is asymptotically homogeneous, then so is ¶F , and vice versa. In particu-
lar, if we let F be an asymptotically homogeneous function with asymptotic order
· and limit homogeneous function H, then the associated ¶F function de…ned in (4)
becomes asymptotically homogeneous with asymptotic order ¶· and limit homoge-
neous function ¶H, where ¶· and ¶H are de…ned respectively as ¶·(¸) = ¸·(¸) and
¶H(x) = xH(x). This is not necessarily so when F is regularly integrable, and the
function ¶F in (4) may not be regularly integrable. However, a regularly integrable
F often has a corresponding ¶F function that is regularly integrable. For instance,
if F is a regularly integrable function such that

R1
¡1 sF (s)ds < 1 and is piecewise

Lipschitz continuous with p > 8, then ¶F de…ned in (4) above is regularly integrable.
By convention in this paper, we will call the IGF F a regularly integrable function,
only when both F and the corresponding ¶F are regularly integrable. This convention
will be made throughout the paper.

In the development of the asymptotic theory for IV estimation with an asymptot-
ically homogeneous IGF, Assumption 2.1 will be invoked throughout the paper. The
condition is fairly weak and is just enough to guarantee the invariance principle in (2).
To develop the asymptotic theory for IV estimation with a regularly integrable IGF,
however, we require the stronger conditions in Assumption 2.2. Roughly speaking,
this is because we need weak convergence to and invariance of the sample local time,
as well as the invariance principle (2), in order to develop asymptotics for integrable
transformations of integrated time series.

3. IV Estimation and Limit Theory

In the autoregression (1), we consider the IV estimator of ® given by

b® =
Pn
t=1 F (yt¡1) ytPn
t=1 F (yt¡1) yt¡1

: (5)

Here, b® is an IV estimator in which the instrument is generated by the IGF F . In
its general form, the class of IV estimators that can be represented by (5) includes,
of course, the conventional OLS estimator as a special case with the linear IGF
F (x) = x. However, this paper will concentrate on IV estimators constructed with
various nonlinear IGF’s.

One important example is the IV estimator with the asymptotically homogeneous
IGF

F (x) = sgn (x):

The resulting estimator is the so-called Cauchy estimator, which derives from an
original suggestion by Cauchy (1836), and which has recently been investigated by
So and Shin (1999). Another is the IV estimator using as the IGF the regularly
integrable function

F (x) = 1 fjxj · 1g ;

or more generally any indicator function on a compact interval. One may easily
see that, in this case, the corresponding IV estimator is simply a trimmed OLS
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estimator, i.e., the OLS estimator which uses only those observations taking values
in some compact interval. The behavior of IV estimators in the general class of (5)
depends on the properties of the IGF, as we now investigate.

First, we present mean and covariance asymptotics for regularly integrable and
the asymptotically homogeneous IGF F . For this purpose, it is convenient to de…ne
some additional notation in the case of a regularly integrable IGF F . Let

¶F (x) =
Z x
¡1

¶F (y)dy;

where ¶F is de…ned in (4), and for a transformation T on R de…ne

I(T ) =
Z 1

¡1
T (x)dx; and Is(T ) =

Z 1

¡1
T (x)2dx:

These notations will be used repeatedly in the rest of the paper without further
reference.

3.1 Lemma Let F be regularly integrable, and let Assumption 2.2 hold. Then

n¡1=4
nX

t=1
F (yt¡1)ut !d ¾ [Is(F )L(1; 0)]1=2 U(1); (6)

where U is standard Brownian motion independent of L. We also have

n¡1=2
nX

t=1
F (yt) yt !d I(¶F )L(1; 0); (7)

n¡1=2
nX

t=1
F (yt)2 !d Is(F )L(1; 0): (8)

Moreover, if I(¶F ) = 0, then

n¡1=4
nX

t=1
F (yt) yt !d (2=¾)

h
Is(¶F )L(1; 0)

i1=2
V (1); (9)

where V is standard Brownian motion independent of L, and V has correlation
coe¢cient ½ = ¡I(F¶F )=[Is(F )Is(¶F )]1=2 with U; as introduced above.

3.2 Lemma Let F be asymptotically homogeneous with asymptotic order · and
limit homogeneous function H, and let Assumption 2.1 hold. Then we have

n¡1=2·(n1=2)¡1
nX

t=1
F (yt¡1)ut !d

Z 1

0
H(B)dB; (10)

and

n¡3=2·(n1=2)¡1
nX

t=1
F (yt) yt !d

Z 1

0
H(B)B dr; (11)

n¡1·(n1=2)¡2
nX

t=1
F (yt)2 !d

Z 1

0
H(B)2 dr; (12)
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where B is Brownian motion with variance ¾2.

Of the asymptotic results presented in Lemmas 3.1 and 3.2, those in (6) – (8) and
(10) – (12) can be obtained as special cases of Park and Phillips (1999, 2001). The
result given in (9) is new.

For some detailed discussion on the asymptotics here, the reader is referred to Park
and Phillips (1999, 2001) and Phillips and Park (1998). For a regularly integrable
function F , the covariance asymptotics yield mixed normal limiting distributions
with a mixing variate depending upon the local time L of the limit Brownian motion,
as well as the integral of the square of the transformation function. Note that the
Brownian motion V in the limit variate (9) is independent of the local time L: In
contrast, the covariance asymptotics for an asymptotically homogeneous function F
involve limiting distributions that are generally non-Gaussian except for some special
cases.

3.3 Theorem (a) Let IGF F be regularly integrable and let Assumption 2.2 hold.
If I(¶F ) = 0, we have

b® ¡ 1 !d
¾2Is(F )1=2U(1)
2Is(¶F )1=2V (1)

(13)

where U and V are standard Brownian motions de…ned in Lemma 2.5. If, on the
other hand, I(¶F ) 6= 0, then

n1=4(b® ¡ 1) !d
¾Is(F )1=2U(1)
I(¶F )L(1; 0)1=2

(14)

(b) Let IGF F be asymptotically homogeneous and let Assumption 2.1 hold. Then
we have

n(b® ¡ 1) !d
R 1
0 H(B) dB

R 1
0 H(B)B dr

(15)

From this theorem it is apparent that IV estimators with instruments generated
from a broad class of functions are consistent. If they are constructed from asymp-
totically homogeneous IGF’s, their convergence rate is n. This is well known for the
case of the linear IGF F (x) = x, which yields the OLS estimator. Theorem 3.3 shows
that this result applies across all IV estimators constructed under the broad class
of asymptotically homogeneous IGF’s. The limiting distributions of IV estimators
in this class are generally non-Gaussian, just as in the well studied case of the OLS
estimator. In contrast, if regularly integrable functions are used to generate the in-
struments the corresponding IV estimators converge at the reduced rate n1=4, and
their limiting distributions are mixed normal.

However, there are cases when IV estimators of ® are inconsistent. In particular,
when the instrument is generated by a regularly integrable function F for which

Z 1

¡1
xF (x) dx = 0 (16)
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then the resulting IV estimator becomes inconsistent, as evidenced in Theorem 3.3(a).
The condition (16) implies that the IGF F is in this case orthogonal to the regression
function, x, in the Hilbert space L2(R) of square integrable functions. We recall
from the theory of standard stationary regression that an instrument is invalid and
the resulting IV estimator is inconsistent if the instrument fails the ‘relevance’ condi-
tion and is asymptotically uncorrelated with the regressor. We see from the present
result that such instrument failure can also arise in nonstationary regression with
an integrated regressor when the instrument function is orthogonal to the regression
function.

Under the conditions in Assumption 2.1 or 2.2, the conditional variance of the
numerator of the estimation error

b® ¡ ® =
Pn
t=1 F (yt¡1)utPn
t=1 F (yt¡1)yt¡1

is given by ¾2 Pn
t=1 F (yt¡1)2: Correspondingly, the asymptotic variation of b® depends

on the asymptotic behavior of

¾2
Pn
t=1 F (yt¡1)2

(
Pn
t=1 F (yt¡1)yt¡1)2

:

The ratio

Pn(F ) =
(
Pn
t=1 F (yt¡1)yt¡1)2Pn
t=1 F (yt¡1)2

therefore provides a measure of the conditional precision of the IV estimator with
IGF F: The following result gives the asymptotic behavior of Pn; which we will take
as a measure of asymptotic precision in estimation.

3.4 Theorem (a) Let IGF F be regularly integrable and let Assumption 2.2 hold.
If I(¶F ) = 0, then

Pn(F ) !d
4Is(¶F )V (1)2

¾2Is(F )
: (17)

If I(¶F ) 6= 0, then

n¡1=2Pn(F ) !d
I(¶F )2L(1; 0)

Is(F )
: (18)

(b) Let the IGF F be asymptotically homogeneous with limit homogeneous function
H, and let Assumption 2.1 hold. Then

n¡2Pn(F ) !d

³R 1
0 H(B)B dr

´2

R 1
0 H(B)2 dr

: (19)

Not surprisingly, it is apparent that IV estimators in unit root regressions with
nonlinear instruments have precision that depends crucially on the type of functions
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being used to generate the instruments. For instruments generated by asymptoti-
cally homogeneous functions, IV precision increases at a rate of Op(n2) according to
the signal from the instrument. If regularly integrable functions are used, then IV
precision is weaker with the reduced rate of divergence Op(n1=2); corresponding to a
weaker signal. If the IGF is orthogonal to the identity function in the space L2(R)
of square integrable functions, then precision is of stochastic order Op(1); as in the
case of instrument failure mentioned earlier.

4. Optimal IV Estimators

In this section, we construct some ‘optimal’ estimators in the class of IV estimators
generated by various IGF’s. Here we interpret ‘optimality’ in terms of the precision
quantity Pn(F ) introduced above. IV estimators with regularly integrable IGF’s
cannot be optimal against wider classes because they have precision that is of a smaller
order of magnitude compared to that of asymptotically homogeneous IGF’s. We
therefore concentrate on estimators in the IV class with asymptotically homogeneous
IGF’s.

To analyze the precision of IV estimators with asymptotically homogeneous IGF’s,
we …rst note that the representation

³R 1
0 H(B)B dr

´2

R 1
0 H(B)2dr

=

³R1
¡1 sH(s)L(1; s)ds

´2
R1
¡1H(s)2L(1; s)ds

; (20)

which follows immediately from the occupation times formula (3). For the purpose of
our discussion, an optimal IV estimator will be de…ned as an IV estimator generated
by an asymptotically homogeneous function with limit homogeneous function H that
maximizes the asymptotic precision as given by (20). The limit homogeneous function
H which yields an optimal IV estimator is given only up to scalar multiplication, since
the maximization problem is invariant with respect to the scalar multiplication.

4.1 Lemma Let Assumption 2.1 hold.
(a) The asymptotic precision is maximized a.s. for IV estimators with asymptot-

ically homogeneous IGF’s having limit homogeneous function

H(x) = x

in the class of all IV estimators with asymptotically homogeneous IGF’s.
(b) In the restricted class of IV estimators with asymptotically homogeneous and

bounded IGF’ s having limit homogeneous function

H(x) = a1fx > 0g ¡ b1fx < 0g;

asymptotic precision is maximized a.s. when

a¤=b¤ =
R1
0 jsjL(1; s)ds

R 0
¡1 jsjL(1; s) ds

, R1
0 L(1; s)ds

R 0
¡1 L(1; s) ds

:
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Part (a) of Lemma 4.1 shows that the OLS estimator, i.e., the IV estimator
with the instrument generated by the linear IGF F (x) = x, is optimal in the sense
that it has highest precision as we have de…ned it. This is so, irrespective of the
actual realization of the local time L(1; ¢) and is a result that may be expected given
our de…nition of precision. As is well known, the OLS estimator is the optimal IV
estimator for the classical regression with homoskedastic errors when we condition on
the regressors. Our de…nition of precision is based on the conditional variance of the
(score) component

Pn
t=1 F (yt¡1)ut; which has the same form as it does in the classical

regression model with …xed regressors. Accordingly, the asymptotic precision of the
IV estimator with H(x) = x is given by

Z 1

¡1
s2L(1; s)ds;

as is immediately apparent from (20).
Part (b) of Lemma 4.1 considers IV estimation in a restricted class. In particular,

the IV class is restricted to instruments generated by transformations in the class FB
of bounded functions. From the proof of part (b) of Lemma 4.1, we may deduce that
the asymptotic precision of IV estimators in this class is bounded by

(
R1
0 jsjL(1; s)ds)2R1
0 L(1; s)ds

+

³R 0
¡1 jsjL(1; s)ds

´2

R 0
¡1 L(1; s)ds

:

This bound is attained when the IGF has limit homogeneous function as given in
part (b) of Lemma 4.1 is used. Note that this IGF is path-dependent. In particular,
it is dependent upon the realized value of the local time L(1; ¢) via the ratio a¤=b¤:
Therefore, the optimal IV estimator in this class is not feasible, although a feasible
version of the procedure may be constructed by estimating this ratio.

Subsequent sections concentrate on the particular IV estimator whose IGF is as-
ymptotically homogeneous with limit homogeneous function H(x) = sgn(x). This IV
estimator is the Cauchy estimator, mentioned earlier, and it is the optimal bounded
estimator in the special case where

R1
0 L(1; s)ds =

R 0
¡1 L(1; s)ds and

R1
0 jsjL(1; s)ds =R 0

¡1 jsjL(1; s)ds: These conditions hold on average since the distribution of L(1; ¢) is
symmetric about origin, i.e., the distributions of L(1; x) and L(1; ¡x) are the same
for all x 2 R. Therefore, this IV estimator may be regarded as an optimal bounded
estimator which does not use any additional sample information. Clearly, the func-
tion F (x) = sgn (x) is an asymptotically homogeneous function having itself as the
limit homogeneous function. Therefore, the Cauchy estimator, the IV estimator with
instrument sgn(yt¡1), is an optimal IV in this sense. Any other asymptotically homo-
geneous functions with limit homogeneous function H(x) = sgn(x) also yield optimal
IV estimators. Some obvious choices include functions such as F (x) = ©(x) ¡ 1=2
with any distribution function ©, or F (x) = arctan(x), among many others. In what
follows, we call asymptotic sign functions all asymptotically homogeneous functions
whose limit homogeneous function is H(x) = sgn(x):
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The bounded optimal IV estimator with asymptotic sign IGF has some nice prop-
erties that the conventional OLS estimator does not have. The estimator yields a
t-ratio that has a standard normal limit distribution when ® = 1, as well as when
j®j < 1: This enables us to construct and interpret the con…dence interval for ® in
a conventional way. On the other hand, of course, the t-ratio based on the OLS
estimator has a limit normal distribution only when j®j < 1 and its limit distribution
is non-Gaussian when ® = 1. The fact that the t-ratio based on the Cauchy estima-
tor has a limit normal distribution has implications for tests of a unit root. These
properties are explored in So and Shin (1999), where the Cauchy estimator was …rst
suggested. We provide a brief overview in the next section.

5. Unit Root Tests and Con…dence Intervals

Testing for a unit root in (1) can be based on the IV t-ratio

ZIV =
b® ¡ 1
s(b®)

(21)

where s(b®) is the standard error of the IV estimator b® given by

s(b®)2 = b¾2

2
4

Ã nX

t=1
F (yt¡1)yt¡1

! Ã nX

t=1
F (yt¡1)2

!¡1 Ã nX

t=1
yt¡1F (yt¡1)

!3
5
¡1

= b¾2
Pn
t=1 F (yt¡1)2

(
Pn
t=1 F (yt¡1)yt¡1)2

: (22)

with the usual error variance estimator b¾2 =
Pn
t=1 bu2t ; with but = yt ¡ b®yt¡1: It is

natural here to use the IV estimate b® in …tting the residual but. However, other
estimates of ® can be used as long as they yield consistent estimates of ¾2:

5.1 Theorem (a) If the IGF is regularly integrable, then

ZIV !d N(0; 1)

under Assumption 2.2.
(b) If the IGF is asymptotically homogeneous, then

ZIV !d
R 1
0 H(B) dB

¾
³R 1

0 H(B)2dr
´1=2

under Assumption 2.1.

The limiting distribution of the t-ratio ZIV is standard normal for a regularly
integrable IGF but not generally so when the IGF is an asymptotically homogeneous
function. However, there is an important exception. The IV estimator with the as-
ymptotic sign IGF is distributed as normal asymptotically. This is the only exception,
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and no other IV estimator with asymptotically homogeneous IGF has asymptotic nor-
mality. The following corollary extends the asymptotic normality obtained for the
Cauchy estimator by So and Shin (1999) to all IV estimators with the asymptotic
sign IGF.

5.2 Corollary Let Assumption 2.1 hold. Then we have

ZIV !d N(0; 1)

when the IGF is the asymptotic sign function.

Thus, t-ratios based on IV estimators with regularly integrable and asymptotic
sign IGF’s are asymptotically standard normal under the null. This is in contrast to
the usual unit root distribution of the OLS t-ratio, which is asymmetric and skewed
to the left (c.f Fuller, 1996). The standard normal IV t-ratios are convenient and
useful in unit root testing as discussed in So and Shin (1999).

First, under the alternative of stationarity, i.e., j®j < 1, we have

n1=2 (b® ¡ ®) !d N(0; À2);

where

À2 = plim
n!1

n¡1
Pn
t=1 F (yt¡1)2

(n¡1
Pn
t=1 F (yt¡1)yt¡1)2

:

Consequently, if we let

ZIV (®) =
b® ¡ ®
s(b®)

; (23)

where s(b®) is de…ned in (22), then

ZIV (®) !d N(0; 1): (24)

Therefore, the IV t-ratios are normally distributed asymptotically with any choice of
IGF, for all j®j < 1.

The asymptotic normality in (24) also applies to the standard t-ratio based on the
OLS estimator for all j®j < 1. However, when ® = 1, the unit root limit distribution
is non-Gaussian and leans towards the alternative distributions that apply under
stationarity which adversely a¤ects the power of the unit root test. In contrast, the
IV t-ratios considered here have no such aspect and there is no discontinuity in the
asymptotics, since they are asymptotically normal and symmetric around the true
value of ® under both the null and alternative hypothesis. It is therefore reasonable to
expect that they may have some advantage over conventional OLS based procedures
that rely on unit root limit theory. The simulations in So and Shin (1999) support
this view and they further indicate that con…dence intervals constructed from the
Cauchy estimate and its limit distribution have shorter average lengths than those
based on the median unbiased estimates suggested in Andrews (1993).

For testing a unit root in time series with nonzero mean or deterministic trend,
we may use demeaned or detrended yt. In this event, as mentioned earlier, we must
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use recursive demeaning or detrending to maintain the martingale property and the
subsequent Gaussian limit theory for the IV t-ratios. In the case of a …tted mean,
this implies using

yt ¡
1

t ¡ 1

t¡1X

i=1
yi and yt¡1 ¡ 1

t ¡ 1

t¡1X

i=1
yi (25)

in place of yt and yt¡1, respectively, for t ¸ 2. In (25), both yt and yt¡1 are demeaned
using the lagged recursive mean ¹t¡1, as in So and Shin (1999) - see also Moon and
Phillips (2000), where both forward-recursive and backward-recursive detrending is
used. In the presence of a linear time trend, we may use

yt ¡
1

n ¡ t + 1
(yn ¡ yt¡1) +

2
t ¡ 1

t¡1X

i=1
yi ¡

6
t(t ¡ 1)

t¡1X

i=1
iyi

yt¡1 +
2

t ¡ 1

t¡1X

i=1
yi ¡

6
t(t ¡ 1)

t¡1X

i=1
iyi (26)

respectively for yt and yt¡1, t ¸ 2. It is not di¢cult to see that the recursive de-
trending in (26) indeed e¤ectively detrends both yt and yt¡1. Also, the recursively
demeaned or detrended yt is a martingale with respect to the …ltration Ft introduced
in Assumption 2.1. By contrast, the usual demeaning formula yt ¡ (1=n)

Pn
i=1 yi

yields a time series that is non-martingale. Usual detrending has a similar problem.
With the recursive demeaning and detrending introduced above, the previous

results continue to apply for demeaned and detrended yt. That is, if we denote by
ZIV the IV t-ratio de…ned from recursively demeaned or detrended yt in the same
way as ZIV in (21), then we have the following result.

5.3 Corollary If the IGF is a regularly integrable function or the asymptotic sign
function, then we have

ZIV !d N(0; 1)

under Assumption 2.2 or 2.1 respectively.

Continuity of the distribution across ® of the t-ratio ZIV (®) de…ned in (23) also
allows us to construct con…dence intervals for ® in a convenient way from IV estima-
tors. Again the approach follows So and Shin (1999). Since ZIV (®) !d N(0; 1) for
all values of ® including unity, when the IGF is a regularly integrable function or the
asymptotic sign function, we can construct 100 (1 ¡ ¿)% con…dence limits for ® as

h
b® ¡ z¿=2 s(b®); b® + z¿=2 s(b®)

i
(27)

where z¿=2 is the two-tailed 100¿% percentage point of the standard normal distrib-
ution. Obviously, the IV estimator with highest precision has the shortest con…dence
interval in (27).
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6. Simulations

We report the outcome of a simulation exercise investigating the …nite sample perfor-
mances of various IV estimators and IV based t-ratios for the autoregression (1). For
each set of simulations, the innovations ut were drawn as zero mean independent nor-
mals with sample sizes n = 100 and 500 and with 10,000 replications. The variance of
the innovations is set ¾2 = 0:1. Note that our IV method is not invariant with respect
to ¾2. However, it only has a scaling e¤ect on the IGF’s. It is indeed not di¢cult to
see that the results of our simulations would remain unchanged for di¤erent values
of ¾2 if we adjust the scales of the IGF’s accordingly. For testing H0 : ® = 1 against
stationary alternatives, we explore the size of the IV based t-ratios in relation to their
nominal size from the N(0; 1) limit distribution, and report some power comparisons
against the Dickey-Fuller (DF) test. We also examine the coverage probabilities and
the average lengths of the con…dence intervals of ® computed from the IV based
t-ratios.

For estimation of ®, we took six IV estimators generated by various bounded
IGF’s. Three of the IV estimators were constructed from IGF’s that are asymptoti-
cally equivalent to the sign function, and the rest from integrable IGF’s. The table
below lists these IV estimators and the associated IGF’s. We denote by IVh the IV
estimators for which the IGF is asymptotically the sign function, and by IVi those
corresponding to integrable IGF’s. The truncation parameter K appearing in the
de…nitions of the instruments for IVi1, IVi2 and IVh2 are set at 2 for the sample
size n = 100 and at 3 for n = 500. The shapes of these IV generating functions are
pictured in Figure 1.

IV Estimators Instrument Generating Functions

IVh1 sgn(x)
IVh2 x 1fjxj · Kg+ sgn(x)K 1fjxj > Kg
IVh3 arctan(x)

IVi1 sgn(x) 1fjxj · Kg
IVi2 x 1fjxj · Kg
IVi3 xe¡jxj

Figures 2–5 present kernel density estimates of the …nite sample distributions of
the OLS and these six IV estimators of the centered unit root coe¢cient and the null
distributions of the t-ratios based on those estimators. The density estimates from
the simulations with the sample sizes n = 100 and n = 500 for the model without an
intercept are given in Figures 2 and 3; and those for the model with an intercept are
given in Figures 4 and 5.

Tables 1 and 2 present for the models without and with an intercept, respec-
tively, the biases, variances and mean-squared-error’s (MSE’s) of the OLS and the
IV estimators. Table 3 reports the …nite sample sizes and the local powers of the DF
test and the IV based t-ratios. The nominal sizes of the tests are set at 5%. The
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Figure 1: Functional Forms of Various IGF’s

critical values for the DF tests are obtained from Fuller (1985): ¡1:95 and ¡2:86
for the models without and with an intercept, respectively. The critical values for
the IV based unit root tests are all set at ¡1:645 from their standard normal limit
distributions.

For the IV based t-ratios, we also construct 90% con…dence intervals (CI’s) for ®
according to (27) for various values of ®, and compute their average lengths and their
empirical coverage probabilities (CP’s). The con…dence intervals for the DF tests are
not computed due to the discontinuity of their limit distribution at the null. The
percent CP’s and the average length (a.l.) of the CI’s are computed and are listed in
Table 4. For the purpose of comparison, we also list in Table 4 the percent CP’s and
the average length of the CI’s for the exactly median unbiased (EMU) estimator of
Andrews (1993) for the model with an intercept for n = 100.

The …nite sample performance of the IV estimators is largely as expected from
the limit theory. The OLS estimator for the unit root coe¢cient is known to converge
at the n rate to a non-Gaussian limit distribution that is skewed to the right, but
is an optimal IV estimator in the unrestricted class of IV generating functions. The
IVh estimators converge at the same convergence rate n, but their asymptotic distri-
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Figure 2: Densities for Models without Constant, n = 100

butions are contrastingly mixed normal. The IVi estimators also have mixed normal
limit distributions. However, they have slower n1=4 convergence rates and lower their
precision rates than the IVh’s, and thus are suboptimal.

From Figures 2–5, we can see that the empirical distributions of the OLS and the
IVh estimators do look nonstandard, but are more concentrated than those of the
IVi’s, re‡ecting their faster rates of convergence. The …nite sample distributions of
OLS are skewed with a long left tail, and skewness becomes more apparent in the
model with an intercept. The density estimates of the IVi’s, though more dispersed,
are better centered and more symmetric around zero. Tables 1 and 2 con…rm these
observations. The OLS and IVh estimators have larger …nite sample variations, but
have noticeably smaller variation than the IVi’s. Of the OLS and the IVh’s, the IVh’s
seem less biased, but have larger …nite sample variation than OLS. For the model
with an intercept, the bias reduction in IVh’s is large enough to o¤set the larger
variances, and consequently their MSE’s are smaller than those of OLS. Among the
IVh’s, IVh1 (the Cauchy estimator) has much smaller bias but has signi…cantly larger
variation and MSE than IVh2 and IVh3.

The simulation study for the sampling behavior of the t-ratios also con…rms our
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Figure 3: Densities for Models without Constant, n = 500

theoretical …ndings. The limit distribution of the DF test is known to be non-
Gaussian and skewed toward the stationary distributions. In constrast, the limiting
distributions of the IV based t-ratios are standard normal. Thus, we expect that the
…nite sample sizes of the IV based unit root tests, computed by using critical values
from the standard normal distribution, to be close to nominal size, and to be more
powerful than the DF test, at least when the true value of ® is near unity.

As is apparent from Figures 2–5, the empirical distributions of the DF tests are
skewed to the left, and the skewness is much more serious in the model with a …tted
intercept. The …nite sample distributions of all of our IV based t-ratios, however, are
much better centered and are symmetric around zero, approximating reasonably well
their limit N(0; 1) distributions. The density estimates of the IVi based t-ratios better
approximate the limit N(0; 1) distribution, though are noticeably more dispersed than
those based on IVh’s. The approximations do improve as the sample size increases.

We therefore expect that the IVi based t-ratios su¤er less size distortions and
may be relatively more powerful in testing against local alternatives. Also expected
is that the IVh based t-ratios have higher discrimatory powers with more noticeable
size distortions. We can see from Table 3 that the IV based t-ratios do, in general,
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Figure 4: Densities for Models with Constant, n = 100

su¤er from size distortions. The t-ratios based on the IVh’s tend to have larger size
distortions than their IVi counterparts, except for those based on the IV’s constructed
from the sign function. The t-ratios based on IVh1 turn out to have the least size
distortions. Size distortions in all cases seem to decrease as the sample size increases.

As far as power is concerned, the t-ratios based on the IVh’s are more powerful
than their IVi counterparts. Compared to the DF test, the IV based t-ratios are
relatively more powerful in the model with a …tted intercept, where the distributions
of the DF tests are more seriously skewed toward the alternative distributions. All
of the IV based t-ratios are noticeably more powerful than the DF test when ® is
near unity. The IVh based t-ratios, except for the IVh1 based t-ratio, remain more
powerful than the DF test for all alternatives for both small and large samples. The
IVi based t-ratios are also more powerful than the DF test when ® is near unity,
but become less powerful as ® moves away from one. For the model without the
constant, the IV based t-ratios also seem more powerful for ® near one in small
samples. However, except for the IVh2 based t-ratio, they all become less powerful
than the DF tests as ® moves away from one and the sample size increases. The
t-ratio based on the IVh2 turns out to be slightly more powerful than the DF tests
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Figure 5: Densities for Models with Constant, n = 500

in both small and large samples for all alternatives.
As can be seen from Table 4, the empirical coverage probabilities of the CI’s for

® constructed from all of our IV based t-ratios quite well approximate the nominal
90% coverage for various values of ®. The average lenghts of the CI’s from the model
without the constant are somewhat shorter and their empirical CP’s seem to better
approximate the nominal 90% than those from the model with a constant. The
empirical CP’s of the CI’s constructed from the IVh based t-ratios are closer to the
nominal 90% than those for the CI’s constructed from the IVi’s when ® is near unity,
but the di¤erences between two CP’s become negligible as ® moves away from one.
The average lengths of the IVh based CI’s are shorter than those of the IVi based
CI’s when ® is near unity, but again they become closer as ® moves away from one.
As the sample size increases both CP’s become closer to the nominal 90% and the
average lengths of the IV based CI’s become shorter. The performace of our IV based
CI’s and their CP’s are overall quite satisfactory as one can see from comparing them
with the performance of the CI’s based on Andrews’ (1993) exactly median unbiased
estimator using Table 4. Our IV based CI’s have slightly smaller CP’s, while the CI
based on Andrews’ (1993) EMU estimator has slightly bigger CP’s than the nominal
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CP. However, the average lengths of our IV based CI’s are in general shorter than
that of the EMU based CI’s.

7. Conclusions

This paper introduces a class of new autoregressive coe¢cient estimators that have
some good asymptotic and …nite sample properties. The estimators are asymptot-
ically median unbiased and can be used to produce simple symmetric con…dence
intervals. There are no problems of discontinuity in the con…dence intervals in the
transition from stationary to nonstationary cases. The optimal IV estimator is shown
to be the Cauchy estimator for which the instrument is simply sgn(yt¡1): These good
properties con…rm earlier …ndings by So and Shin (1999) where the Cauchy estimator
was …rst suggested.

8. Technical Appendix and Proofs

8.1 Proof of Lemma 3.1 The results in (6) - (8) are shown in Park and Phillips
(1999, 2001). To show the result in (9), note that

n¡1=4
nX

t=1
F (yt)yt =d n3=4

Z 1

0
¶F

³
n1=2Bn(r)

´
dr;

which can be approximated by

Sn = n3=4
Z 1

0
¶F

³
n1=2B(r)

´
dr + oa:s:(1);

as shown in Phillips and Park (1998).
Let

Mn = ¡n1=4
Z 1

0
¶F

³
n1=2B(r)

´
dB(r):

Then it follows from Ito’s formula that

Sn = (2=¾2)Mn + oa:s:(1):

The stated result can now be deduced, since

[Mn] = n1=2¾2
Z 1

0
¶F

³
n1=2B(r)

´2
dr !a:s: ¾2Is(¶F )L(1; 0);

where [Mn] is the quadratic variation of Mn, and

Mn !d V
³
¾2Is(¶F )L(1; 0)

´
;

as shown in Park and Phillips (1999, 2001)
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To see that the Brownian motions U and V de…ned respectively in (6) and (8)
have the given correlation coe¢cient, we let

Nn = n1=4
Z 1

0
F

³
n1=2B(r)

´
dB(r):

As shown in Park and Phillips (1999, 2001), Nn has the same limiting distribution
as

n¡1=4
nX

t=1
F (yt¡1)ut:

The quadratic covariation between Mn and Nn is

[Mn; Nn] = ¡n1=2¾2
Z 1

0
(F¶F )

³
n1=2B(r)

´
dr !a:s: ¡¾2I(F¶F )L(1; 0);

and then the stated result follows by straightforward calculation.

8.2 Proof of Lemma 3.2 For the proofs of the results in (10) - (12), see Park and
Phillips (1999, 2001).

8.3 Proof of Theorem 3.3 We may easily deduce (13) from (6) and (9). The
result in (14) follows similarly from (6) and (7). Likewise, (15) is immediate from
(10) and (11).

8.4 Proof of Theorem 3.4 The stated results follow readily from Lemma 3.1.
The result in (17) can be deduced from (8) and (9). Similarly, (18) follows from (7)
and (8). Finally, we may get (19) from (11) and (12).

8.5 Proof of Lemma 4.1 Part (a) is easily deduced from the Cauchy-Schwarz
inequality µZ

fg d¹
¶2

·
µZ

f2d¹
¶ µZ

g2d¹
¶

:

Set f(x) = H(x); g(x) = x; de…ne the measure

d¹ = L(1; s) ds

pathwise, and apply the Cauchy-Schwarz inequality to get
³R1
¡1 sH(s)L(1; s)ds

´2
R1
¡1H(s)2L(1; s)ds

·
Z 1

¡1
s2L(1; s)ds:

Equality holds i¤
H(x) = x

a.s. with respect to the measure L(1; s)ds, up to scalar multiplication. The stated
result follows immediately.
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For the proof of part (b), we let

H(x) = a1fx > 0g ¡ b1fx < 0g:

The limit homogeneous functions of bounded asymptotically homogeneous functions
can be represented in this way. Obviously, we may let a; b > 0. Moreover, since the
maximization of (20) is invariant with respect to scalar multiplication, we may set

Z 1

¡1
H(s)2L(1; s)ds = a2

Z 1

0
L(1; s)ds + b2

Z 0

¡1
L(1; s)ds = 1

without loss of generality. Now we simply maximize
Z 1

¡1
sH(s)L(1; s)ds = a

Z 1

0
jsjL(1; s)ds + b

Z 0

¡1
jsjL(1; s)ds

with respect to a; b > 0 to get the stated result.
For the actual derivation of the result, we consider the Lagrangian

L(a; b; ¸) = a
Z 1

0
jsjL(1; s)ds + b

Z 0

¡1
jsjL(1; s)ds

+ ¸
µ
1 ¡ a2

Z 1

0
L(1; s)ds ¡ b2

Z 0

¡1
L(1; s)ds

¶

and have the …rst order conditions
Z 1

0
jsjL(1; s)ds ¡ 2¸a¤

Z 1

0
L(1; s)ds = 0

Z 0

¡1
jsjL(1; s)ds ¡ 2¸b¤

Z 0

¡1
L(1; s)ds = 0

from which a¤=b¤ can be easily obtained as given. It is tedious, but straightforward to
check that the solution satis…es the second order condition for maximum. Moreover,
it is clear that the asymptotic precision depends only upon the ratio of a and b.

8.6 Proof of Theorem 5.1 We have

ZIV =
b® ¡ 1
s(b®)

=
Pn
t=1 F (yt¡1)utPn
t=1 F (yt¡1)yt¡1

,
b¾

¡Pn
t=1 F (yt¡1)2

¢1=2

jPnt=1 F (yt¡1)yt¡1j

=
Pn
t=1 F (yt¡1)ut

b¾ (
Pn
t=1 F (yt¡1)2)1=2

;

from which the stated results follow immediately, as shown in Park and Phillips (1999,
2001).
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8.7 Proof of Corollary 5.2 In the particular case that H (x) = sgn(x), we have
R 1
0 H(B) dB

¾
³R 1

0 H(B)2dr
´1=2 =

R 1
0 sgn(B) dB

¾
=

Z 1

0
sgn(W )dW

We now de…ne a continuous martingale Mt by

Mt =
Z t

0
sgn(Ws) dWs:

Then [M ]t = t; and it follows directly from Levy’s characterization theorem that Mt
is a Brownian motion. We immediately have M1 =d N(0; 1), as was to be shown.

8.8 Proof of Corollary 5.3 It is obvious that all our previous results hold with
B replaced by

B(r) = B(r) ¡
Z r
0

B(s) ds

when the recursive demeaning is applied. To prove the result for the case of recursive
detrending, we …rst write

yt = ¹ + ºt + y0t

where y0t = y0t¡1 + ut. Note that

yt¡1 +
2

t ¡ 1

t¡1X

i=1
yi ¡

6
t(t ¡ 1)

t¡1X

i=1
iyi = y0t¡1 +

2
t ¡ 1

t¡1X

i=1
y0i ¡ 6

t(t ¡ 1)

t¡1X

i=1
iy0i

Moreover,

yt ¡
1

n ¡ t + 1
(yn ¡ yt¡1) +

2
t ¡ 1

t¡1X

i=1
yi ¡

6
t(t ¡ 1)

t¡1X

i=1
iyi

= yt¡1 +
2

t ¡ 1

t¡1X

i=1
yi ¡

6
t(t ¡ 1)

t¡1X

i=1
iyi + ut ¡

·
1

n ¡ t + 1
(yn ¡ yt¡1) ¡ º

¸

= y0t¡1 +
2

t ¡ 1

t¡1X

i=1
y0i ¡ 6

t(t ¡ 1)

t¡1X

i=1
iy0i + ut ¡

1
n ¡ t + 1

nX

i=t
ui

Now it is not di¢cult to see that all our previous results hold with B replaced by

B(r) = B(r) +
2
r

Z r

0
B(s)ds ¡ 6

r2

Z r

0
sB(s)ds

in this case.
Let

y0t¡1 = y0t¡1 +
2

t ¡ 1

t¡1X

i=1
y0i ¡ 6

t(t ¡ 1)

t¡1X

i=1
iy0i
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and

vn;t =
1

n ¡ t + 1

nX

i=t
ui

Then we have p
n(®̂ ¡ 1) = Pn=Qn

where

Pn =
1p
n

nX

t=1
sgn(y0t¡1)ut +

1p
n

nX

t=1
sgn(y0t¡1)vn;t

and

Qn =
1
n

nX

t=1
jy0t¡1j

However,
1p
n

nX

t=1
sgn(y0t¡1)vn;t !p 0

since
1
n

nX

t=1
v2n;t = Op(n¡1)

The stated result now follows immediately.

9. Notation

!a:s: almost sure convergence
!d weak convergence
oa:s:(1) tends to zero almost surely

!p convergence in probability
=d distributional equivalence
[¢] integer part of
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Table 1. Biases, Variances and MSE’s: Model without Constant

n=100 n=500
® n£bias n£var n£MSE ® n£bias n£var n£MSE

1.000 -1.694 0.053 0.082 1.000 -1.750 0.011 0.017
0.990 -1.758 0.070 0.101 0.990 -2.021 0.030 0.038

DF 0.975 -1.821 0.097 0.130 0.980 -1.906 0.049 0.056
0.950 -1.867 0.143 0.178 0.970 -1.916 0.069 0.076
0.900 -1.750 0.230 0.261 0.960 -1.980 0.088 0.096

1.000 -1.082 0.080 0.092 1.000 -1.104 0.016 0.019
0.990 -1.081 0.106 0.117 0.990 -1.186 0.046 0.049

IVh1 0.975 -1.094 0.147 0.159 0.980 -1.146 0.076 0.078
0.950 -1.176 0.220 0.233 0.970 -1.140 0.106 0.109
0.900 -0.947 0.356 0.365 0.960 -1.232 0.137 0.140

1.000 -1.435 0.054 0.075 1.000 -1.337 0.011 0.015
0.990 -1.542 0.071 0.095 0.990 -1.753 0.031 0.037

IVh2 0.975 -1.675 0.098 0.126 0.980 -1.768 0.049 0.056
0.950 -1.796 0.143 0.176 0.970 -1.848 0.069 0.075
0.900 -1.736 0.230 0.260 0.960 -1.948 0.088 0.096

1.000 -1.369 0.055 0.074 1.000 -1.277 0.012 0.015
0.990 -1.424 0.073 0.093 0.990 -1.505 0.033 0.037

IVh3 0.975 -1.498 0.100 0.123 0.980 -1.434 0.052 0.056
0.950 -1.580 0.147 0.172 0.970 -1.490 0.072 0.077
0.900 -1.500 0.234 0.256 0.960 -1.590 0.092 0.097

1.000 0.977 0.303 0.312 1.000 2.570 0.183 0.197
0.990 0.204 0.233 0.233 0.990 -0.420 0.082 0.082

IVi1 0.975 -0.464 0.212 0.214 0.980 -0.816 0.094 0.095
0.950 -0.901 0.249 0.258 0.970 -0.962 0.116 0.118
0.900 -0.892 0.364 0.372 0.960 -1.149 0.142 0.144

1.000 0.729 0.202 0.207 1.000 2.265 0.127 0.137
0.990 -0.123 0.157 0.158 0.990 -0.763 0.057 0.058

IVi2 0.975 -0.871 0.143 0.151 0.980 -1.203 0.063 0.066
0.950 -1.340 0.165 0.183 0.970 -1.465 0.076 0.080
0.900 -1.608 0.236 0.262 0.960 -1.724 0.092 0.098

1.000 -0.480 0.084 0.086 1.000 0.978 0.070 0.072
0.990 -0.709 0.099 0.104 0.990 -0.561 0.065 0.066

IVi3 0.975 -0.927 0.126 0.135 0.980 -0.736 0.084 0.085
0.950 -1.127 0.174 0.187 0.970 -0.906 0.104 0.105
0.900 -1.102 0.263 0.275 0.960 -1.073 0.124 0.126
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Table 2. Biases, Variances and MSE’s: Model with Constant

n=100 n=500
® n£bias n£var n£MSE ® n£bias n£var n£MSE

1.000 -5.119 0.099 0.361 1.000 -5.345 0.021 0.078
0.990 -5.223 0.121 0.394 0.990 -4.927 0.041 0.090

DF 0.975 -5.010 0.149 0.400 0.980 -4.451 0.059 0.099
0.950 -4.608 0.190 0.402 0.970 -4.232 0.077 0.113
0.900 -4.159 0.271 0.444 0.960 -4.215 0.096 0.132

1.000 -1.104 0.159 0.171 1.000 -1.156 0.033 0.036
0.990 -1.355 0.196 0.214 0.990 -1.292 0.065 0.068

IVh1 0.975 -1.430 0.242 0.262 0.980 -0.693 0.093 0.094
0.950 -1.216 0.309 0.324 0.970 -0.275 0.123 0.123
0.900 -0.812 0.442 0.449 0.960 -0.254 0.153 0.153

1.000 -1.740 0.102 0.132 1.000 -1.630 0.022 0.027
0.990 -2.010 0.125 0.165 0.990 -1.805 0.042 0.048

IVh2 0.975 -2.065 0.154 0.196 0.980 -1.350 0.059 0.063
0.950 -1.862 0.195 0.230 0.970 -1.057 0.078 0.080
0.900 -1.472 0.279 0.300 0.960 -0.951 0.097 0.099

1.000 -1.553 0.104 0.128 1.000 -1.461 0.023 0.027
0.990 -1.799 0.128 0.160 0.990 -1.537 0.044 0.049

IVh3 0.975 -1.841 0.157 0.191 0.980 -1.014 0.063 0.065
0.950 -1.635 0.199 0.226 0.970 -0.700 0.082 0.083
0.900 -1.259 0.282 0.298 0.960 -0.609 0.101 0.102

1.000 -0.356 0.243 0.245 1.000 0.210 0.103 0.103
0.990 -0.941 0.252 0.261 0.990 -0.852 0.094 0.096

IVi1 0.975 -1.157 0.278 0.291 0.980 -0.437 0.109 0.109
0.950 -1.060 0.329 0.340 0.970 -0.127 0.131 0.131
0.900 -0.779 0.448 0.454 0.960 -0.188 0.157 0.157

1.000 -0.741 0.157 0.163 1.000 -0.062 0.070 0.070
0.990 -1.363 0.163 0.181 0.990 -1.093 0.063 0.065

IVi2 0.975 -1.590 0.178 0.203 0.980 -0.842 0.071 0.073
0.950 -1.564 0.209 0.234 0.970 -0.723 0.085 0.086
0.900 -1.381 0.283 0.302 0.960 -0.763 0.101 0.102

1.000 -0.886 0.134 0.141 1.000 -0.158 0.066 0.066
0.990 -1.254 0.158 0.173 0.990 -0.844 0.079 0.081

IVi3 0.975 -1.377 0.187 0.206 0.980 -0.398 0.096 0.097
0.950 -1.235 0.230 0.245 0.970 -0.134 0.115 0.115
0.900 -0.927 0.315 0.323 0.960 -0.140 0.134 0.134
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Table 3. Sizes and Adjusted Local Powers

Model without Constant

n=100 c.v. size e.c.v. ®=:99 ®=:975 ®=:95 ®=:90

DF -1.950 0.047 -1.922 0.080 0.148 0.344 0.786
IVh1 -1.645 0.052 -1.661 0.074 0.133 0.268 0.537
IVh2 -1.645 0.088 -1.915 0.080 0.149 0.344 0.786
IVh3 -1.645 0.076 -1.845 0.080 0.148 0.340 0.774
IVi1 -1.645 0.047 -1.605 0.073 0.129 0.267 0.552
IVi2 -1.645 0.075 -1.883 0.079 0.145 0.331 0.762
IVi3 -1.645 0.057 -1.701 0.080 0.147 0.313 0.705

n=500 c.v. size e.c.v. ®=:99 ®=:98 ®=:97 ®=:96

DF -1.950 0.048 -1.933 0.331 0.770 0.970 0.999
IVh1 -1.645 0.048 -1.627 0.257 0.553 0.776 0.902
IVh2 -1.645 0.080 -1.869 0.334 0.773 0.971 0.999
IVh3 -1.645 0.066 -1.800 0.308 0.720 0.943 0.996
IVi1 -1.645 0.040 -1.539 0.203 0.488 0.743 0.898
IVi2 -1.645 0.052 -1.665 0.261 0.638 0.897 0.986
IVi3 -1.645 0.042 -1.530 0.232 0.520 0.786 0.933

Model with Constant

n=100 c.v. size e.c.v. ®=:99 ®=:975 ®=:95 ®=:90

DF -2.860 0.054 -2.916 0.058 0.070 0.116 0.316
IVh1 -1.645 0.053 -1.673 0.080 0.122 0.206 0.426
IVh2 -1.645 0.081 -1.889 0.079 0.135 0.255 0.595
IVh3 -1.645 0.074 -1.833 0.078 0.137 0.256 0.594
IVi1 -1.645 0.052 -1.664 0.077 0.120 0.203 0.425
IVi2 -1.645 0.079 -1.885 0.078 0.132 0.252 0.589
IVi3 -1.645 0.059 -1.725 0.079 0.136 0.252 0.560

n=500 c.v. size e.c.v. ®=:99 ®=:98 ®=:97 ®=:96

DF -2.860 0.052 -2.878 0.122 0.296 0.593 0.848
IVh1 -1.645 0.047 -1.618 0.218 0.420 0.626 0.803
IVh2 -1.645 0.078 -1.851 0.250 0.574 0.854 0.976
IVh3 -1.645 0.064 -1.766 0.245 0.549 0.822 0.964
IVi1 -1.645 0.043 -1.574 0.193 0.383 0.602 0.796
IVi2 -1.645 0.061 -1.749 0.224 0.504 0.787 0.951
IVi3 -1.645 0.044 -1.569 0.210 0.419 0.663 0.855
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Table 4: Coverage Probabilites and Average Length of CI’s

Model without Constant

n=100 n=500
® 1.00 0.99 0.95 0.90 0.80 1.00 0.99 0.98 0.97 0.96

IVh1 89.5 89.9 89.8 89.6 89.9 89.9 90.5 89.9 90.0 89.6
IVh2 86.6 87.3 88.9 89.9 90.3 87.0 88.7 89.1 89.8 90.3

CP IVh3 88.0 88.7 88.8 89.6 90.0 88.6 89.8 89.5 89.9 90.0
(%) IVi1 87.2 87.9 89.5 89.5 89.8 87.6 89.4 89.7 89.9 89.5

IVi2 85.2 86.3 87.9 89.3 90.3 87.2 88.3 89.1 89.1 89.8
IVi3 85.2 86.3 88.8 89.1 89.7 85.2 89.0 89.8 90.2 89.3

IVh1 .082 .098 .149 .193 .255 .016 .030 .040 .047 .054
IVh2 .069 .081 .121 .155 .204 .014 .025 .032 .038 .043

CI IVh3 .069 .082 .122 .156 .205 .014 .026 .033 .039 .044
(a.l.) IVi1 .167 .151 .160 .195 .255 .057 .042 .045 .050 .055

IVi2 .139 .126 .131 .157 .204 .048 .035 .037 .040 .044
IVi3 .091 .099 .134 .166 .213 .037 .037 .042 .047 .051

Model with Constant

n=100 n=500
® 1.00 0.99 0.95 0.90 0.80 1.00 0.99 0.98 0.97 0.96

IVh1 89.1 90.5 89.2 88.4 89.1 89.8 89.7 89.2 88.6 89.6
IVh2 87.9 89.3 89.1 88.4 89.1 87.4 88.5 88.5 89.0 89.4

CP IVh3 88.6 90.0 88.9 88.4 88.6 88.9 88.9 88.9 88.5 89.1
(%) IVi1 88.2 89.8 89.0 88.3 89.1 89.1 89.8 89.2 88.8 89.7

IVi2 86.5 88.2 88.0 88.2 89.1 88.1 88.6 88.6 88.5 89.3
IVi3 87.4 89.9 88.7 88.1 88.5 88.5 89.4 89.4 88.6 88.9
EMU 92.4 91.7 90.3 91.2 91.2

IVh1 .123 .139 .178 .215 .271 .025 .036 .044 .051 .057
IVh2 .099 .111 .142 .171 .215 .020 .029 .035 .041 .045

CI IVh3 .100 .113 .143 .172 .216 .021 .030 .036 .042 .046
(a.l.) IVi1 .157 .161 .185 .217 .271 .046 .045 .048 .053 .058

IVi2 .127 .130 .148 .172 .215 .038 .037 .039 .042 .046
IVi3 .116 .127 .155 .182 .225 .037 .041 .045 .050 .054
EMU .155 .159 .175 .197 .236


