

UNIVERSITY

Rice University World Gas Trade Model

> Peter Hartley Kenneth B Medlock III Jill Nesbitt

James A. Baker III Institute for Public Policy RICE UNIVERSITY

1

Overview and motivation

Share of gas in primary energy supply is rising:

RICE UNIVERSITY

- Environmental pressure for cleaner fuels
- Pro-competitive deregulation of wholesale electricity markets and the development of CCGT
- Gas may supply transport fuel needs (GTL, tar sands, fuel cell)
- Possible contrary influence is that coal gasification, solar, hydro and/or nuclear power could displace gas in electricity generation, perhaps assisted by falling costs of HVDC

Overview and motivation

World gas supply potential is large, but:

- The growth in energy demand in China, India is rapid
- Gas share of energy demand is rising in developed world
- North American, North Sea reserves are declining
- Gas reserves are concentrated in areas remote from markets
- Production and transport infrastructure is required
- Unstable political regimes may make investments unattractive
- Prices need to rise to finance the needed investments
- Russia could be a big supplier of natural gas to both Europe and Asia, making developments there critical
- The Rice World Gas Trade Model (RWGTM) gives a microeconomic framework to examine political and economic influences on the gas market

Rice World Gas Trade Model

Model framework: Market Builder from Altos Partners

- Calculate *equilibrium* prices and quantities across a fixed number of locations and time periods
 - In each period, allow gas to be produced or transported until there are no opportunities for profitable spatial arbitrage
 - Transport links transmit prices as well as gas for example, linking to a high priced market raises prices at the supply node
 - Producers schedule resource extraction to eliminate profitable (in net present value terms) temporal arbitrage opportunities
 - > High current prices accelerate depletion, raising future prices
 - > Also, if producers *anticipate* high prices in future period *t*, they may
 - delay some supply from periods before t, raising prices before t
 - accelerate investment to exploit those prices, affecting prices after *t*
 - The arbitrage actions imply actual prices at *t* would not rise as much
 - Price changes affect future as well as current consumer demand
 - **>** For this reason, too, current prices affect future prices
- Model supply data is based on USGS *World Resource* Assessment updated with latest reserve revisions
- Demand forecasts based on EIA International Energy Outlook 2004 and IEA World Energy Outlook 2002

Why a <u>world</u> market model?

- The model examines a *world* market of expanding depth and geographical extent
- Transition to a world market could be rapid
 - An *expectation* of new market dynamics encourages moving away from bilateral trading
 - More *potential* trading partners lowers the risk of investing without complete long-term contract coverage
 - A decrease in average distances between suppliers and/or customers increases arbitrage opportunities
- Bilateral contracts can be fulfilled by *swap* agreements as increased market depth increases the number of profitable alternatives
 - Contracts can be viewed as financial arrangements that do not necessarily constrain physical trades

Estimating gas demand

UNIVERSITY Used 23 years of IEA data from 29 OECD economies to relate per capita natural gas demand to:

Level of economic development (GDP/capita)

RICE

 Following Medlock and Soligo (2001), demand increases less with increased GDP/capita as an economy develops

Prices (wholesale industrial\$/BTU) of natural gas, oil and coal

- Estimated impact price elasticities are -0.091, 0.076, 0.024
- There is a lagged response to price changes
 - Effects accumulate over time with long-run elasticities that are around 10 times larger than the impact elasticities

Demand for gas in country *i* in year *t* is then given by

$$Q_{it} = A_{it} \left(p_{it}^{g} \right)^{-0.091} \left(p_{it}^{o} \right)^{0.076} \left(p_{it}^{c} \right)^{0.024} \left(Q_{it-1} \right)^{0.92}$$

for country and year intercepts A_{it} calibrated, as discussed below, to reflect the effects of economic and population growth and other country-specific factors

Calibrating demand growth

RICE **UNIVERSITY**

Start with EIA "reference case" forecasts of demand growth based on average expected GDP and population growth rates and the following prices of oil, gas and coal in the US

EIA Reference Case Prices

- Carry the price projections forward to 2040, maintaining the oil price growth rate and average inter-fuel price relativities
- Use the RWGTM with 2002 infrastructure to calculate location specific discounts/premiums on the US gas prices and hence projected prices p_{it}
- Choose A_{it} so the calculated demand at projected oil, coal and gas prices p_{it} equals the EIA reference case forecast demand in country *i* and year *t*

Backstop technology

RICE UNIVERSITY

- Expected future prices affect current supply and price
 - Estimated demand elasticity reflects historical substitution possibilities, not potential ones
 - Technological change is difficult to predict, but
 - IGCC, nuclear and renewable sources provide alternative sources of electricity supply
 - DOE says IGCC competitive at \$4 per Mcf of gas
 - Gasification of coal may also satisfy other uses
- We assume that, starting in 2030, demand is lost to new technologies at prices above \$5 with up to 2.5% lost at \$5.50 and 5% lost at \$10
 - Each year, the proportion of demand vulnerable to the backstop at each price above \$5 increases until in 2040 all base case demand could be satisfied at a price of \$10

UNIVERSITY

USGS proved natural gas reserves by region, 2003

UNIVERSITY

Undiscovered natural gas by region, 2001 estimates

More detail on supply

UNIVERSITY Regional resource potential of

- associated and unassociated natural gas resources,
- both conventional and unconventional gas deposits in North America and Australia (CBM), and
- conventional gas deposits in the rest of the world
- was assessed in three categories:
 - proved reserves (2003 Oil & Gas Journal estimates)
 - growth in known reserves (P-50 USGS estimates)
 - undiscovered resource (P-50 USGS estimates)
- Cost estimates, based on information for North America and resource base characteristics, include:
 - capital cost of development as resources deplete, and
 - operating and maintenance costs
- Supplies isolated from markets, or in areas lacking infrastructure, earn lower rents and are extracted last

Example cost of supply curves

Rice University

Comparative Cost of Supply Curves for Selected Regions

Sources: USGS, EIA, author calculations

Technological change in mining

Linking supply with demand

RICE

Representing transport networks

- Pipeline networks in North America and Europe are the main transportation systems
 - LNG is only about 5% of world demand, but is important in Japan & Korea, and increasing in US and Europe
- Aggregate supplies and demands into discrete "nodes"
- Parallel pipes are aggregated into a single link
 - Ignore minor distribution and gathering pipes
- Transport links are inherently discrete
 - Allow many potential links
 - Use a hub and spoke representation for LNG
- Model chooses new or expanded transport capacity from supply sources to demand sinks based on:
 - capital costs of expansion, and
 - operating and maintenance costs of new and existing capacity

Pipeline link example

LNG transportation network

Pipeline costs

- RICE UNIVERSITY
- EIA published cost data for 52 pipeline projects
- Using this data, we estimated an equation relating specific capital cost (annual cost per unit of capacity) to project characteristics
 - Project cost is raised by:
 - Pipeline length
 - Crossing mountains
 - Moving offshore or crossing a lake or sea
 - Developing in more populous areas
 - Higher capacity reduces *per unit* costs as a result of scale economies

LNG costs

RICE UNIVERSITY

- Consulted a variety of sources (including a 2003 EIA report) and industry contacts
- Liquefaction costs are a fixed cost (\$4.11/mcf/yr) plus a variable feed gas cost (model calculated)
- Shipping costs were based on a data set of estimated lease rates
 - These were converted to implicit costs of using the hub and spoke network via regression analysis
- Regasification costs vary by location (primarily because land costs vary)

♦ Based on industry, IEA and EIA reports

Indicative LNG costs, 2002

Price required for expansion, including capital costs

Route	Feed gas	Liquefaction	Shipping	Regasification	Total
Trinidad to Boston	\$0.48	\$1.01	\$0.32	\$0.69	\$2.50
Algeria to Boston	\$0.69	\$1.03	\$0.45	\$0.69	\$2.84
Algeria to Gulf of Mexico	\$0.69	\$1.03	\$0.63	\$0.28	\$2.63
Qatar to Gulf of Mexico	\$0.42	\$1.00	\$1.30	\$0.37	\$3.10
NW Shelf to Baja	\$0.44	\$1.01	\$0.95	\$0.33	\$2.83
Norway to Cove Point	\$0.85	\$1.05	\$0.54	\$0.51	\$2.95

Sources:

1. "The Global Liquefied Natural Gas Market: Status and Outlook" (December 2003), US Energy Information Administration

2. Various Industry Consultant Reports

3. Author calculations

Technological change in LNG

- LNG transport, liquefaction, and regasification capital and O&M costs are expected to decline
 - Rates of change in the model are based on a statistical fit to WEIO rates

Rice University

Selected price projections

UNIVERSITY

Supply projections

Demand projections

UNIVERSITY

LNG share of world supply by source

UNIVERSITY

Major exporter projections

UNIVERSITY

Major importer projections

Some implications

RICE UNIVERSITY

Russia becomes a major force in the global gas market

- Russian pipeline gas continues to be important for Europe
- Russia also becomes a major supplier of natural gas to China, Korea and Japan
 - But Japan continues to rely substantially on LNG as the high cost prevents a national gas grid from being built
 - Ultimately, gas is also piped east from West Siberia
- Russia also enters the LNG market possibly supplying the US
 - "Net back" prices in Russia have to be equilibrated
- North America becomes a major importer of LNG
 - Gas prices in the US then exceed prices in Japan
 - Russia, Middle East, Australia retain low gas prices
- The backstop technology is built in Japan, some parts of the US and Europe, Chile but not India or China