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Abstract

This paper considers index models, such as simple neural network models and smooth transi-
tion regressions, with integrated regressors. The models can be used to analyze various nonlin-
ear relationships among nonstationary economic time series. Asymptotics for the nonlinear least
squares (NLS) estimator in such models are fully developed. The estimator is shown to be con-
sistent with a convergence rate that is a mixture of n3=4; n1=2 and n1=4 for simple neural network
models, and of n5=4; n; n3=4 and n1=2 for smooth transition regressions. Its limiting distribution is
also obtained. Some of its components are mixed normal, with mixing variates depending upon
Brownian local time as well as Brownian motion. However, it also has nonGaussian components.
It is in particular shown that applications of usual statistical methods in such models generally
yield ine<cient estimates and/or invalid tests. We develop a new methodology to e<ciently
estimate and to correctly test in those models. A simple simulation is conducted to investigate
the >nite sample properties of the (NLS) estimators and the newly proposed e<cient estimators.
c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Nonlinear models seem to become increasingly popular in econometrics. A wide
range of econometric models have been >tted using nonlinear regressions. This is true
for both cross section and time series data. The statistical theory of the nonlinear regres-
sion model is now well established for the >xed and/or weakly dependent regressors.
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See Jennrich (1969) and Wu (1981) for its early developments, and Wooldridge (1994)
and Andrews and McDermott (1995) for some important later extensions. Moreover,
Park and Phillips (2001) and Chang et al. (2001) have recently developed the general
theory of nonlinear regressions with integrated time series. They consider nonlinear
regressions with separably additive regression function. That is, the regression function
is allowed to be nonlinear, but they assume that it can be written as a sum of non-
linear functions each of which includes only a single regressor. For such models, they
derive the asymptotic distributions of the nonlinear least squares (NLS) estimators as
functionals of Brownian motions and Brownian local time.
We consider in the paper nonlinear index models driven by integrated time series.

Our models include as special cases the simple neural network models and the smooth
transition regressions. These are two classes of index models, which seem to have
most interesting potential applications. The neural network models, which are inspired
by features of the way information is processed in the brain, have been widely used
in practical applications, since they were advocated by White (1989). The smooth
transition regressions are appropriate to model an economic relationship changing from
one state to another with a smooth transition function. For its motivation and history,
the reader is referred to Granger and TerHasvirta (1993). In our context, they actually
represent a longrun cointegrating relationship departing from a longrun equilibrium and
smoothly adjusting to a new equilibrium.
In the nonstationary nonlinear index models we consider here, the regression func-

tion is in particular allowed to include more than one explanatory variables. For the
regressions with integrated time series, the statistical theory of the index type models
is vastly diIerent from that of separably additive models. This is because the behavior
of a functional of univariate Brownian motion is drastically diIerent from that of a
vector Brownian motion. For the index models with integrated time series, we show
that the NLS estimators are consistent with convergence rates ranging from n1=4 to n3=4

for the simple neural network models, and from n1=2 to n5=4 for the smooth transi-
tion regressions. We also derive the limiting distributions of the NLS estimators, and
present them as functionals of Brownian motions and Brownian local time.
The usual NLS estimators for such nonstationary index models are generally not

e<cient in the sense of Phillips (1991) and Saikkonnen (1991), just as the usual OLS
estimators are not e<cient for the linear cointegrating regressions. This is because the
usual NLS estimators do not use the information on the presence of the unit roots
in the explanatory variables. Moreover, their limiting distributions are nonnormal and
dependent upon nuisance parameters, which invalidates the standard chi-square tests.
We show in the paper that the methodology developed by Chang et al. (2001) can also
be applied to the nonstationary index models. We modify the usual NLS estimators
using the correction terms that are in motivation the same as those of Phillips and
Hansen (1990) and Park (1992), so that the resulting estimators become e<cient and
provide standard chi-square tests.
The rest of the paper is organized as follows. In Section 2 we introduce the model,

assumptions and preliminary results. The model is presented in a general form, and
assumptions are introduced. Also, preliminary lemmas, on which all the subsequent
theories heavily rely, are presented. The statistical theory of the model is developed in
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Section 3. In particular, the asymptotic theories are fully developed for two classes of
models—the simple neural network models and smooth transition regressions. The e<-
cient estimation of and hypothesis testing on the models are considered subsequently in
Section 4. To investigate the >nite sample behavior of the estimators and test statistics,
we perform a simple simulation and report its results in Section 5. Section 6 concludes
the paper. Mathematical proofs are collected in Section 7.

2. The model, assumptions and preliminary results

We consider nonlinear regressions of the form

yt = F(xt ; �0) + ut (1)

with the regression function F further modeled as

F(x; �) = 
 + p(x; �) + q(x; �)G(�+ x′�); (2)

where (xt) is an m-dimensional integrated process of order one, � = (
; �′; �; �′)′ is a
vector of parameters with the true value denoted by �0 = (
0; �′0; �0; �

′
0)

′, and (ut) the
stationary error. 1 We assume that p(·; �) and q(·; �) are linear functionals de>ned on
Rm. The nonlinear part of the regression function F is speci>ed as an index model
with G, which will be assumed to be a smooth distribution function-like transformation
on R. 2

We now introduce precise assumptions on the data generating processes. As men-
tioned above, (xt) is assumed to be an integrated process of order one. More explicitly,
we let vt =Lxt and specify (vt) as a general linear process given by

vt = �(L)�t =
∞∑
k=0

�k�t−k : (3)

Moreover, we let wt = (ut ; �′t+1)
′ and de>ne a >ltration (Ft)t¿0 by Ft = �((ws)t−∞),

i.e., the �->eld generated by (ws) for all s6 t. Throughout the paper, the Euclidean
norm of a vector will be denoted by ‖ · ‖.

Assumption 1. We assume

(a) (wt;Ft) is a martingale diIerence sequence,
(b) E(wtw′

t |Ft−1) = �¿ 0, and
(c) supt¿1 E(‖wt‖r|Ft−1)¡∞ for some r ¿ 2.

1 We may allow for the presence of weakly dependent covariates in our model, though it is not explicitly
considered for expositional simplicity. In particular, if they are included linearly as additional regressors
and orthogonal to regression errors, their presence would not aIect our subsequent asymptotics. This can be
shown as in Chang et al. (2001).

2 Our model here does not allow for (yt) to be a binary response. The binary choice model with integrated
explanatory variables, though it has the regression function which can be regarded as a special case of F in
(2), has persistent conditional heterogeneity, and consequently its asymptotics are quite diIerent from those
developed in the paper. See Park and Phillips (2000) for details.
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The condition in (a) implies, in particular, that (xt) is predetermined and that
E(ut |Ft−1) = 0. We therefore have E(yt |Ft−1) = F(xt ; �0), as is often the case also
for the usual nonlinear regression. 3 Note that the regressor (xt) can be generated by
a general serially correlated linear process (vt), though we require that the regression
error (ut) be devoid of temporal dependence. The moment conditions in (b) and (c),
however, do not allow for the presence of conditional heterogeneity in both (ut) and
(vt). 4 We decompose � introduced in (b) conformably with the partition of (wt), and
denote the entries by �2

u; �u�, ��u and ���.

Assumption 2. We assume

(a) �(1) is nonsingular, and
∑∞

k=0 k‖�k‖¡∞, and
(b) (�t) are iid with E‖�t‖r ¡∞ for some r ¿ 8, and the distribution of (�t) is abso-

lutely continuous and has characteristic function ’ such that ’(t) = o(‖t‖− ) as
‖t‖ → ∞ for some  ¿ 0.

The condition on �(1) in (a) ensures that the spectrum of (vt) at the origin is
nonsingular. This, in turn, implies that (xt) is an integrated process of full rank, i.e.,
there is no cointegrating relationship among the component time series in (xt). 5 The
summability condition on (�k) in (a) is commonly imposed for linear processes. The
condition in (b) is somewhat strong, and in fact not necessary for some of our subse-
quent results. However, it is still satis>ed by a wide class of data generating processes
including all invertible Gaussian ARMA models.
For (ut) and (vt), we de>ne stochastic processes

Un(r) =
1√
n

[nr]∑
t=1

ut and Vn(r) =
1√
n

[nr]∑
t=1

vt (4)

on [0; 1], where [s] denotes the largest integer not exceeding s. The process (Un; Vn)
takes values in D[0; 1]1+m, where D[0; 1] is the space of cadlag functions on [0; 1].
Under Assumptions 1 and 2, an invariance principle holds for (Un; Vn). That is, we
have as n → ∞

(Un; Vn) →d (U; V ); (5)

where (U; V ) is (1+m)-dimensional vector Brownian motion. It is shown, for instance,
by Phillips and Solo (1992).
For the function G in (2) used to model the nonlinear component of the regression

(1), we use the notation Ġ; HG and
:::
G respectively to denote its >rst, second and third

derivative, and let Ġi(x); HGi(x);
:::
Gi(x) = xiĠ(x); xi HG(x); xi

:::
G(x).

3 For nonlinear regression to work well in the weakly dependent case, we only need E(yt |xt) = F(xt ; �0).
4 Our subsequent results on the estimates of 
 and � hold under much weaker conditions, which al-

low for cross correlations in (ut) and (vt) as well as temporal dependencies and conditional/unconditional
heterogeneities in (ut).

5 This also implies that the presence of stationary or weakly dependent variables in (xt) is not allowed.
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Assumption 3. We assume

(a) G is bounded with limx→−∞ G(x) = 0 and limx→∞ G(x) = 1, and
(b) Ġ; HG and

:::
G exist, and Ġi; HGi and

:::
Gi are bounded and integrable for 06 i6 3.

We consider G primarily as a function that behaves like a distribution function of
a continuous type random variable. The standard normal distribution function G(x) =
(2&)−1=2

∫ x
−∞ e−y2=2 dy or the logistic function G(x) = ex=(1 + ex) are good examples.

The function G in our model, however, is not restricted to such a function. One may
easily see that any smooth bounded function with well de>ned asymptotes can be
normalized so that it satis>es conditions in Assumption 3.
To develop the limit theory for the model given by (1) and (2), we >rst rotate the

integrated regressor xt and the associated parameter � using an (m × m)-orthogonal
matrix H = (h1; H2) with h1 = �0=‖�0‖. The components h1 and H2 of H are of ranks
1 and (m− 1), respectively. More explicitly, we have

H ′xt =

(
h′1xt

H ′
2xt

)
=

(
x1t

x2t

)
and H ′� =

(
h′1�

H ′
2�

)
=

(
�1

�2

)
; (6)

where (x1t) and �1 are scalars, and (x2t) and �2 are (m− 1)-dimensional vectors. We
accordingly de>ne the limit BMs of (x1t) and (x2t) as

V1 = h′1V and V2 = H ′
2V

that are of dimensions 1 and (m− 1), respectively. We denote respectively by !2
1 and

+22 the variances of the Brownian motions V1 and V2. Their covariance is denoted by
!12 or !21.
Our subsequent theory relies heavily on the local time of V1, which we denote by

LV1 (t; s), where t and s are respectively time and spatial parameters. We also de>ne
the scaled local time of V1 as

L1(t; s) = (1=!2
1)LV1 (t; s):

We will call L1, instead of LV1 , the local time of V1 throughout the paper. As will
become evident as we move along, the local time L1 plays an important role in our
theory. The reader is referred to Park and Phillips (1999, 2001) for more discussions on
the role of Brownian local time on the asymptotic theories of nonlinear models with
integrated time series. Our representations of the limiting distributions also involve
another vector Brownian motion, denoted by W , which is independent of U and V ,
and has variance �2

uI .
We now present lemmas that are important in establishing the asymptotic theories of

our model. For x∈Rm−1 and i = 0; : : : ; ., we de>ne xi to be the i-fold tensor product
of x, i.e., xi = x ⊗ · · · ⊗ x. By convention, we let x0 = 1. Also, we let fi : R → R for
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i = 0; : : : ; . and de>ne K : Rm → Rm. ; m. = 1 + (m− 1) + · · ·+ (m− 1)., by

K(x1; x2) =




f0(x1)

f1(x1)x2

...

f.(x1)x.2




(7)

for (x1; x2)∈R × Rm−1. For the asymptotics of nonstationary index models, we need
to analyze the asymptotic behaviors of

∑n
t=1 K(x1t ; x2t) and

∑n
t=1 K(x1t ; x2t) ut , which

we call the >rst and second asymptotics of K .

Lemma 1. Let Assumptions 1 and 2 hold. If K is de+ned as in (7) with fi’s that
are bounded, integrable and di<erentiable with bounded derivatives, then we have

n−1=21−1
n

n∑
t=1

K(x1t ; x2t) →d

∫ ∞

−∞
ds
∫ 1

0
dL1(r; 0)K(s; V2(r))

n−1=41−1
n

n∑
t=1

K(x1t ; x2t)ut →d

(∫ ∞

−∞
ds
∫ 1

0
dL1(r; 0)K(s; V2(r))K(s; V2(r))′

)1=2

×W (1)

where 1n = diag(1; n1=2Im−1; : : : ; n.=2I.(m−1)).

Lemma 1 gives the asymptotic behavior of K consisting of smooth and bounded fi’s.
The asymptotics of K are represented by a Riemann–Stieltjes integral of K(s; V2(r))
with respect to the Lebesgue measure ds and the measure dL1(r; 0) given by the local
time L1 of V1 at the origin, respectively for s and r. The limiting distribution for the
>rst asymptotics is nonstandard and nonnormal. However, the second asymptotics yield
limiting distribution that is mixed normal, with a mixing variate dependent not only
on the sample path but also on the local time of the limit Brownian motions.
To investigate the parameter dependency of the limiting distributions in Lemma 1,

we may let

V1 = !1V ◦
1 and V2 =

!21

!1
V ◦
1 +

(
+22 − !21!12

!2
1

)1=2
V ◦
2 ;

where V ◦
1 and V ◦

2 are two independent standard Brownian motions. If we let L◦1 be
the local time of V ◦

1 , then it follows that

L1(t; s) = !1L◦1

(
t;

s
!1

)
:

Furthermore, we have due to a well known property of the local time∫ 1

0
V ◦
1 (r) dL

◦
1 (r; 0) = 0 a:s:
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We may therefore represent the >rst and second asymptotics in Lemma 1 as∫ ∞

−∞
ds
∫ 1

0
!1 dL◦1 (r; 0)K(s; +1=2

22·1V
◦
2 (r))

(
�2
u

∫ ∞

−∞
ds
∫ 1

0
!1dL◦1 (r; 0)K(s; +1=2

22·1V
◦
2 (r))K(s; +1=2

22·1V
◦
2 (r))

′
)1=2

W ◦(1);

where +22·1 =+22 −!21!12=!2
1, i.e., the conditional variance of V2 given V1, and W ◦

is de>ned by W = �uW ◦ conformably as V ◦
1 and V ◦

2 .

Lemma 2. Let Assumptions 1 and 2 hold. If K is de+ned as in (7) with fi’s that
are bounded and have asymptotes ai and bi as x → ∓∞, then we have

n−11−1
n

n∑
t=1

K(x1t ; x2t) →d

∫ 1

0
K◦(V1(r); V2(r)) dr;

n−1=21−1
n

n∑
t=1

K(x1t ; x2t)ut →d

∫ 1

0
K◦(V1(r); V2(r)) dU (r);

where 1n is given in Lemma 1 and K◦ is de+ned similarly as K with fi replaced by
f◦
i , f

◦
i (x) = ai1{x¡ 0}+ bi1{x¿ 0}, for i = 0; : : : ; ..

The asymptotics for K with fi’s which have nonzero asymptotes are quite diIerent.
Their stochastic orders are bigger than those for K with fi’s vanishing at in>nity, which
we have seen in Lemma 1. This may well be expected, since integrated time series
(xt) has a growing stochastic trend and thus the orders of its nonlinear transformations
are determined by the asymptotes of the transformation functions. The >rst asymptotics
is characterized by a path by path Riemann integral of the limit Brownian motions.
The second asymptotics is, however, represented by a stochastic integral. Unlike the
corresponding asymptotics for K with vanishing fi’s, the second asymptotics for K
does not yield Gaussian limiting distribution. It is nonnormal and biased. It reduces to
a mixed normal distribution, only when U is independent of V1 and V2. This, however,
seems rarely to be the case in practical applications. Notice that the asymptotics for K
depend on fi’s only through their asymptotes.

3. Statistical theory

The nonlinear regression (1) can be estimated by NLS. If we let

Qn(�) =
1
2

n∑
t=1

(yt − F(xt ; �))2

then the NLS estimator �̂n of � in (1) is given by

�̂n = argmin
�∈5

Qn(�); (8)
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where 5 is the parameter set, which is assumed to be a compact and convex subset
of Rp. We let �0 be an interior point of 5. An error variance estimate is given by
�̂2
n = (1=n)

∑n
t=1 û2t , where û t = yt − F(xt ; �̂n).

De>ne Q̇n = 9Qn=9� and HQn = 92Qn=9�9�′. Then we have

Q̇n(�) =−
n∑

t=1

Ḟ(xt ; �)(yt − F(xt ; �));

HQn(�) =
n∑

t=1

Ḟ(xt ; �)Ḟ(xt ; �)′ −
n∑

t=1

HF(xt ; �)(yt − F(xt ; �));

where Ḟ = 9F=9� and HF = 92F=9�9�′. Furthermore, we have from the usual >rst order
Taylor expansion that

Q̇n(�̂n) = Q̇n(�0) + HQn(�n)(�̂n − �0); (9)

where �n is on the line segment joining �̂n and �0.
The limiting distribution of �̂n can be derived from (9) as in the standard nonlinear

regression. For our model given by (1) and (2), we may apply Lemmas 1 and 2 to
deduce

C−1
n J ′ HQn(�0)JC−1

n →d A¿ 0 a:s: and − C−1
n J ′Q̇n(�0) →d B (10)

for an appropriately chosen normalizing sequence (Cn) of symmetric matrices and an
orthogonal matrix J . Therefore, we may expect under a suitable set of conditions that

CnJ ′(�̂n − �0) =−(C−1
n J ′ HQn(�0)JC−1

n )−1C−1
n J ′Q̇n(�0) + op(1) →d A−1B: (11)

If we let Cn = n− Cn for  ¿ 0, and de>ne 5n ⊂ 5 by

5n = {� : ‖Cn (�− �0)‖6 1} (12)

then it can be shown for our model given by (1) and (2) that

‖C−1
n J ′( HQn(�)− HQn(�0))JC−1

n ‖ →p 0 (13)

uniformly for all �∈5n. Given (10), the existence of such Cn as in (13) is su<cient
to ensure the asymptotics in (11). This is shown in Wooldridge (1994), and used
in Park and Phillips (2001) to derive the asymptotics for nonlinear regressions with
integrated time series.
Below, we consider two special nonlinear index models, simple neural network

models and smooth transition regressions. This is to develop the relevant asymptotics
more explicitly. All other models that are speci>ed as (1) and (2) can be analyzed
similarly. In what follows, we let

H ′�̂n =

(
h′1�̂n

H ′
2�̂n

)
=

(
�̂1n

�̂2n

)
and H ′�0 =

(
h′1�0

H ′
2�0

)
=

( ‖�0‖
0

)

correspondingly as �1 and �2 de>ned in (6). Also, we de>ne Ġ0(s) = Ġ(�0 + ‖�0‖s).
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3.1. Simple neural network models

When the nonlinear function F de>ned in (2) is speci>ed with � = (
; �; �; �′)′,
p(x; �) ≡ 0 and q(x; �) = �, the model (1) becomes

yt = 
 + �G(�+ x′t�) + ut : (14)

It is the prototypical one hidden layer neural network model. The model is motivated
by the way that information is believed to be processed in the brain. The following
theorem characterizes the asymptotic behaviors of the NLS estimators 
̂n; �̂n; �̂n and
�̂n of the parameters in the simple neural network model (SNNM) (14). We assume
that �0 �= 0, which is necessary for the identi>ability of �0.

Theorem 3. Let Assumptions 1–3 hold, and suppose that the model is given by (14).
Then we have as n → ∞(

n1=2(
̂n − 
0)

n1=2(�̂n − �0)

)
→d

(∫ 1

0
N(r)N(r)′dr

)−1 ∫ 1

0
N(r) dU (r);

where N(r) = (1; 1{V1(r)¿ 0})′, and(
n1=4(�̂n − �0)

DnH ′(�̂n − �0)

)
→d

(∫ ∞

−∞
ds
∫ 1

0
dL1(r; 0)M (r; s)M (r; s)′

)−1=2

W (1)

where Dn = diag(n1=4; n3=4Im−1) and M (r; s) = �0(Ġ0(s); sĠ0(s); Ġ0(s)V2(r)′)′.

All the parameters are estimated consistently in the SNNM (14). 6 Their convergence
rates are, however, diIerent. The estimators 
̂n and �̂n for the intercept 
0 and the co-
e<cient of the index function �0 converge at the rate

√
n, as in the standard regression

model. These are the parameters which determine the asymptotes of the conditional
mean of (yt), i.e., 
0 and 
0 + �0 give the lower and upper conditional mean values.
The estimators �̂n and �̂n of the parameters �0 and �0 inside the nonlinear function
G have convergence rates that are a mixture of n1=4 and n3=4. Along the hyperplane
orthogonal to �0, �̂n has convergence rate n3=4, which is an order of magnitude faster
than the other component of �̂n and �̂n.
Theorem 3 shows in particular that (11) holds with

Cn = diag(n1=2; n1=2; n1=4; Dn) and J = diag(1; 1; 1; H) (15)

for the SNNM (14). The limiting distributions of �̂n and �̂n are mixed normal with
zero mean. However, 
̂n and �̂n have asymptotic distributions that are biased and
nonnormal, unless (xt) are strictly exogenous. They are biased, due to the presence
of correlation between U and V1. The distributions reduce to normal with mean zero,
only when U and V1 are independent. The two sets of parameters (
̂n; �̂n) and (�̂n; �̂n)
are asymptotically independent, since W is independent of both U and V .

6 Note that
∫∞
−∞ ds

∫ 1
0 dL1(r; 0)M (r; s)M (r; s)′ is nonsingular a.s. so long as Ġ does not vanish almost

everywhere, and this is guaranteed by the conditions in part (a) of Assumption 3.
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The results in Theorem 3 imply in particular that the parameters (
; �) and (�; �)
are separable. That is, for the estimation of one set of parameters, we may regard the
other as being >xed and known. For the estimation of 
 and �, we may assume that
� and � are known to be �0 and �0, and look at the regression

yt = 
 + �G(�0 + x′t�0) + ut

and the asymptotic distribution of 
̂n and �̂n are the same as the usual OLS estimators
from this regression. Likewise, we may >x 
 and � at 
0 and �0 for the estimation of
� and � and look at the nonlinear regression

yt − 
0 = �0G(�+ x′t�) + ut

with unknown parameters � and �.

3.2. Smooth transition regressions

The model (1) becomes the so-called smooth transition regression (STR) when the
function F(x; �) in (2) is de>ned with p(x; �) = x′�1 and q(x; �) = x′(�2 − �1), where
�= (�′1; �

′
2)

′. The resulting regression is written as

yt = 
 + x′t �1 + x′t(�2 − �1)G(�+ x′t�) + ut

= 
 + x′t �1(1− G(�+ x′t�)) + x′t �2G(�+ x′t�) + ut (16)

and the parameter � is de>ned by � = (
; �′1; �
′
2; �; �

′)′. The STR allows us to model
an economic relationship which evolves slowly over time, from one state to the other.
The coe<cient of the regressor (xt) is assumed to change from �1 to �2 in (16). The
transition is speci>ed in such a way that it is also aIected by (xt). We may however
let the underlying regressions have one set of variables as explanatory variables, while
assuming that the transition is governed by another set of variables. This can be done
simply by setting some of the coe<cients in � and � to be zero.
Recall that we assume (xt) is an integrated time series. The regression in (16)

therefore models a cointegrating relationship. The above STR describes a longrun rela-
tionship that has been changing slowly and smoothly. We may think of two regression
coe<cients as representing two diIerent equilibrium states. Therefore, the STR in (16)
describes an economy moving slowly from one equilibrium to the other. The following
theorem presents the limit theory for the NLS estimators 
̂n; �̂1n; �̂2n; �̂n and �̂n. We
assume that �10 �= �20.

Theorem 4. Let Assumptions 1–3 hold, and suppose that the model is given by (16).
Then we have as n → ∞


√
n(
̂n − 
0)

n(�̂1n − �10)

n(�̂2n − �20)


→d

(∫ 1

0
N(r)N(r)′ dr

)−1 ∫ 1

0
N(r) dU (r); (17)



Y. Chang, J.Y. Park / Journal of Econometrics 114 (2003) 73–106 83

where N(r) = (1; 1{V1(r)¡ 0}V (r)′; 1{V1(r)¿ 0}V (r)′)′, and(
n3=4(�̂n − �0)

DnH ′(�̂n − �0)

)
→d

(∫ ∞

−∞
ds
∫ 1

0
dL1(r; 0)M (r; s)M (r; s)′

)−1=2

W (1); (18)

where Dn = diag(n3=4; n5=4Im−1) and

M (r; s) = (Ġ0(s)c′V2(r); sĠ0(s) c′V2(r); Ġ0(s)c′V2(r)V2(r)′)′

with c = H ′
2(�20 − �10).

Again, all the parameters are estimated consistently by NLS. 7 Also, the convergence
rates vary across diIerent parameters. The estimators 
̂n, �̂1n and �̂2n converge at
the same rates as in the usual linear cointegrating regressions. The convergence rates
for �̂n and �̂n are

√
n-order faster than their counterparts in the SNNM. The limiting

distributions of �̂1n, �̂2n and 
̂n do not depend upon G. This implies, in particular, that
the estimators may well be consistent even if our speci>cation on G is incorrect. Indeed,
we may show that they have the same limiting distribution regardless of possible
misspeci>cation of G, as long as it is a smooth distribution function-like transformation
on R. 8 It also makes it clear that we may test on the parameters �1; �2 and 
 without
actually knowing precise functional form of G.
We may easily see from Theorem 4 that (11) holds for the STR in (16) with

Cn = diag(n1=2; nIm; nIm; n3=4; Dn) and J = diag(1; H; H; 1; H): (19)

The limiting distributions of the NLS estimators in the STR are given similarly as those
for the corresponding parameters in the simple neural network models. The distributions
for �̂n and �̂n are mixed normal, but 
̂n, �̂1n and �̂2n have distributions which are
generally biased and nonnormal. The latter become mixed normal only if the limiting
Brownian motions U and V are independent each other.
Just as in the asymptotics for the SNNM, we have separability for two sets of

parameters (
; �1; �2) and (�; �). For the estimation of the parameters 
; �1 and �2, we
may set the values of the parameters � and � to �0 and �0, respectively. Therefore, we
can just look at the model

yt = 
 + x′t �1(1− G(�0 + x′t�0)) + x′t �2G(�0 + x′t�0) + ut

with unknown parameters 
; �1 and �2 only. The model is a regression with nonlinearity
only in variables, the asymptotics of which can be derived with relative ease. On the
other hand, the asymptotic distributions of �̂n and �̂n can be obtained from the NLS
estimation of

yt − 
0 − x′t �10 = x′t �20G(�+ x′t�) + ut ;

where 
0; �10 and �20 are assumed to be known.

7 As for the SNNM,
∫∞
−∞ ds

∫ 1
0 dL1(r; 0)M (r; s)M (r; s)′ is nonsingular a.s. See footnote 5.

8 The potential misspeci>cation error here is given by a nonlinear transformation of integrated processes,
with the transformation function vanishing at in>nity. As shown in Chang et al. (2001), the presence of
such a transformation of integrated processes does not aIect the asymptotic inferences on �1, �2 and 
.
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When c=H ′
2(�20 − �10) = 0, the asymptotic results for �̂n and �̂n in Theorem 4 are

no longer applicable, since M =0 a.s. in this case. However, it is quite clear from the
proof of Theorem 4 that (18) still holds with the rates n3=4 and n5=4 replaced by n1=4

and n3=4 respectively, and

M (r; s) = c(sĠ0(s); s2Ġ0(s); sĠ0(s)V2(r)′)′;

where c=h′1(�20−�10). If both h′1(�20−�10)=0 and H ′
2(�20−�10)=0 so that �10=�20,

then �0 is unidenti>ed.

4. Inference in index models

In this section we consider the statistical inference in models introduced and analyzed
in Section 3. Addressed are the problems of e<cient estimation of, and hypothesis
testing on those models. In general, the NLS estimator �̂n is not e<cient in the sense
of Phillips (1991) and Saikkonnen (1991), since it does not utilize the information on
the presence of unit roots in the explanatory variables. However, following Chang et
al. (2001), we may easily obtain the e<cient estimator for �.

Assumption 4. Assume

(a) �(z) is bounded and bounded away from zero for |z|6 1, and
(b) if we write �(z)−1 =1−∑∞

k=1 =kzk , then ‘s
∑∞

k=‘+1 |=k |2 ¡∞ for some s¿ 9.

To estimate our models e<ciently, we >rst run the regression

vt = =̂1vt−1 + · · ·+ =̂‘vt−‘ + �̂‘; t ;

where we let ‘ increase as n → ∞. More precisely, we let ‘ = n , and let
r + 2

2r(s− 3)
¡ ¡

r
6 + 8r

; (20)

where r is given by the moment condition for (�t), i.e., E‖�t‖r ¡∞ for some r ¿ 8
as given in Assumption 2. It is easy to see that  satisfying condition (20) exists
for all r ¿ 8, if s¿ 9 as is assumed in Assumption 4. For Gaussian ARMA models,
Assumptions 2 and 4 hold for any >nite r and s. Then we may choose any  such
that 0¡ ¡ 1=8.
We de>ne

y∗
t = yt − �̂u��̂−1

�� �̂‘; t+1;

where

�̂u� =
1
n

n∑
t=1

û t �̂‘; t+1 and �̂�� =
1
n

n∑
t=1

�̂‘; t �̂′‘; t

with the >rst step NLS residual û t . Then in place of (1) we consider the regression

y∗
t = F(xt ; �0) + u∗t ; (21)
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where u∗t =ut− �̂u��̂−1
�� �̂l;t+1. De>ne �̂∗n to be the NLS estimator for �0 from (21). This

modi>ed NLS estimator is called the e=cient nonstationary nonlinear least squares
(ENNLS) estimator. We also de>ne W∗ to be an independent set of Brownian motions
that are independent of V and have variance �∗2 = �2

u − !uv+−1
vv !vu from �2

u.

Theorem 5. Let Assumptions 1–4 hold, and the model is given by (14) or (16). Then
we have

CnJ ′(�̂∗n − �0) →d M−1=2W∗(1);

where Cn and J are as given in (15) and (19), and

M = diag

(∫ 1

0
N(r)N(r)′ dr;

∫ ∞

−∞
ds
∫ 1

0
dL1(r; 0)M (r; s)M (r; s)′

)

with N(r) and M (r; s) de+ned in Theorems 3 and 4.

The limiting distribution of �̂∗n is mixed normal. Moreover, the variance of mixture
normal is reduced from �2

u to �∗2, which is the conditional longrun variance of (ut)
given (vt). The ENNLS estimator �̂∗n is therefore optimal in the sense of Phillips
(1991) and Saikkonnen (1991). See Section 5 of Chang et al. (2001) for the e<cient
estimation in nonlinear regressions with integrated time series.
Now we consider the hypothesis testing. Suppose that a nonlinear hypothesis on �0

is given by

H0 :R(�0) = 0; (22)

where R : Rp → Rq is continuously diIerentiable. 9 We de>ne Ṙ= 9R=9�′. The Wald
statistic for the hypothesis (22) is given by

Wn =
R(�̂n)′(Ṙ(�̂n) HQn(�̂n)−1Ṙ(�̂n)′)−1R(�̂n)

�̂2
n

(23)

in notation de>ned in Section 3. Since

C−1
n J ′ HQn(�̂n)JC−1

n = C−1
n J ′

n∑
t=1

Ḟ(xt ; �̂n)Ḟ(xt ; �̂n)′JC−1
n + op(1)

as shown earlier, we may use
∑n

t=1 Ḟ(xt ; �̂n)Ḟ(xt ; �̂n)′ instead of HQ(�̂n) in the de>nition
of the Wald test in (23).
For the models that we considered in Section 3 the limiting distribution of the Wald

statistic Wn in (23) is in general not chi-square. It also depends on various nuisance
parameters. Therefore, the test relying on the traditional chi-square values are generally
invalid for such models. There are, however, some special cases where the test has a
chi-square limiting distribution. First, if the hypothesis (22) only involves parameters �
and �, then the Wald statistic Wn has limiting chi-square distribution. This is because
the limiting distributions of �̂n and �̂n are mixed normal, as shown in Theorems 3

9 We maintain that �0 �= 0 for the SNNM, and �10 �= �20 for the STR. If this condition is violated, the
parameters � and � are not identi>ed.
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and 4. Second, even if the hypothesis (22) is on other parameters 
 and �, we may
have limiting chi-square distribution for Wn when U and V are independent. Note that
the distributions of 
̂n and �̂n are mixed normal for both Theorems 3 and 4 in this
case, as we explained earlier.
As in Chang et al. (2001), we may use a modi>ed test to avoid the nuisance

parameter dependency problem. The modi>ed Wald statistic is de>ned by

W ∗
n =

R(�̂∗n)
′(Ṙ(�̂∗n) HQn(�̂∗n)

−1Ṙ(�̂∗n)
′)−1R(�̂∗n)

�̂∗2
n

; (24)

where �̂∗n is the ENNLS estimator introduced above, and

�̂∗2
n = �̂2

n − !̂uv+̂−1
vv !̂vu

with consistent estimates !̂uv; !̂vu and +̂vv of covariances of U and V , and variance of
V . Just as for the usual Wald statistic in (23), we may use

∑n
t=1 Ḟ(xt ; �̂∗n)Ḟ(xt ; �̂

∗
n)

′

instead of HQ(�̂∗n) in (24).

Corollary 6. Let Assumptions 1–3 hold. For the models considered in Section 3, we
have

�̂2
n →p �2

u

as n → ∞.

Theorem 7. Let Assumptions 1–3 hold. For the models considered in Section 3, we
have

W ∗
n →d A2q

as n → ∞.

We may also consider other tests based on the likelihood ratio-like (LR) statistic
(or distance metric statistic in the terminology of Newey and McFadden, 1994) and
Lagrange multiplier (LM) statistic. Denote them respectively by LRn and LMn. They
require the estimation of the model with restrictions. If we denote by �̃∗n the restricted
NLS estimator, corresponding to the unrestricted NLS estimator �̂∗n , of �0 based on the
modi>ed regression, then the statistics are given by

LRn = 2(Qn(�̃∗n)− Qn(�̂∗n));

LMn =
Q̇n(�̃∗n)

′ HQn(�̃∗n)
−1Q̇n(�̃∗n)

�̂∗2
n

:

In the de>nition of the LMn statistic, we may replace �̂∗2
n with �̃∗2

n , say, which is
computed from the restricted model. Given our previous results, it is quite clear that

LRn;LMn → A2q

if the restricted models satisfy all the assumptions that we require for the corresponding
unrestricted models.
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5. Simulation

In this section we perform a set of simulations to investigate the >nite sample
properties of the NLS and the newly proposed ENNLS estimators in nonstationary
index models. For the simulations, we consider the SNNM

yt = 
0 + �0G(x1t�10 + x2t�20) + ut ; (25)

where G(x) = ex=(1 + ex) is a logistic function. The true values of the parameters are
set at 
0 = 0; �0 = 1 and

�0 = (�10; �20)′ = (1; 0)′:

The regression error (ut) and the regressors (xt) are generated by

ut = �0; t+1=
√
2 + (�1; t+1 + �2; t+1)=2

and

Lxt = vt =

(
v1t

v2t

)
=

(
�1t

�2t

)
+

(
0:2 0

0 0:6

)(
�1; t−1

�2; t−1

)
;

where (�0t); (�1t) and (�2t) are i.i.d. samples drawn from independent standard normal
distributions.
By construction, the regression error (ut) is an i.i.d. sequence and has no serial cor-

relation. However, it is asymptotically correlated with the innovations (vt) that generate
the regressors (xt), rendering their limit Brownian motions U and V dependent each
other. With our choice of �0 given above, the rotated regressors are simply given by

h′1xt = (1; 0)xt = x1t and h′2xt = (0; 1)xt = x2t

with the rotation matrix H = (h1; h2) = I2.
The limit theories of Theorems 3 and 5 readily apply to the NLS and ENNLS es-

timators for the parameters in our model (25). The NLS estimators of the intercept 

and the index function coe<cient � converge at a rate n1=2 to limit distributions that
are biased and nonnormal, which implies that the limit distributions of the t-statistics
based on them are nonstandard. In contrast, the NLS estimates of the parameters inside
the index function, �1 and �2, converge to zero-mean mixed normal distributions at
the rates n1=4 and n3=4, and consequently the t-statistics constructed from them have
standard normal distributions. On the other hand, the limit distributions of the ENNLS
estimators for 
; �; �1 and �2 are all mixed normal. Therefore, the standard test
statistics based upon the ENNLS estimators are distributed asymptotically as stan-
dard normal or chi-square in all directions. Moreover, the ENNLS estimators have
reduced longrun variances, and they are asymptotically more e<cient than the NLS
estimators.
Samples of sizes 250 and 500 are drawn 5; 000 times to compare the >nite sample

performances of the NLS and ENNLS estimators and the t-statistics based on these
estimators. The ENNLS correction terms are constructed from the one-period ahead
>tted innovations �̂t+1, which are obtained from the ‘th order vector autoregressions
of vt with ‘ = 1 and 2, respectively for n = 250 and 500. For the NLS estimation,
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Fig. 1. Densities of estimators.

GAUSS optimization application with Gauss–Newton algorithm is used. Fig. 1 shows
the density estimates of the NLS and ENNLS estimators for n = 250 and 500. The
estimated densities of the t-statistics computed from the NLS and ENNLS estimators
are given in Fig. 2 for n= 250 and 500.
Finite sample behavior of the NLS and ENNLS estimators are mostly consistent with

the limit theories given in the previous sections. As can be seen clearly from Fig. 1, the
>nite sample distributions of the estimators with faster convergence rates do seem more
concentrated than those with slower rates. The density estimates for the estimators of �2
are most concentrated, while those of �1 are most dispersed. As expected from the limit
theory, the NLS estimators for both 
 and � suIer from biases. Finite sample distribu-
tion of the NLS estimator for �1, on the other hand, is well centered and symmetric,
which again is expected from its asymptotics. However, the observations from the >nite
sample distribution of the NLS estimator for �2 do not seem to support the limit theory.
It has a noticeable bias, which does not seem to go away as the sample size increases.
We may therefore say that the asymptotic approximation for the NLS estimator of �2 is
poor.
Finite sample performances of the ENNLS estimators are also as expected. As is

clear from Fig. 1 again, all of the density estimates for the ENNLS estimators are very
well centered and symmetric, which is quite in contrast with our earlier observations on
the density estimates for the NLS estimators. The ENNLS estimators are also noticeably
more concentrated around the true parameter values, as our theory suggests. It is worth
noting that for the estimation of �2 our correction for the ENNLS estimator does not
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Fig. 2. Densities of t-ratios.

just reduce the sampling variance. It also eIectively removes the >nite sample bias and
the distributional asymmetry of the NLS estimator of �2. Our ENNLS procedure seems
to improve the >nite sample properties also for the estimators that are asymptotically
mixed normal.
As can be seen clearly from the density estimates given in Fig. 2, the simulation

study of the t-ratios based on the NLS and ENNLS estimators also corroborate our
theoretical >ndings. As expected, the empirical distributions of the t-statistics based
on the NLS estimators for �1 and all of the ENNLS estimators indeed quite well
approximate their limit standard normal distribution, and the approximation improves
as the sample size increases. The >nite sample distributions of the t-ratios constructed
from the ENNLS estimators for �1 and �2 seem to approximate more closely their
standard normal limit distribution than those constructed from the ENNLS estimators
for 
 and �.
The >nite sample distribution of the t-statistics based on the NLS estimator

for �2, however, does not seem to properly approximate its limit standard normal
distribution. It suIers from bias even in large samples, though it becomes quite sym-
metric as the sample size increases. This is expected from the poor asymptotic ap-
proximation of the NLS estimator for �2 that we mentioned earlier. The sampling
distributions of the t-ratios based on the NLS estimators for 
 and � are nonstan-
dard both in small and large samples, as is expected from their limit
theories.
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6. Conclusion

In this paper, we have established the statistical theories for nonstationary index
models driven by integrated time series. The speci>cation of our model is Texible
enough to include simple neural network models and smooth transition regressions,
which seem to have many potential applications. For these models, complete asymp-
totic results are provided. The usual NLS estimators are shown to be consistent, and
have well de>ned asymptotic distributions which can be represented as functionals of
Brownian motion and Brownian local time. Some components of the NLS estimators
have limiting distributions that are mixed normal. However, they also have compo-
nents whose asymptotic distributions are nonGaussian, biased and nuisance parameter
dependent. In particular it is shown that applications of the usual statistical methods
in such models generally yield ine<cient estimates and/or invalid tests. We propose in
the paper a new methodology to solve this problem. The new ENNLS procedure yields
e<cient estimators and allows us to perform the usual standard normal or chi-square
tests.

7. Mathematical proofs

Proof of Lemma 1. As in Park and Phillips (2001), we may assume that

(Un; Vn) →a:s: (U; V )

in D[0; 1]m with uniform topology. Moreover, we may let Un be given by

Un

( t
n

)
= U

(Bnt
n

)
;

where (Bnt) is an increasing sequence of stopping times with Bn0 = 0 a.s. and

sup
16t6n

∣∣∣∣Bnt − t
n

∣∣∣∣→a:s: 0 (26)

as n → ∞. See Park and Phillips (2001, Lemma 2.1) for details.
To prove the >rst part, we let

fn(x) =
.n∑

k=−.n

f(k n)1{k n6 x¡ (k + 1) n};

where .n and  n are sequences of numbers satisfying conditions in the proof of Theo-
rem 5.1 in Park and Phillips (1999). In particular, .n → ∞ and  n → 0. Also, we let
&n =  n=

√
n. It follows that

1
n3=2

n∑
t=1

f(x1t)xi2t =
√
n
∫ 1

0
f(

√
nV1n(r))V i

2n(r) dr

=
√
n
∫ 1

0
fn(

√
nV1n(r))V i

2n(r) dr + op(1)
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=
√
n

.n∑
k=−.n

f(k n)
∫ 1

0
1{k&n6V1n(r)6 (k + 1)&n}

×V i
2n(r) dr + op(1)

=

(
 n

.n∑
k=−.n

f(k n)

)
&−1
n

∫ 1

0
1{06V1n(r)¡&n}

×V i
2n(r) dr + op(1)

=
(∫ ∞

−∞
f(s) ds

)
&−1
n

∫ 1

0
1{06V1(r)¡&n}V i

2(r) dr + op(1)

=
(∫ ∞

−∞
f(s) ds

)∫ 1

0

∫ 1

0
V i
2(r) dL1(r; &ns) ds+ op(1)

=
(∫ ∞

−∞
f(s) ds

)∫ 1

0
V i
2(r) dL1(r; 0) + op(1)

jointly for all i, 06 i6 .. Each step can be shown rigorously following the arguments
in the proof of Lemma 5.1 of Park and Phillips (1999).
We now prove the result in the second part. In what follows, we let m=2 and .=1,

so that K(x1; x2)=(f0(x1); f1(x1)x2)′. This is just to ease the exposition. The proof for
the general case is essentially identical. For the general case with vector-valued (x2t)
and higher tensor product terms (xi2t) can be dealt with by considering their arbitrary
linear combination. For c = (c1; c2)∈R2, we let

Tn(x1; x2) = c1n−1=4f0(x1) + c2n−3=4f1(x1)x2

and write Tn(Vn) = Tn(V1n; V2n) subsequently. De>ne

Mn(r) =
√
n

t−1∑
i=1

Tn

(√
nVn

(
i
n

))(
U
(Bni
n

)
− U

(Bn; i−1

n

))

+
√
nTn

(√
nVn

( t
n

))(
U (r)− U

(Bn; t−1

n

))
for Bn; t−1=n¡ r6 Bnt=n, where Bnt , t = 1; : : : ; n, are the stopping times introduced in
Lemma 2.1 of Park and Phillips (2001). We may easily see that Mn is a continuous
martingale such that

n∑
t=1

Tn(x1t ; x2t)ut =Mn

(Bnn
n

)
: (27)

Moreover,

sup
16t6n

∣∣∣∣(Bntn − Bn; t−1

n

)
− 1

n

∣∣∣∣= o(1) a:s: (28)

which follows from (26).
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Let [Mn] be the quadratic variation of Mn. We have

[Mn](r) = n�2
u

t−1∑
i=1

T 2
n

(√
nVn

(
i
n

))(Bni
n

− Bn; i−1

n

)

+ n�2
uT

2
n

(√
nVn

( t
n

))(
r − Bn; t−1

n

)

= n�2
u

∫ r

0
T 2
n (
√
nVn(s)) ds+ op(1)

uniformly in r ∈ [0; 1], due to (28). Therefore,

[Mn](r) →p c′
(∫ ∞

−∞
ds
∫ r

0
dL1(t; 0)K(s; V2(t))K(s; V2(t))′

)
c (29)

uniformly in r ∈ [0; 1]. Furthermore, if we denote by [Mn; V ] the covariation of Mn and
V , then

[Mn; V ](r) =
√
n!uv

t−1∑
i=1

Tn

(√
nVn

(
i
n

))(Bni
n

− Bn; i−1

n

)

+
√
n!uv Tn

(√
nVn

(
i
n

))(
r − Bn; t−1

n

)

= n−1=4
(
n3=4!uv

∫ r

0
Tn(

√
nVn(s)) ds+ op(1)

)
uniformly in r ∈ [0; 1], due to (28). However,∣∣∣∣n3=4

∫ r

0
Tn(

√
nVn(s)) ds

∣∣∣∣6 n3=4
∫ 1

0
|Tn(

√
nVn(s))| ds=Op(1)

and we have

[Mn; V ](Dn(r)) →p 0; (30)

where Dn(r) = inf{s∈ [0; 1]: [Mn](s)¿r} is a time change. The stated result now
follows from (27), (29) and (30) as in the proof of Theorem 5.1 of Park and Phillips
(1999). In particular, we have independence between W and V , due to (30).
The Brownian motion W is also independent of U . To see this, we look at the

covariation [Mn;U ] of Mn and U . We have, exactly as for [Mn; V ] in (29) above,

[Mn;U ](r) =
√
n�2

u

t−1∑
i=1

Tn

(√
nVn

(
i
n

))(Bni
n

− Bn; i−1

n

)

+
√
n�2

uTn

(√
nVn

(
i
n

))(
r − Bn; t−1

n

)

= n−1=4
(
n3=4�2

u

∫ r

0
Tn(

√
nVn(s)) ds+ op(1)

)
→p 0

uniformly in r ∈ [0; 1].
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Proof of Lemma 2. Let gi=fi−f◦
i . Note that gi’s are bounded and vanish at in>nity.

We have

1
n1+j=2

n∑
t=1

fi(x1t)x
j
2t =

1
n1+j=2

n∑
t=1

f◦
i (x1t)x

j
2t +

1
n1+j=2

n∑
t=1

gi(x1t)x
j
2t

=
1

n1+j=2

n∑
t=1

f◦
i (x1t)x

j
2t + op(1)

due to Lemma A4 in Park and Phillips (2001). Apply the continuous mapping theorem
to get

1
n1+j=2

n∑
t=1

f◦
i (x1t)x

j
2t →d

∫ 1

0
f◦
i (V1(r))V

j
2 (r)

which proves the >rst part.
To show the second part, we notice from Lemma A4 in Park and Phillips (2001)

that

1
n(j+1)=2

n∑
t=1

fi(x1t)x
j
2tut =

1
n(j+1)=2

n∑
t=1

f◦
i (x1t)x

j
2tut +

1
n(j+1)=2

n∑
t=1

gi(x1t)x
j
2tut

=
1

n(j+1)=2

n∑
t=1

f◦
i (x1t)x

j
2tut + op(1):

However, we have due to Kurz and Protter (1994)

1
n(j+1)=2

n∑
t=1

f◦
i (x1t)x

j
2tut →d

∫ 1

0
f◦
i (V1(r))V

j
2 (r) dU (r)

since Un →d U in D[0; 1] and

f◦
i (V1n)V

j
2n →d f◦

i (V1)V
j
2

in D[0; 1]j(m−1), jointly for all i and j, 06 i; j6 ..

Lemma A1. Let Assumptions 1 and 2 hold, and consider model (14). Assume that
�∈5n, where 5n is de+ned in (12) with Cn given by either (15) or (19). For f : R →
R, we de+ne ḟ(x) = df(x)=dx and ḟi(x) = |x|iḟ(x). We let xi be the i-times tensor
product of x with itself, if x is a vector. Write ft =f(�+ x′t�) and f0

t =f(�0 + x′t�0)
for notational simplicity.

(a) If fi is bounded and integrable, then we have
n∑

t=1

ftxi1tx
j
2t ;

n∑
t=1

ft xi1tx
j
2tut =Op(n(j+1)=2)

uniformly in �∈5n, for all i; j¿ 0.



94 Y. Chang, J.Y. Park / Journal of Econometrics 114 (2003) 73–106

(b) If ḟ exists and if ḟi and ḟi+1 are bounded and integrable, then we have
n∑

t=1

(ft − f0
t )x

i
1tx

j
2t ;

n∑
t=1

(ft − f0
t )x

i
1tx

j
2tut =Op(n(2j+1)=4+ )

uniformly in �∈5n, for all i; j¿ 0.
(c) If ḟ exists and if ḟi and ḟi+1 are bounded and integrable, then we have

n∑
t=1

(�kft − �k0f
0
t )x

i
1tx

j
2t ;

n∑
t=1

(�kft − �k0f
0
t )x

i
1tx

j
2tut =Op(n(2j+1)=4+ )

uniformly in �∈5n, for all i; j; k¿ 0.

Proof of Lemma A1. For part (a), we let a0 = ‖�0‖ and b0 = �0, and de>ne

f�(x) = sup
|a−a0|6�

sup
|b−b0|6�

|f(ax + b)|

for any �¿ 0 given. It can be shown that f� is bounded and integrable if f is, and
for any �¿ 0

|ft |6f�(x1t) a:s:

for 16 t6 n as n → ∞. We have∣∣∣∣∣
∣∣∣∣∣

n∑
t=1

ftxi1tx
j
2t

∣∣∣∣∣
∣∣∣∣∣6

n∑
t=1

f�(x1t)|x1t |i‖x2t‖j =Op(n(j+1)=2)

and ∣∣∣∣∣
∣∣∣∣∣

n∑
t=1

ftxi1tx
j
2tut

∣∣∣∣∣
∣∣∣∣∣6

n∑
t=1

f�(x1t)|x1t |i‖x2t‖j|ut |=Op(n(j+1)=2)

which prove part (a).
To show part (b), we de>ne ḟ� for ḟ similarly as f� for f. Then we have

|ft − f0
t |6 ḟ�(x1t)|(�− �0) + x1t(�1 − ‖�0‖) + x′2t�2|
6 n−1=4+ ḟ�(x1t)(1 + |x1t |) + n−3=4+ ḟ�(x1t)‖x2t‖ a:s:

The stated results therefore follow directly from part (a).
It follows immediately from part (b) that

n∑
t=1

(�kft − �k0f
0
t )x

i
1tx

j
2t = (�k − �k0)

n∑
t=1

ftxi1tx
j
2t + �k

n∑
t=1

(ft − f0
t )x

i
1tx

j
2t

=O(n−1=2+ )Op(n(j+1)=2) + Op(n(2j+1)=4+ )

= Op(n(2j+1)=4+ ):
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Similarly, we have

n∑
t=1

(�kft − �k0f
0
t )x

i
1tx

j
2tut = (�k − �k0)

n∑
t=1

ftxi1tx
j
2tut + �k

n∑
t=1

(ft − f0
t )x

i
1tx

j
2tut

=O(n−1=2+ )Op(n(j+1)=2) + Op(n(2j+1)=4+ )

= Op(n(2j+1)=4+ )

which proves part (c).

Proof of Theorem 3. For notational brevity, we let Ḟ = Ḟ(x; �) and HF = HF(x; �). Also,
we write G(�+ x′�); Ġ(�+ x′�) and HG(�+ x′�) respectively as G; Ġ and HG. Then we
have

Ḟ =




1

G

�Ġ

�Ġx


 ; HF =




0 0 0 0

0 0 Ġ Ġx′

0 Ġ � HG � HGx′

0 Ġx � HGx � HGxx′




and

ḞḞ
′
=




1 G �Ġ �Ġx′

G G2 �GĠ �GĠx′

�Ġ �GĠ �2Ġ2 �2Ġ2x′

�Ġx �GĠx �2Ġ2x �2Ġ2xx′


 :

We let Cn and J be de>ned as in (15). It follows from the second part of Lemmas 1
and 2 that

− C−1
n J ′Q̇n(�0) = C−1

n J ′
n∑

t=1

Ḟ(xt ; �0) ut

→d




∫ 1

0
N(r) dU (r)

(∫ ∞

−∞
ds
∫ 1

0
dL1(r; 0)M (r; s)M (r; s)′

)1=2
W (1)


 : (31)

Moreover, we have

C−1
n J ′

n∑
t=1

HF(xt ; �0)utJC−1
n →p 0
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because

D−1
n H ′

n∑
t=1

HG0(x1t)xtx′t utHD
−1
n =Op(n−1=4)

n−3=4
n∑

t=1

Ġ0(x1t)ut ; n−3=4
n∑

t=1

Ġ0(x1t)x1tut ; n−5=4
n∑

t=1

Ġ0(x1t)x2tut =Op(n−1=2)

n−1=2
n∑

t=1

HG0(x1t)ut ; n−1=2
n∑

t=1

HG0(x1t)x1tut ; n−1
n∑

t=1

HG0(x1t)x2tut =Op(n−1=4)

due to the second part of Lemmas 1 and 2, where HG0 is de>ned by HG0(s)= HG(�0+‖�0‖s)
similarly as Ġ0. Therefore, we have

C−1
n J ′ HQn(�0)JC−1

n = C−1
n J ′

n∑
t=1

Ḟ(xt ; �0)Ḟ(xt ; �0)′JC−1
n + op(1)

which converges in distribution to



∫ 1

0
N(r)N(r)′dr 0

0
∫ ∞

−∞
ds
∫ 1

0
dL1(r; 0)M (r; s)M (r; s)′


 (32)

by the >rst part of Lemmas 1 and 2. For the block diagonality of the limiting distri-
bution in (32), note that

n−3=4
n∑

t=1

Ġ0(x1t); n−3=4
n∑

t=1

G0(x1t)Ġ0(x1t) = Op(n−1=4);

n−3=4
n∑

t=1

Ġ0(x1t)x1t ; n−3=4
n∑

t=1

G0(x1t)Ġ0(x1t)x1t =Op(n−1=4);

n−5=4
n∑

t=1

Ġ0(x1t)x2t ; n−5=4
n∑

t=1

G0(x1t)Ġ0(x1t)x2t =Op(n−1=4);

where G0 is de>ned by G0(s)=G(�0+‖�0‖s) similarly as Ġ0. We thus have established
(10). It therefore su<ces to show (13). The stated results then follow immediately from
(31) and (32).
To prove (13), we >rst write

HQn(�)− HQn(�0) = An(�) + Bn(�) + Cn(�); (33)
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where

An(�) =
n∑

t=1

Ḟ(xt ; �)Ḟ(xt ; �)′ −
n∑

t=1

Ḟ(xt ; �0)Ḟ(xt ; �0)′;

Bn(�) =−
n∑

t=1

( HF(xt ; �)− HF(xt ; �0))ut ;

Cn(�) =
n∑

t=1

HF(xt ; �)(F(xt ; �)− F(xt ; �0)):

Let 0¡ ¡ 1=12. It follows from Lemma A1(b) that

J ′An(�)J =




0 Op(n1=4+ ) Op(n1=4+ ) Op(n1=4+ ) Op(n3=4+ )

Op(n1=4+ ) Op(n1=4+ ) Op(n1=4+ ) Op(n1=4+ ) Op(n3=4+ )

Op(n1=4+ ) Op(n1=4+ ) Op(n1=4+ ) Op(n1=4+ ) Op(n3=4+ )

Op(n1=4+ ) Op(n1=4+ ) Op(n1=4+ ) Op(n1=4+ ) Op(n3=4+ )

Op(n3=4+ ) Op(n3=4+ ) Op(n3=4+ ) Op(n3=4+ ) Op(n5=4+ )




and we have

C−1
n J ′An(�)JC−1

n = op(1)

uniformly in �∈5n. Similarly, we have

J ′Bn(�)J =




0 0 0 0 0

0 0 Op(n1=4+ ) Op(n1=4+ ) Op(n3=4+ )

0 Op(n1=4+ ) Op(n1=4+ ) Op(n1=4+ ) Op(n3=4+ )

0 Op(n1=4+ ) Op(n1=4+ ) Op(n1=4+ ) Op(n3=4+ )

0 Op(n3=4+ ) Op(n3=4+ ) Op(n3=4+ ) Op(n5=4+ )




and

C−1
n J ′Bn(�)JC−1

n = op(1)

uniformly in �∈5n. Finally, to show that

C−1
n J ′Cn(�)JC−1

n = op(1)

we note that HF is dominated in modulus by


0 0 0 0

0 0 c1 c1x′

0 c1 �c2 c2x′

0 c1x �c2x �c2xx′


 ;
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where

c1 = sup
x

|Ġ(x)| and c2 = sup
x

| HG(x)|: (34)

Therefore, we may easily deduce from Lemma A1(b) that J ′Cn(�)J is stochastically at
most of the order given by the matrix that we used to bound J ′Bn(�)J . This completes
the proof.

Proof of Theorem 4. As in Proof of Theorem 3, we prove the stated results by showing
(10) and (13). Here we have

F(x; �) = 
 + x′�1(1− G(�+ x′�)) + x′�2G(�+ x′�):

Then in the notations introduced in Proof of Theorem 3 we have

Ḟ =




1

(1− G)x

Gx

x′(�2 − �1)Ġ

x′(�2 − �1)Ġx




;

HF =




0 0 0 0 0

0 0 0 −Ġx −Ġxx′

0 0 0 Ġx Ġxx′

0 −Ġx′ Ġx′ x′(�2 − �1) HG x′(�2 − �1) HGx′

0 −Ġxx′ Ġxx′ x′(�2 − �1) HGx x′(�2 − �1) HGxx′




and ḞḞ
′
is given by



1 (1− G)x′ Gx′ x′(�2 − �1)Ġ x′(�2 − �1)Ġx′

(1− G)2xx′ (1− G)Gxx′ (1− G)Ġx′(�2 − �1)x (1− G)Ġx′(�2 − �1)xx′

G2xx′ GĠx′(�2 − �1)x GĠx′(�2 − �1)xx′

(x′(�2 − �1))2Ġ2 (x′(�2 − �1))2Ġ2x′

(x′(�2 − �1))2Ġ2xx′




:

Let Cn and J be given by (19), and let G0 be de>ned as in Proof of Theorem 3.
Then we have from the second part of Lemmas 1 and 2 that

−C−1
n J ′Q̇n(�0) = C−1

n J ′
n∑

t=1

Ḟ(xt ; �0)ut
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=




n−1=2
n∑

t=1

ut

n−1H ′
n∑

t=1

(1− G0(x1t))xtut

n−1H ′
n∑

t=1

G0(x1t)xtut

n−3=4
n∑

t=1

Ġ0(x1t)(�20 − �10)′xtut

D−1
n H ′

n∑
t=1

Ġ0(x1t)(�20 − �10)′xtxtut




=




n−1=2
n∑

t=1

ut

n−1
n∑

t=1

(1− G0(x1t))H ′xtut

n−1
n∑

t=1

G0(x1t)H ′xtut

n−3=4
n∑

t=1

Ġ0(x1t)(�20 − �10)′HH ′xtut

D−1
n

n∑
t=1

Ġ0(x1t)(�20 − �10)′HH ′xtH ′xtut




=




n−1=2
n∑

t=1

ut

n−1
n∑

t=1

(1− G0(x1t))

(
x1t
x2t

)
ut

n−1
n∑

t=1

G0(x1t)

(
x1t
x2t

)
ut

n−3=4
n∑

t=1

Ġ0(x1t)((�20 − �10)′h1x1t + (�20 − �10)′H2x2t)ut

n−3=4
n∑

t=1

Ġ0(x1t)((�20 − �10)′h1x1t + (�20 − �10)′H2x2t)x1tut

n−5=4
n∑

t=1

Ġ0(x1t)((�20 − �10)′h1x1t + (�20 − �10)′H2x2t)x2tut



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→d




∫ 1

0
N(r) dU (r)

(∫ ∞

−∞
ds
∫ 1

0
dL1(r; 0)M (r; s)M (r; s)′

)1=2
W (1)


 ; (35)

where

N (r) =




1

1{V1(r)¡ 0}V (r)

1{V1(r)¿ 0}V (r)


 and M (r; s) =




Ġ0(s)c′V2(r)

sĠ0(s)c′V2(r)

Ġ0(s)c′V2(r)V2(r)




with c = H ′
2(�20 − �10). This is because

n−3=4
n∑

t=1

Ġ0(x1t)x1tut ; n−3=4
n∑

t=1

Ġ0(x1t)x21tut ;

n−5=4
n∑

t=1

Ġ0(x1t)x1tx2tut =Op(n−1=2)

due to the second part of Lemma 1.
We also have

C−1
n J ′

n∑
t=1

HF(xt ; �0)utJC−1
n →p 0

since

n−7=4
n∑

t=1

Ġ0(x1t)xtut =

(
Op(n−3=2)

Op(n−1)

)
;

n−1H ′
n∑

t=1

Ġ0(x1t)xtx′t utHD
−1
n =

(
Op(n−3=2) Op(n−3=2)

Op(n−1) Op(n−1)

)
;

n−3=2
n∑

t=1

HG0(x1t)(�20 − �10)′xtut =Op(n−3=4);

n−3=4
n∑

t=1

HG0(x1t)(�20 − �10)′xtx′t utHD
−1
n = (Op(n−3=4);Op(n−3=4));

D−1
n H ′

n∑
t=1

(�20 − �10)′xtxtx′t utHD
−1
n =

(
Op(n−3=4) Op(n−3=4)

Op(n−3=4) Op(n−3=4)

)
:
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Then it follows that

C−1
n J ′ HQn(�0)JCn

=C−1
n J ′

n∑
t=1

Ḟ(xt ; �0)Ḟ(xt ; �0)′JC−1
n + op(1)

→d



∫ 1

0
N(r)N(r)′dr 0

0
∫ ∞

−∞
ds
∫ 1

0
dL1(r; 0)M (r; s)M (r; s)′


 (36)

by the >rst part of Lemma 1 and the second part of Lemma 2. The block diagonality
above holds since

n−5=4
n∑

t=1

x′t(�20 − �10)Ġ0(x1t) = Op(n−1=4);

n−1=2
n∑

t=1

x′t(�20 − �10)Ġ0(x1t)x′tHD
−1
n = (Op(n−1=4);Op(n−1=4));

n−7=4H ′
n∑

t=1

(1− G0(x1t))Ġ0(x1t)xtx′t(�20 − �10) =


Op(n−3=4)

Op(n−1=4)


 ;

n−1H ′
n∑

t=1

(1− G0(x1t))Ġ0(x1t)x′t(�20 − �10)xtx′tHD
−1
n

=


Op(n−3=4) Op(n−3=4)

Op(n−1=4) Op(n−1=4)


 ;

n−7=4H ′
n∑

t=1

G0(x1t)Ġ0(x1t)xtx′t(�20 − �10) =


Op(n−3=4)

Op(n−1=4)


 ;

n−1
n∑

t=1

G0(x1t)Ġ0(x1t)x′t(�20 − �10)xtx′tHD
−1
n =


Op(n−3=4) Op(n−3=4)

Op(n−1=4) Op(n−1=4)


 :

By (35) and (36), we have established (10) for the model (16).
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Now we may show (13) just as in Proof of Theorem 3, using the decomposition
given in (33). Let 0¡ ¡ 1=12. Then, due to Lemma A1(b), we can write J ′An(�)J
as 



0 Op(n
1
4+ ) Op(n

3
4+ ) Op(n

1
4+ ) Op(n

3
4+ ) Op(n

3
4+ ) Op(n

3
4+ ) Op(n

5
4+ )

Op(n
1
4+ ) Op(n

3
4+ ) Op(n

1
4+ ) Op(n

3
4+ ) Op(n

3
4+ ) Op(n

3
4+ ) Op(n

5
4+ )

Op(n
3
4+ ) Op(n

5
4+ ) Op(n

3
4+ ) Op(n

5
4+ ) Op(n

3
4+ ) Op(n

5
4+ ) Op(n

7
4+ )

Op(n
1
4+ ) Op(n

3
4+ ) Op(n

3
4+ ) Op(n

3
4+ ) Op(n

5
4+ )

Op(n
3
4+ ) Op(n

5
4+ ) Op(n

5
4+ ) Op(n

5
4+ ) Op(n

7
4+ )

Op(n
5
4+ ) Op(n

5
4+ ) Op(n

7
4+ )

Op(n
5
4+ ) Op(n

7
4+ )

Op(n
7
4+ ) Op(n

9
4+ )




giving

C−1
n J ′An(�)JC−1

n = op(1)

uniformly in �∈5n. Similarly, we write J ′Bn(�)J as




0 0 0 0 0 0 0 0

0 0 0 0 0 Op(n
1
4+ ) Op(n

1
4+ ) Op(n

3
4+ )

0 0 0 0 0 Op(n
3
4+ ) Op(n

3
4+ ) Op(n

5
4+ )

0 0 0 0 0 Op(n
1
4+ ) Op(n

1
4+ ) Op(n

3
4+ )

0 0 0 0 0 Op(n
3
4+ ) Op(n

3
4+ ) Op(n

5
4+ )

0 Op(n
1
4+ ) Op(n

3
4+ ) Op(n

1
4+ ) Op(n

3
4+ ) Op(n

3
4+ ) Op(n

3
4+ ) Op(n

5
4+ )

0 Op(n
1
4+ ) Op(n

3
4+ ) Op(n

1
4+ ) Op(n

3
4+ ) Op(n

3
4+ ) Op(n

3
4+ ) Op(n

5
4+ )

0 Op(n
3
4+ ) Op(n

5
4+ ) Op(n

3
4+ ) Op(n

5
4+ ) Op(n

5
4+ ) Op(n

5
4+ ) Op(n

7
4+ )



(37)
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by Lemma A1(b). Clearly, C−1
n J ′Bn(�)JC−1

n = op(1), uniformly in �∈5n. Next, we
note that HF is dominated in modulus by

HF =




0 0 0 0 0

0 0 0 c1x c1xx′

0 0 0 c1x c1xx′

0 c1x′ c1x′ c1x′(�2 − �1) c2x′(�2 − �1)x′

0 c1xx′ c1xx′ c2x′(�2 − �1)x c2x′(�2 − �1)xx′




;

where c1 and c2 are de>ned in (34). It is easy to see from Lemma A1(b) that
J ′Cn(�)J is stochastically at most of the order given by (37) above, and this implies
C−1
n J ′Cn(�)JC−1

n = op(1). The proof is now complete.

Proof of Theorem 5. The stated result follows immediately from Chang et al. (2001),
upon noting that W introduced in Theorems 3 and 4 is independent of both U
and V .

Proof of Corollary 6. De>ne

�2
n =

1
n

n∑
t=1

u2t :

It follows from Assumption 1 that �2
n →p �2

u. Furthermore, we have

|�̂2
n − �2

n|6An + 2Bn;

where

An =
1
n

n∑
t=1

(F(xt ; �̂n)− F(xt ; �0))2;

Bn =

∣∣∣∣∣1n
n∑

t=1

(F(xt ; �̂n)− F(xt ; �0))ut

∣∣∣∣∣6 (�2
nAn)1=2:

Therefore, it su<ces to show that An → 0.
De>ne Ĝnt = G(�̂n + x′t �̂n) and G0t = G(�0 + x′t�0). For the SNNM (14), we have

F(xt ; �̂n)− F(xt ; �0) = (
̂n − 
0) + (�̂n − �0)Ĝnt + �0(Ĝnt − G0t);

where


̂n − 
0 = Op(n−1=2); �̂n − �0 = Op(n−1=2)

from Theorem 3 and
n∑

t=1

|Ĝnt − G0t |=Op(n1=4) (38)
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as shown in Lemma A1(b). Then it follows that

An =
1
n

n∑
t=1

(
̂n − 
0)2 +
1
n

n∑
t=1

(�̂n − �0)2Ĝ2
nt +

2
n

n∑
t=1

(
̂n − 
0)(�̂n − �0)Ĝnt

+
2�0
n

n∑
t=1

(
̂n − 
0)(Ĝnt − G0t) +
2�0
n

n∑
t=1

(�̂n − �0)Ĝnt(Ĝnt − G0t)

= Op(n−1) + Op(n−1) + Op(n−3=4) + Op(n−1) + Op(n−5=4) + Op(n−1=2):

Clearly, An =Op(n−1=2) = op(1).
On the other hand, we have for the STR in (16)

F(xt ; �̂n)− F(xt ; �0) = (
̂n − 
0) + x′t(�̂1n − �10) + x′t((�̂1n − �10)

+ (�̂2n − �20))Ĝnt + x′t(�20 − �10)(Ĝnt − G0t);

where


̂n − 
0 = Op(n−1=2); �̂1n − �10 = Op(n−1); �̂2n − �20 = Op(n−1)

as shown in Theorem 4. Now we may easily deduce from this and (38) that

An =
1
n

n∑
t=1

((
̂n − 
0)2 + (x′t(�̂1n − �10))2

+ (x′t((�̂1n − �10) + (�̂2n − �20)))2Ĝ2
nt + (x′t(�20 − �10))2(Ĝnt − G0t)2

+ 2(
̂n − 
0)x′t(�̂1n − �10) + 2(
̂n − 
0)x′t((�̂1n − �10)− (�̂2n − �20))Ĝnt

+2(
̂n − 
0)x′t(�̂2n − �20)(Ĝnt − G0t)

+ 2x′t(�̂1n − �10)x′t((�̂1n − �10)− (�̂2n − �20))Ĝnt

+2x′t(�̂1n − �10)x′t(�̂2n − �20)(Ĝnt − G0t)

+ 2x′t((�̂1n − �10)− (�̂2n − �20))x′t(�̂2n − �20)Ĝnt(Ĝnt − G0t))

= Op(n−1) + Op(n−1) + Op(n−1) + Op(n−7=4) + Op(n−1)

+Op(n−1) + Op(n−7=4) + Op(n−7=4) + Op(n−1) + Op(n−1):

Hence An =Op(n−1) = op(1) also for the STR model.

Proof of Theorem 7. Assume that there exists a diagonal matrix Dn such that if we
de>ne

Pn = DnṘ(�̂n)JC−1
n

then

Pn →d P;

where P is a.s. of full row rank. The assumption holds if and only if the restrictions
are linearly independent asymptotically. It causes no loss in generality, since we may
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always formulate the given set of restrictions in such a way that they are not collinear
in the limit. For instance, we may want to test 
+�=0 and �=0 jointly in the SNNM
(14). This set of hypotheses are not asymptotically linearly independent, since

Ṙ(�̂n)JC−1
n =

(
n−1=2 0 n−1=4 0 0

0 0 n−1=4 0 0

)

and there is no normalizing matrix Dn for which its rows become linearly independent
asymptotically. However, we may reformulate it as 
=0 and �=0. For the reformulated
restrictions, we have

Ṙ(�̂n)JC−1
n =

(
n−1=2 0 0 0 0

0 0 n−1=4 0 0

)

and we may simply let Dn = diag(n1=2; n1=4).
By the mean value theorem, we have

R(�̂∗n) = Ṙ(�n)(�̂∗n − �0);

where �n lies in the line segment connecting �̂∗n and �0. It follows that

DnR(�̂∗n) = DnṘ(�n)JC−1
n (CnJ ′(�̂∗n − �0))

and consequently,

DnR(�̂∗n) →d W∗(PM−1P′);

where W∗ and M are given in Theorem 5. The stated result can now be easily deduced
upon noticing that the numerator of W ∗

n can be written as

R(�̂∗n)
′Dn

(
DnṘ(�̂∗n)JC

−1
n

(
C−1
n J ′ HQn(�̂∗n)JC

−1
n

)−1
C−1
n J ′Ṙ(�̂∗n)

′Dn

)−1

DnR(�̂∗n)

since

C−1
n J ′ HQ(�̂∗n)JC

−1
n = C−1

n J ′
n∑

t=1

Ḟ(xt ; �̂n)Ḟ(xt ; �̂n)′JC−1
n + op(1) →d M:

The proof is therefore complete.
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