
NEW QUANTUM OSCILLATIONS IN MAGNETO

TRANSPORT OF A HIGH-MOBILITY

TWO-DIMENSIONAL ELECTRON

SYSTEM

by

Changli Yang

A dissertation submitted to the faculty of
The University of Utah

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Department of Physics

The University of Utah

August 2004



Copyright c© Changli Yang 2004

All Rights Reserved



THE UNIVERSITY OF UTAH GRADUATE SCHOOL

SUPERVISORY COMMITTEE APPROVAL

of a dissertation submitted by

Changli Yang

This dissertation has been read by each member of the following supervisory committee
and by majority vote has been found to be satisfactory.

Chair: Rui-Rui Du

Alexei L. Efros

Feng Liu

Brian T. Saam

John M. Worlock



THE UNIVERSITY OF UTAH GRADUATE SCHOOL

FINAL READING APPROVAL

To the Graduate Council of the University of Utah:

I have read the dissertation of Changli Yang in its final form
and have found that (1) its format, citations, and bibliographic style are consistent and
acceptable; (2) its illustrative materials including figures, tables, and charts are in place;
and (3) the final manuscript is satisfactory to the Supervisory Committee and is ready
for submission to The Graduate School.

Date Rui-Rui Du
Chair: Supervisory Committee

Approved for the Major Department

Pierre Sokolsky
Chair

Approved for the Graduate Council

David S. Chapman
Dean of The Graduate School



ABSTRACT

Quantum transport in two-dimensional electron systems (2DES) has been one

of the major topics in condensed matter physics for many years. Although extensive

studies have been performed in the regime of the quantum Hall effect (QHE) where

a high magnetic field (typical B ∼ 10 T) is required, much less attention has

been paid to the lower magnetic field regime where the Landau quantization of the

2DES is important but the QHE are absent (typical B . 0.5 T). The 2D transport

at the lower B regime was thought to be well understood and no surprise was

expected. Contrary to this belief, three new classes of quantum oscillations have

been discovered recently by our group (Quantum transport group of the University

of Utah, led by Prof. RuiRui Du) in high-mobility 2DES at low magnetic fields.

These new quantum oscillations are 1) the magneto-acoustic-phonon resonance

(MAPR) involving acoustic phonons (in contrast with the well-known magneto-

phonon resonance involving optical phonons), 2) the magneto-Zener-tunneling res-

onance (MZTR), induced by a relatively large dc current, and 3) the microwave-

induced photo-conductivity resonance (MIPCR). In ultra-high-mobility samples,

the minima of the MIPCR oscillations further develop into the so-called “zero

resistance state” (ZRS). All these phenomena are manifested in magnetoresistance

by periodic (in 1/B) oscillations. It is now clear that an important selection rule

in 2D transport, namely q = 2kF in momentum space or ∆Y = 2Rc in real

space, is underlying the MAPR and the MZTR, where q is the electron momentum

transferred to a scatterer, kF is the Fermi wavevector of the 2DES, ∆Y is the

guiding center shift of a scattered electron, and Rc is the cyclotron radius. This

selection rule is not directly related to a conservation law but due to the very

sharp cutoff at ∆Y = 2Rc for the overlap integral between displaced Landau

orbits in the vicinity of the Fermi level. On the other hand, the origin of the



MIPCR oscillations and the mechanism leading to ZRS remain open issues and

have stimulated considerable current interest in the research community.

In this thesis, all of these newly discovered magneto resonances are discussed,

and experimental work participated by the author are presented in detail in the text.

Specifically, this thesis describes the following contributions: 1) detailed tempera-

ture dependence measurements for the MAPR, whose results strongly suggest the

involvement of two branches of acoustic interface phonons, in agreement with the

theoretical calculations; 2) original observation and explanation of the MZTR; 3)

observation of conductance oscillations and the corresponding “zero conductance

state” (ZCS) in samples with Corbino geometry, which indicate the validity of

the standard tensor relation between the dc conductivity and resistivity for the

ac-driven MIPCR and ZRS.

At the end, suggested applications of these new magneto resonances in the

study of composite fermions, quasi-particles responsible for the fractional quantum

Hall effect, are suggested and discussed in the context of the analogy between a

composite fermion and an electron.

v
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CHAPTER 1

INTRODUCTION

Quantum transport in two-dimensional electron system (2DES) has been one

of the major topics in condensed matter physics for many years. In the recent

two decades, although extensive studies have been performed in the quantum

Hall effects (QHEs) regime where a high magnetic field (typical B ∼ 10 T) is

required, much less attention has been paid to lower magnetic field regime where

the Landau Quantization of the 2DES is important but the QHEs are absent

(typical B . 0.5 T). The 2D transport at the lower B regime was thought to

be well understood and no surprises were expected. On the contrary, three new

classes of quantum magneto oscillations have been discovered recently [1, 2, 3]

in high-mobility 2DESs at low magnetic field. These new quantum oscillations

are magneto-acoustic-phonon resonance (MAPR), magneto-Zener-tunneling reso-

nance (MZTR), and microwave-induced photo-conductivity resonance (MIPCR).

Remarkably, in ultra-high-mobility samples, the minima of MIPCR oscillations

further develop into a peculiar“zero resistance state” (ZRS) [4, 5] which is the

focus of considerable current interest. These demonstrate that the 2DES remains

rich in new physics and worthwhile to carefully study.

In this chapter, a brief discussion will be given to the previously well-known

quantum oscillations in 2D magneto transport, as a background for the three newly

discovered oscillations. Specifically, the quantization of a 2DES in a perpendicu-

lar magnetic field is presented in Sec. 1.1; and general transport properties of a

2DES are discussed in Sec. 1.2. Various magneto oscillations are then discussed:

previously well-known oscillations are presented in Sec. 1.3, and the new ones in

Sec. 1.4.
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1.1 Two-dimensional electron gas and its

Landau quantization

Two-dimensional electron systems(2DESs) are mostly realized in semiconduc-

tors, typical structures are shown in Fig. 1.1. Due to the confinement potential

along the z direction, the direction perpendicular the interface plane (denoted x-y

plane), the motion of electrons in z direction is quantized into discrete energy states

while the motion in x-y plane is free. These energy levels due to z confinement

are called subbands which have energy spacing of the order of 10 meV. At low

temperatures (∼ 4 K) and sufficient low electron density (typically ne . 5 × 1011

cm−2), only the lowest subband is occupied by electrons which means all electrons

have same wavefunction related to the z direction; in this case, the electron system

is perfectly 2D, with an energy spectrum

E0(k//) = E0 +
~2k2

//

2m∗ , (1.1)

where E0 is the energy of the lowest subband, k// is a wave vector in the x-y plane,

and m∗ is the effective mass of the electrons.

If a strong magnetic field, B, is applied perpendicular to the x-y plane, the free

motion of a 2D electron in the plane is further quantized into Landau orbits with

discrete energy levels, called Landau levels. This Landau quantization of a 2DES

has crucial influences on all aspects of the properties of the 2DES, largely due to

the drastic change of the density of states.

The treatment of the Landau quantization is well-known textbook knowledge [7].

However, a brief treatment is still worthy to be repeated here, mainly in order to

present a basic picture.

Under a perpendicular magnetic field B (B||z), the Schrödinger equation for an

electron of the noninteracting 2DES is

1

2m∗ (−i~∇+ eA)2ψ(x, y) = Eψ(x, y), (1.2)

where A is the magnetic vector potential. If we choose Landau gauge for the vector

potential
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Figure 1.1. Typical structures that host two-dimensional electron system (2DES).
(a) A silicon metal-oxidesemiconductor field-effect transistor (MOSFET). The
2DES resides at the interface between silicon and silicon oxide. Electrons are held
against the oxide by the electric field from the gate metal; (b) A modulation-doped
GaAs/AlGaAs heterojunction. The 2DES resides at the interface between GaAs
and AlGaAs. Electrons are held against the AlGaAs by the electric field from the
charged silicon dopants (+) in the AlGaAs. [Adapted from Ref. [6].]
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Ax = −yB, Ay = 0, (1.3)

then the Hamitonian does not depend on x and the wavefunction can be written

as a product of a plane wave in x with an unknown function of y:

ψ = eikxxu(y). (1.4)

Thus the Schrödinger equation becomes

[
− ~2

2m∗
∂2

∂y2
+

1

2
m∗ω2

c (y − l20kx)
2

]
u(y) = Eu(x), (1.5)

where ωc = eB/m∗ is the cyclotron frequency, and l0 =
√
~/mωc =

√
~/eB is the

magnetic length. In effect, this is the Schrödinger equation for a one-dimensional

harmonic oscillator with shifted center at

y = Y = l20 kx. (1.6)

Thus we can directly write down the wavefunction and energy for the 2DES under

perpendicular magnetic field as:

ψ = eikxxφn(y − Y ), (1.7)

EnY = (n +
1

2
)~ωc, (1.8)

where φn(y − Y ) is the solution for the shifted oscillator defined by Eq. (1.5), and

n = 0, 1, 2, 3, . . . .

The energy levels in Eq. (1.8) are called Landau levels. The degeneracy of each

Landau level is given by the number of independent guiding center coordinates Y ,

hence is determined by the number of allowed kx according to Eq. (1.6). If the

sample has dimensions Lx and Ly, the periodic boundary condition gives kx =

2πnx/Lx where nx is limited by

0 < |Y | = l20 |kx| = 2πl20nx/Lx < Ly, (1.9)

thus the number of allowed kx is

Nx = max(nx) = LxLy/(2πl20). (1.10)
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It follows that the degeneracy per unit area is

nB =
Nx

LxLy

=
1

2πl20
=

eB

h
(1.11)

which is independent of the material parameters.

In an ideal 2DES, the density of states consists of a series of sharp δ-functions

D(E) = nB

∑
n

δ

(
E − (n +

1

2
)~ωc

)
. (1.12)

However, in real samples, there are always scattering events which broaden the

Landau levels and the density of states is given by

D(E) = nB

∑
n

Γ

(
E − (n +

1

2
)~ωc

)
, (1.13)

where Γ(E) is a broadening profile for the Landau levels. It is apparent that the

density of states is periodic in the Landau level spacing ~ωc.

For a 2DES with an electron density ne, the number of occupied Landau levels

is given by the filling factor

ν =
ne

nB

=
neh

eB
. (1.14)

If the magnetic field is swept for a given ne, the filling factor will continuously

change, which is equivalent to a continuous motion of the Fermi level across the

Landau levels. From Eq. 1.13, it is clear that this results in an oscillatory density

of states (periodic in 1/B) at the Fermi level. The oscillatory density of states

(periodic in 1/B) at the Fermi level is reflected in a number of properties of the

2DES, for example, in the magnetic susceptibility and magnetoresistance.

1.2 Magnetoresistance of two-dimensional

electron systems

In general, the current density and electric field in a 2DES are related by

J = σE, (1.15)

where the σ is the conductivity tensor
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σ =

(
σxx σxy

−σxy σyy

)
. (1.16)

The resistivity tensor is the reciprocal of the conductivity, and it is given by

ρ =
1

σxxσyy + σ2
xy

(
σxx −σxy

σxy σyy

)
. (1.17)

1.2.1 Semiclassical transport

The 2D transport in a weak magnetic field of a 2DES can be semiclassically

treated using the Boltzmann transport equation, without invoking the Landau

quantization.

For a homogeneous electron gas under electric field E and magnetic field B,

within the relaxation time approximation the Boltzmann transport equation gives

−e(E + v ×B)
1

~
∇kf = −f − f0

τ
, (1.18)

where f and f0 are the distribution functions with and without the external fields,

τ is the relaxation time, and

v = ~∇kε(k) (1.19)

is the drift velocity. By iteration of Eq. 1.18 to keep the first order of E and second

order of B, it can be shown that

f − f0 = eτ
∂f0

∂ε
v·[E− E× eτ

m∗B + (E× eτ

m∗B)× eτ

m∗B], (1.20)

where
∂f0

∂ε
≈ −δ(ε− EF ) (1.21)

for degenerate electron gas with Fermi level EF .

The current density is given by

J =
1

2π2

∫
evf d2k. (1.22)

Substitution Eq. 1.20 and 1.21 into 1.22, after some manipulations, it follows that

J = σ0[E− µE×B + µ2(E×B)×B], (1.23)
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with

σ0 =
nee

2τ

m∗ , µ =
eτ

m∗ . (1.24)

Utilizing the fact that E is in the 2D plane, and B is perpendicular to the plane,

equation 1.23 gives the 2D conductivity

σ = σ0

(
1− (µB)2 −µB

µB 1− (µB)2

)
. (1.25)

Thus the resistivity (only keep to the second order of µB) is

ρ =

(
1/σ0 B/nee

−B/nee 1/σ0

)
. (1.26)

It is easy to see that the magnetic field makes no correction to the diagonal

resistance, and it only contributes to the Hall effect with an essentially classic Hall

resistivity ρxy = B/nee.

These results are valid at weak magnetic fields such that µB = ωcτ ¿ 1 (see

distribution function of Eq. 1.20: the expansion is only valid at small B otherwise

it is incomplete). Also note that this condition means the Landau levels are far

from being resolved thus are justified to be ignored. Other key assumptions made

are a perfect parabolic energy dispersion and strong degeneracy with a well-defined

Fermi surface, which are generally satisfied for typical high mobility 2DES located

in GaAs/AlGaAs interfaces at low temperatures.

1.2.2 Quantum transport

In a strong magnetic field such that µB = ωcτ À 1, the Landau levels are well

resolved. Such energy quantization by the magnetic field drastically modifies the

energy spectrum and the density of states. Although a Fermi level can still be well

defined, there is no Fermi surface in the momentum space. In this situation, the

magnetic field can no longer be taken as a perturbation but has to be incorporated

into the system at the starting point. The electrical transport in this regime is thus

called quantum transport since the Landau quantization plays a central role and

quantum mechanical treatments are essential.

To relate a current density to an electric field, let us consider a 2DES under a

perpendicular magnetic field B and an electric field Ey in the plane along the y
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direction. The electric field introduces a potential, eEyy, to the Hamiltonian. In

Sec. 1.1, the solution with Ey = 0 is already given, so following the same procedures,

the solution for Ey ≤ 0 is easy to get:

ψnY = eikxxφn(y − Y ), (1.27)

EnY = (n +
1

2
)~ωc + eEyY +

1

2
m∗v2

d, (1.28)

with

Y = l20 kx − vd

ωc

, vd =
Ey

B
. (1.29)

It is found that the Ey has only two effects to the solution: 1) shifted the guiding

centers of the harmonic oscillators (see Eq. 1.29); 2) spatially tilted the Landau

levels hence lifted the degeneracy within each Landau level (see Eq. 1.28).

It is easy to evaluate the velocities vx and vy:

vx = < nY | − i~
∂

∂x
− eyB|nY >= vd, (1.30)

vy = < nY | − i~
∂

∂y
|nY >= 0. (1.31)

Hence the current densities are obtained:

Jx = ne(−e)vx = −neevd = −nee

B
Ey, (1.32)

Jy = n(−e)vx = 0. (1.33)

This gives the conductivity tensor

σ =

(
0 −nee/B

nee/B 0

)
. (1.34)

Now we can see that for an ideal 2DES under strong magnetic field, the diagonal

conductivity is zero and the off-diagonal conductivity is the Hall conductivity with

the exact classic value. In this case the current is purely a Hall current which is

orthogonal to the electric field, so there is no dissipation in the system.

In real systems, scatterers always present. The scattering potential, V , can

be perturbatively treated through quantum mechanical approaches, such as by

expanding the density operator with respect to V [8, 9, 10]. It can be shown [9]
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that to second order of V , the Hall conductivity does not change. However the

diagonal conductivity is nonzero due to scattering. In a strong magnetic field,

a non-vanishing diagonal conductivity is entirely due to the migration of guiding

centers caused by scattering [11], thus a Titeica type formula can be given for the

migration current [11, 12]

Jy =
e

LxLy

∑

µµ′
Wµµ′(Y

′ − Y )fµ(1− fµ′), (1.35)

where µ = (NY ), µ′ = (N ′Y ′) label the initial state and final state, Wµµ′ is the

transition rate in the Born approximation [13], and fµ = 1/(e(Eµ−EF )/kBT − 1) is

the Fermi distribution of the electrons. The diagonal conductivity can then be

calculated through

σxx = σyy =
Jy

Ey

=
1

Ey

e

LxLy

∑

µµ′
Wµµ′(Y

′ − Y )fµ(1− fµ′). (1.36)

Eq. 1.36 will be referred to in Chapter 3 to account for the magneto-Zener-

tunneling resonance. Although the derivation of Eq. 1.36 appears very straightfor-

ward, its validity has been justified by more sophisticated methods [9, 10, 14, 15].

This equation is very important and helps in understanding 2D transport in a strong

magnetic field as it expresses well the scattering-induced migrations of guiding

centers.

It should be emphasized that, in the quantum transport regime where σxy À
σxx, σyy, the diagonal resistivity ρxx is directly proportional to the conductivity:

ρxx =
σyy

σxxσyy + σ2
xy

≈ σyy

σ2
xy

. (1.37)

This fact is quite contrary to the common thinking at weak or zero magnetic field.
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1.3 Magnetoresistance oscillations known

before 1997

1.3.1 Shubnikov-de Haas (SdH) oscillations

The SdH oscillations [16] are the primary oscillations observed in high mobility

2DES at low temperatures. An example is shown in Fig. 1.2. The oscillations are

controlled by the filling factor ν = ne/eB, and thus are periodic in 1/B with a

frequency

f = g
h

e
ne, (1.38)

where g = 1/2 if the Zeeman-splitting of the spin levels is not resolved, otherwise

g = 1.

The origin of the SdH can be understood with the help of Eq. 1.36 as follows.

At low temperatures, the transport is typically controlled by scatterers such as

impurities and acoustic phonons. In the ohmic regime with a vanishing electric

field, the transitions are within the same Landau level at the vicinity of the Fermi

level, so the transition rate (hence the diagonal conductivity as well as diagonal

resistivity, see Eq. 1.37) is proportional to the square of the density of states at

the Fermi level (D(EF )). In the last paragraph of Sec. 1.1, we have indicated

that D(EF ) is an oscillatory function controlled by ν, which naturally gives the

oscillatory structure of SdH.

The SdH effect requires a degenerate electron gas, thus is pronounced at low

temperatures such that kBT ¿ EF , ~ωc.

In high mobility samples, at low filling factor, the SdH effect develops into the

famous quantum Hall effects. This topic will discussed in Chapter 5.

1.3.2 Magneto-optical-phonon resonance (MOPR)

The magnetoresistance can exhibit oscillations due to resonance with optical

phonons [17]. The contribution to the magnetoresistance is caused by electron

transitions between different Landau levels through absorption of optical phonons.
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Figure 1.2. SdH oscillations of magnetoresistance observed in a GaAs-Al0.3Ga0.7As
heterostructure with 2D electron density ne = 2.1 × 1011 cm−2 and mobility
µ ≈ 3× 106 cm2/Vs.
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Since the dispersion of optical phonons is largely monoenergetic with the energy

~ω0, the energy conservation gives

~ω0 = j~ωc, j = 1, 2, 3, . . . , (1.39)

which leads to 1/B oscillations with the frequency

f =
m∗ω0

e
, (1.40)

independent of the electron density.

The MOPR does not require a degenerate electron gas, and is pronounced at

relatively high temperatures (100-180 K) because of the need for optical phonon

population.

1.3.3 Geometrical resonance

The geometrical resonance [18, 19] is induced by a periodic spatial potential

modulation to the 2DES. This potential modulation broadens every Landau level

into an energy band with a oscillatory (in 1/B) bandwidth, giving rise to an

oscillatory current along the direction perpendicular to the potential and also

an oscillatory density of states. These lead to the oscillatory conductivity. The

oscillations are controlled by the condition

2Rc = a(j − 1/4), j = 1, 2, 3, . . . , (1.41)

where Rc = l20
√

2πne is the cyclotron radius and a is the period of the modulation

potential. The oscillations are periodic in 1/B, with a period proportional to the

modulation period.

1.4 Three new classes of quantum oscillations

recently discovered

In addition to the well-known magneto oscillations mentioned above, three new

classes of oscillations have been discovered by our group in recent years. These new

oscillations are briefly summarized in this section and will be detailed in Chapters

2, 3, and 4, respectively.
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1.4.1 Magneto-acoustic-phonon resonance (MAPR)

The magneto-phonon resonance involving acoustic phonons [1] came as a sur-

prise because the absence of a known selection rule for scattering by acoustic

phonons with fixed energy in a sweeping magnetic field. Now it is clear that a

momentum transfer rule q = 2kF generally holds in 2D magneto transport at low

magnetic fields [1, 2]. This momentum selection rule is not directly due to the

momentum conservation from a single electron transition process, rather it is due

to a very sharp cutoff of the overlapping between displaced Landau orbits (namely,

∆Y = 2Rc in the vicinity of the Fermi level). The condition for the MAPR is then

2kF u = jωc, j = 1, 2, 3, . . . , (1.42)

and the oscillation frequency

f = 2kF um∗/e. (1.43)

1.4.2 Magneto-Zener-tunneling resonance (MZTR)

Usually 2D transport measurements are performed in the ohmic regime where

a very small probe current is used (typically, the current density J < 0.01A/m).

If a relative large current ( J > 0.1A/m) is passed through a 2DES, the transport

gradually becomes non-ohmic. The MZTR is such an non-ohmic effect observed

in high mobility 2DESs [2], caused by a relative large Hall field induced by a dc

current under a magnetic field. The Hall field makes the Landau levels spatially

tilted; hence, the electrons can transit elastically between different Landau levels

with a guide center shift ∆Y and give rise to a conductance along the Hall field. In

this transport, again, for short-range scattering a selection rule such that ∆Y = 2Rc

exists due to the sharp cutoff of the overlapping between displaced Landau orbits.

Then the resonance condition is given by

2RcEy = j~ωc, j = 1, 2, 3, . . . , (1.44)

where Ey = J
nee

B, and frequency is

f =

√
2πm∗

e2

1√
ne

J. (1.45)
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1.4.3 Microwave-induced photo-conductivity resonance

(MIPCR)

When it is exposed to a microwave radiation, a high-mobility 2DES exhibits

remarkable photoconductivity oscillations [4] which are controlled by the ratio

between the microwave frequency and the cyclotron frequency, i.e., ε = ω/ωc. In

ultra-high-mobility samples, the minima of the oscillation further develop into the

so-called “zero resistance states” [4, 5] — and have been shown to be also “zero

conductance states” [20]. These experimental findings have stimulated considerable

current interest in the research community.



CHAPTER 2

MAGNETO RESONANCE CAUSED BY

LEAKY INTERFACE ACOUSTIC

PHONONS

The magnetophonon resonance effect (MPR) in a 2D electron system (2DES) is

well known in GaAs-AlGaAs [21, 22, 23, 24, 25] (for a review, see Ref. [17]) and other

semiconductor materials. The condition responsible for MPR is ωph = jωc, were j is

an integer, ωph and ωc = eB/m∗ are the optical phonon and cyclotron frequencies,

respectively, and m∗ is the effective mass of the carrier. In transport experiments

the MPR manifest as periodic oscillations (in 1/B) in magnetoresistance, and the

period is independent of the electron density. MPR are observed only in a relatively

high temperature range (100-180 K) where the optical phonons are populated.

Acoustic modes, because of their dispersion and a lack of known selection rules,

have never been considered relevant in MPR. Only recently have the MPR by

acoustic-phonons been observed in a high-mobility 2DES in GaAs/AlxGa1−xAs

heterostructures [1]. The specific modes involved are so-called leaky interface-

acoustic phonons (LIAP). Detailed temperature-dependence data [26] revealed two

branches of acoustic phonons involved in this MPR, which are consistent with the

theoretical calculation for the LIAP phonon modes [27].

In this chapter, Sec. 2.1 is a short review for the novel MPR by acoustic-

phonons. Sec. 2.2 presents our detailed temperature-dependence data which clearly

show the involvement of two branches of acoustic phonons. More experimental data

on higher mobility samples are presented in Sec. 2.3.
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2.1 Observations of magneto-acoustic-phonon

resonance (MAPR)

The magneto-acoustic-phonon resonance (MAPR) discussed in this chapter

was discovered experimentally in year 2000 prior to a theoretical explanation;

example traces are shown in Fig. 2.1. As usual, the oscillations were found to

be periodic in 1/B; however, the density dependence of the oscillation frequency

( f ∝ √
ne) told that the oscillations could not be attributed to any known

mechanism. Quantitatively, the condition for the resonance peaks were found to

be

2kF u = lωc, l = 1, 2, 3, ... , (2.1)

where kF =
√

2πne is the Fermi wave number of 2DEG at zero B field, and u ≈
3.0× 103 m/s is very close to the sound velocity of GaAs.

Eq. 2.1 strongly suggested a magneto resonance by acoustic phonons, which

was partially suported by the fact that the oscillations appear only in a limited

temperature range (approximately, 2 < T < 10 K). In this scenario, Eq. 2.1

is the condition of energy conservation while electrons are scattered by acoustic

phonons with momentum q = 2kF . However, there were two difficulties associated

with this explanation: (a) An additional momentum selection rule for phonons

such that q = 2kF is needed, and (b) Because of the 2D nature of the electrons,

only in-plane momentum can be transferred between electrons and phonons, hence

the momentum selection rule should only involve the in-plane wavevector of the

phonons. Therefore, Eq. 2.1 implies the phonons involved should have 2D nature

because it does not involve qz [28]. Such 2D phonons were not previously reported

in GaAlAs/GaAs heterostructures.

These difficulties within the proposed MPR scenario were successfully resolved

by subsequent theoretical studies. Indeed, branches of 2D acoustic phonons were

revealed by theoretical calculations [27]. These phonons, called “leaky interface-

acoustic phonons”, are found to be propagating on the GaAlAs/GaAs interface with

a complex velocity, u = uR + uI where uI ¿ uR. In low magnetic field quantum



17

Figure 2.1. Magneto-acoustic-phonon resonances observed in a high-mobility
GaAS/Al0.3Ga0.7As heterostructure. Traces (shifted vertically for clarity) are
shown for three electron densities ne of 2.05, 2.27, and 2.55 × 1011 cm−2. Four
resonance peaks are observed for ne = 2.55 × 1011 cm−2, as indicated by arrows.
The shift toward higher B with increasing ne is also indicated by arrows. The
inset shows the oscillations (well resolved in −d2ρxx(B)/dB2) are periodic in 1/B.
[adapted from Ref. [1].]
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transport, the momentum selection rule, q = 2kF , was theoretically derived for

the leaky interface phonons [1]. The new magneto oscillations were then well

explained as a magneto-phonon resonance involving the leaky interface-acoustic

phonon modes.

2.2 Evidence for the involvement of two

branches of leaky interface

acoustic phonons

As discussed above, the novel magneto resonance corresponds to electron tran-

sitions between different Landau levels by absorbing a acoustic phonon with mo-

mentum 2kF . It is easy to see that such MPR is periodic in 1/B with a frequency

f = 2kF um∗/e, (2.2)

hence linear with phonon velocity. In our MPR experiments the phonon velocity

can be determined from the oscillation frequency.

In Ref. [1], fast Fourier transformation (FFT) performed on traces at T ≈
4 K has shown that there are two branches of LIAP modes involved in the MPR

(with sound velocity u ≈ 2.9 km/s and u ≈ 4.4 km/s, respectively). However,

more evidence is needed to support this observation. In this section, more detailed

measurements on the temperature dependence of the oscillation amplitudes are

presented, which confirms the involvement of two branches of LIAP modes. At

T ≈ 4 K the oscillation features result predominately from the resonance with

a LIAP mode of velocity u ≈ 3.0 km/s. With increasing temperature, however,

the features are gradually dominated by a higher velocity mode with u ≈ 4.6

km/s. These results are in qualitative agreement with the calculations [27] for the

GaAs/AlxGa1−xAs interface.

2.2.1 Samples and methods

Our samples are lithographically defined Hall bars cleaved from

GaAs/Al0.3Ga0.7As heterostructures of a high-mobility µ ≈ 3 × 106 cm2/Vs.
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The data presented here are from a Hall bar sample of width 50 µm, although

data with comparable quality were obtained from a variety of samples. The

electron density ne can be tuned by shining a red LED and by applying voltage to

a NiCr front gate. The magnetoresistance traces ρxx(B) at various temperatures

(from 1.5 to 10 K) were measured using a variable-temperature 4He cryostat

and a superconducting magnet, employing a standard low-frequency lock-in

technique. The frequency of the MPR were then obtained from FFT performed

on −d2ρxx(B)/dB2 with respect to 1/B.

2.2.2 Experimental results

In Fig. 2.2 we show the low-field magnetoresistivity ρxx(B) measured at T =

3.9 K, for electron density (in units of 1011 cm−2 throughout the text) ne =

2.12, 2.54, and 3.45, respectively. A major feature of the MPR is the oscillatory

structure in the field range B < 5 kG. The inset of Fig. 2.2 shows the corresponding

FFT power spectra of the magnetoresistance traces. In the lower frequency range

(2 ∼ 5 kG), two peaks (marked by A and B) appear corresponding to a sound

velocity uA ≈ 3.0 km/s and uB ≈ 4.6 km/s, respectively. The high-frequency

peaks are due to SdH oscillation. Notice that the frequency of SdH effect is linear

with ne, whereas that of the MAPR oscillation is linear with
√

ne [1].

The temperature dependence of the FFT amplitudes is consistent with a

thermally-excited LIAP resonance model. The magnetoresistance traces at selected

temperatures in the range of 1.5 to 10 K are shown in Fig. 2.3. It is apparent that

the oscillations are best developed at around T ∼ 4 K and are damped at both lower

and higher T . Qualitatively this can be understood by considering the population

of phonons at different temperatures. The dampening at lower T is due to the lack

of LIAP phonons carrying momentum q = 2kF , and the dampening at higher T is

due to the smearing of Landau levels, by either bulk or interface phonons.

Fig. 2.4 shows the corresponding FFT spectra of the resistivity traces. First,

we can see that, with increasing temperature, the amplitudes of the oscillations

increase at lower T reaching their maximum at T ≈ 4 K, and then diminish at a
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Figure 2.2. Magnetoresistance oscillations arising from the magnetophonon
resonance by leaky interface-acoustic modes at T = 3.9 K are shown for different
densities ne = 2.12, 2.54, and 3.45 × 1011 cm−2. The inset shows the FFT power
spectra of the resistivity traces: Peak A and B indicate two branches of phonon
modes with velocities uA = 3.0 km/s and uB = 4.6 km/s, respectively; and the
SdH peak gives ne.
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higher velocity mode tends to dominate the resonance.
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higher T . This result reinforces the observation from Fig. 2.3. Second, we note

that the ratio between the amplitude of mode B and that of mode A increases with

increasing T . At T below ∼ 5 K the lower velocity mode dominates the resonance,

while at T above ∼ 7 K the features are strongly influenced by the higher velocity

mode. This behavior can be qualitatively explained by the Planck distribution of

phonon numbers at a given temperature. However, a quantitative analysis of the

relative contribution from each mode to the resonance is difficult. In particular,

different LIAP modes may interact with electrons with a different strength, thereby

complicating the comparison of the amplitude between different modes.

2.2.3 Conclusion

In summary, we have presented a careful temperature dependence measurement

for the magnetophonon resonance caused by leaky acoustic-interface modes on

GaAs/AlxGa1−xAs interface. The resonance oscillations are best developed at

T ≈ 4 K and are damped at both lower and higher temperatures. FFT anal-

ysis clearly shows two branches of phonon modes involved into the resonance.

The resonance amplitudes obtained from FFT show that at T below 5 K the

lower velocity mode dominates the resonance, and that the oscillation features

are strongly influenced by the higher velocity mode with increasing temperatures.

The observation can be qualitatively explained via the thermal distribution of the

phonon numbers of these two phonon modes.

2.3 MAPR observed on samples with higher

mobility

With higher mobility samples, we have observed much stronger MAPR. An

example trace is shown in Fig. 2.5. We understand the importance of the mobility

as following. The mobility is not only related to the Landau level width but

also related to the background resistance. The higher the mobility, the lower the

resistance contributed by other scattering mechanism (mainly impurity scattering),

thus more prominent the phonon resonance.
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CHAPTER 3

MAGNETO-ZENER-TUNNELING

RESONANCE: ROLE OF THE

HALL FIELD

In Chapter 2, the magneto-phonon resonance in a high mobility 2DEG is pre-

sented. The magneto oscillations are caused by the absorption of leaky interface

acoustic phonons originated at the GaAlAs/GaAs interface. Conceptually, a mag-

neto oscillation can also be induced by emission of phonons if the electron is heated

up to a temperature significantly higher than that of the lattice, as observed in

magneto-optical-phonon resonance [25]. This motivated us to pass a relatively large

DC current, intended to heat the electrons, through the samples which showed clear

magneto-phonon resonance. Instead of the phonon emission features, surprising

new magneto oscillations were discovered following these experiments. The new

magneto oscillations are periodic in 1/B, which is common for quite a few known

low field magneto oscillations. However, the oscillation period is found to be directly

proportional to the current density Jdc. This remarkable characteristic distinguishes

this magneto oscillations from any known ones.

The newly discovered oscillations were quickly quantitatively explained by using

a simple model based on a selection rule of the electron hopping distance between

the spatially tilted Landau levels. Later we came to be aware that a similar mech-

anism, called Zener tunneling mechanism, had been proposed to account for the

breakdown of the integer quantum effect [29]. The Zener tunneling mechanism has

not been considered, however, in a low magnetic field regime until our experiments.
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3.1 New magneto oscillations induced by a

DC current

3.1.1 Samples and measurement setup

Our samples were cleaved from a wafer of a high-mobility GaAs-Al0.3Ga0.7As

heterostructure grown by molecular-beam epitaxy, having an electron density ne ≈
2 ×1011 cm−2 and a mobility µ ≈ 3 × 106 cm2/V s at a temperature T = 4.2 K.

Such parameters were obtained after a brief illumination from a light-emitting

diode. The distance between the electrons and the Si δ-doping layer is ds ≈ 70 nm.

Four Hall bar specimens of width w = 200, 100, 50, and 20 µm were processed

by photolithography and wet etching. The 50 µm specimen has a NiCr front gate

so that its electron density can be tuned between 1.9 and 4.0 × 1011 cm−2. The

experiments were performed in a sorption-pumped 3He cryostat equipped with a

superconducting magnet.

In principle, the Zener tunneling effect can be detected in standard magne-

toresistance, Rxx(B). However, in order to increase the sensitivity, a differential

resistance rxx was measured in the following fashion. A constant dc current Idc

was passed through the Hall bar, along with a small (100 nA) low frequency

(f = 23 Hz) modulation current, iac. The differential magnetoresistance at the

given dc bias, rxx = (∂V/∂I)Idc
= vac/iac, was then recorded by a lock-in amplifier

at the modulation frequency. A schematic circuit for the electrical measurement is

shown in the inset of Fig. 3.1.

3.1.2 Observations of new magneto oscillations

Our central finding concerns the strong oscillations in a differential magne-

toresistance in the weak magnetic field region, B < 4 kG. In Fig. 3.1 we show

such features from a 50 µm Hall bar measured at T = 0.33 K, for Idc =

0, 10, 20, 30, 40, 50 µA, respectively. For a zero dc bias current, the trace

shows well-resolved Shubnikov de-Haas (SdH) oscillations for B > 0.5 kG. New

oscillations emerge when a finite Idc is applied to the specimen. Up to three
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Figure 3.1. The measured differential magnetoresistance traces at various dc
current Idc are shown for a 50 µm Hall bar (the traces are shifted vertically for
clarity). Up to three orders of oscillations are clearly seen from the traces, and the
oscillations are roughly periodic in 1/B. The inset is a diagram for the electrical
measurement.
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orders of peaks can be clearly seen from the traces. Furthermore, the peaks shift

towards higher B with increasing Idc. The weakening of the SdH effect can be

attributed partially to electronic heating by the dc bias. In contrast to the SdH

oscillation whose amplitude diminishes quickly at increasing temperatures, the

new oscillations persist to a temperature up to T = 4K.

It is apparent that the new oscillations, observed here in rxx, are roughly

periodic in 1/B. However, as can be shown, the exact resonance condition for

Zener tunneling should correspond to peaks in its derivative, v. z., in ∂rxx/∂|B|
traces [30]. To illustrate this point, we show in Fig. 3.2 the ∂rxx/∂|B| trace which

is obtained by numerical differentiation performed on the rxx(B) trace from a 50

µm sample with a bias Idc = 30 µA. The inset, 1/Bl vs. l, confirms that the

oscillation in ∂rxx/∂|B| is strictly periodic in 1/B.

Remarkably, the oscillation period is tunable by the bias current Idc. In Fig. 3.3

we plot the maximum positions Bl (1, 2, 3), obtained from ∂rxx/∂|B|, against

the current density Jdc = Idc/w, for the four samples. Roughly, all data collapse

according to

Bl ∝ Jdc

l
. (3.1)

3.2 Quantitative explanation by the Zener

tunneling mechanism

Such oscillations arise owing to a new scattering channel opened up by a tilted

Hall potential. To begin with we consider a 2DEG system under crossed electric

and magnetic field, depicted in Fig. 3.4. The electric field is a Hall field along the

−y direction, Ey = vdB, induced by a dc current density Jdc = neevd, where vd is

the drift velocity of the electrons..

The 2DEG is quantized into a series of Landau levels and has a wave function

(see Eq. 1.27)

|NY 〉 =
eikxx

√
Lx

φN(y − Y ), (3.2)

where N is the index of Landau levels, and φN(y−Y ) is an oscillatory wave function

centered at Y = −l2B(kx −m∗vd/~), with lB =
√
~/eB the magnetic length.
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precise 1/B periodicity extracted from the ∂rxx/∂|B| trace.
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Figure 3.4. The Landau levels are spatially tilted along the direction of electric
field (y direction), and the Fermi level has the same slope as the Landau levels.
Elastic scattering cause the electron hopping between different Landau levels with
a distance given by ∆Y = Y ′ − Y = l~ωc/eEy. The vanishing of overlap between
the oscillatory wave functions when ∆Y > RN + RN ′ ≈ 2Rc means the maxmium
hopping distance allowed is about 2Rc . The configuration of the crossed electric
and magnetic field is also shown.
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The energy levels are given by (see Eq. 1.28)

ENY = (N +
1

2
)~ωc − eEyY +

1

2
m∗v2

d. (3.3)

Due to the electrostatic potential of the Hall field, the degeneracy of Landau levels

with respect to kx (or Y ) is lifted and the Landau levels are tilted spatially along

the Hall field Ey with a slope give by eEy. Since the density of electrons is largely

homogenous within the sample, the distribution function of the electrons should

not depend on the guiding center Y [12], which means the Fermi level is also tilted

along the y direction with the same slope as that of the Landau levels [31]. As a

result, all the states within one Landau level with different guiding centers Y are

equally occupied.

In the presence of elastic scattering, an electron may transfer a momentum

qx = kx − k′x to a scatterer, which is equivalent to a hopping (migration of the

guiding center) in the y direction at a distance ∆Y = Y ′−Y = l2Bqx. This hopping

gives a current density jy [11, 12], hence a conductivity (see Eq. 1.36)

σyy =
jy

Ey

=
1

Ey

e

2LxLy

∑

µµ′
Wµµ′(Y

′ − Y )fµ(1− fµ′), (3.4)

where µ = (NY ), µ′ = (N ′Y ′), Lx and Ly the dimensions of the 2DEG, fµ =

1/(e(Eµ−EF )/kBT−1) the Fermi distribution of the electrons, and Wµµ′ the transition

rate from the initial state |µ〉 to final state |µ′〉 in the Born approximation [13]:

Wµµ′ =
2π

~
ni

LxLy

∑
qx,qy

|V (q)|2|〈µ′|ei
−→q .
−→r |µ〉|2δ(Eµ − Eµ′)

=
ni

~LxlB
δ(Eµ − Eµ′)

∫
dQy

∣∣∣∣V
(

Q

lB

)∣∣∣∣
2

J l
N(Q), (3.5)

where Q ≡ qlB =
√

Q2
x + Q2

y, Qx ≡ ∆Y/lB, ni is the density of the random

scatterers, V (q) is the effective Fourier component of the scatterring potential seen

by the 2DEG, and [32]

J l
N(Q) =

∣∣∣∣
∫

eiqyyφN(y − Y )φN+l(y − Y ′)

∣∣∣∣
2



33

=
N !

(N + l)!

(
Q2

2

)l

e−
Q2

2

[
Ll

N

(
Q2

2

)]2

, (3.6)

with l = N ′ − N the index difference between involved Landau levels and Ll
N(x)

the generalized Laguerre polynomial.

Note that Wµµ′ = Wµ′µ (this is generally true for elastic scattering), Eq. 3.4 can

be rewritten as

σyy =
jy

Ey

=
1

Ey

e

2LxLy

∑

µµ′
Wµµ′(Y

′ − Y )(fµ − fµ′) (3.7)

In Eq. (3.5), the δ(Eµ−Eµ′) accounts for the conservation of energy, which gives

eEy∆Y = l~ωc. This means a electron hopping along y direction should cause a

transition between Landau levels, and the hopping distance is determined by

∆Yl =
l~ωc

eEy

= l
~

m∗vd

= l
e~ne

m∗Jdc

, (3.8)

which does not depend on the magnetic field, and is fixed for a given current density

Jdc. The selection rule of Eq. (3.8) is unusual, in that it only stems from the two

dimensional nature of the electrons.

The resistivity along the x direction (assume µB À 1) is ρxx = σyy/(σxxσyy +

σ2
xy) ≈ ρ2

xyσyy. By working out σyy, finally we get

ρxx =
h

e2

(2π)3nim
∗4v2

d

h6n2
e

∑

Nl

(fN − fN+l)PNl(Qxl), (3.9)

with Ql ≡
√

Q2
xl + Q2

y, Qxl ≡ ∆Yl/lB, and

PNl(Qxl) =
Q5

xl

l4

∫
dQy

∣∣∣∣V
(

QlQxl

∆Yl

)∣∣∣∣
2

J l
N(Ql). (3.10)

The function PNl(Qxl) can be numerically evaluated for a given V (q). We simply

assume a constant V (q), which is good for short-range scattering, to calculate this

function. The results show that PNl has a dominant maximum at the point



34

Qxl = γ
√

2N + 1 with γ ≈ 2.0. (3.11)

The term fN−fN+l in Eq. (3.9) means the transition should occur at the vicinity

of Fermi level, i.e., we have N ≈ NF where NF is the Landau level index at the

Fermi level, thus Eq. (3.11) is equivalent to

∆Yl = QxllB = γRc ≈ 2Rc, (3.12)

where Rc = γ
√

2NF + 1lB = l2B
√

2πne. Comparing with Eq. (3.8), the condition

Eq. (3.12) leads to

Bl = γ

√
2πm∗

e2

1√
ne

Jdc

l
, (3.13)

which explains well the result of Eq. (1).

From the slopes of the fan diagram in Fig. 3.3, we obtain γ = 1.72, 1.63, 1.88, 2.05

for the Hall bars with width w = 200, 100, 50, 20 µm respectively. Such values,

determinded experimentally, are close enough to the theoretical vale γ ≈ 2.0,

indicating the validity of our model even in a quantitative sense. Moreover, we

measured the density dependence of the oscillation maxima, and plot the results in

Fig. 3.5. It is clearly shown that peak positions ∝ 1/
√

ne.

The resonance condition Eq. (3.12) can be interpreted semiclassically as follow-

ing. From Eq. (3.4), the conductivity σyy is proportional to the transition rate Wµµ′

between two Landau levels near the Fermi level. The transition rate drastically

goes to zero when ∆Y > RN + RN ′ ≈ 2Rc because within this region there is

almost no overlap between the oscillatory wave functions, as shown in Fig. 3.4.

Thus the furthest distance the electron can hop is around (∆Y )max ≈ 2Rc. Note

that σyy is proportional to ∆Y , so that naturally a conductivity peak appears at

∆Y = (∆Y )max ≈ 2Rc.

3.3 Discussions and conclusions

The hopping at a distance 2Rc along y direction is equivalent to a momentum

transfer along x direction ∆kx = 2Rc/l
2
B = 2kF . It is interesting to point out
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that a similar momentum transfer mechanism has been used to account for the

magneto-acoustic-phonon resonance of a 2DEG [32].

In a high mobility 2DEG, the elastic scatters for electrons are mainly ion-

ized impurities in the remote doping layer, residual background ionized impuri-

ties throughout the material, interface roughness, and neutral impurities in the

GaAs well [33]. The remote ionized impurity scattering is long-ranged and in

momentum space its potential is exponentially confined into a narrow range with

a characteristic momentum qs ∼ 1/ds [34]. In our samples ds = 70 nm, equivalent

to a qs ∼ 0.014 nm−1 which is much less than 2kF ≈ 0.22 nm−1; therefore the

remote ionized impurities are not likely to contribute to the oscillations. The other

three mechanisms mentioned above are short-ranged, and therefore in principle

could contribute to the oscillations we are discussing. The scattering length of

the interface roughness and neutral scatters are both at atomic scale, so their

potential seen by the 2DEG in momentum space are all almost constant within

the scale of 2kF . Our numerical result of Eq. (3.12) is modeled on this fact.

It is usually assumed that the remote ionized impurities are the main sources

of scattering for 2DEGs in GaAs/AlGaAs heterostructures. However, for high

mobility samples with wide spacer, the residual impurities and interface roughness

become important [35, 36]. Indeed, according to a theoretical study [37], the

negative magnetoresistance as shown in the Idc = 0 µA trace of Fig. 3.1 is a strong

evidence for the significance of such short-range scatterers in our samples.

In conclusion, we have observed a novel type of magnetoresistance oscillations

in a laterally confined high-mobility 2DEG, which can be attributed to the spatial

hopping of electrons between tilted Landau levels under a current induced Hall

field. Strong short-range scattering is needed for this class of oscillations to occur.
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3.4 Miscellaneous data on MZTR

3.4.1 Observing MZTR at fixed magnetic field by

sweeping dc current

From Eq. 3.13, it is clear that the MZTR should also be observed in rxx vs Idc

at fixed B except for in rxx vs B at fixed Idc (as shown in Fig. 3.1). This point is

demonstrated in Fig. 3.6, where rxx periodic in Idc at fixed B is indeed observed.

3.4.2 MZTR observed on samples with higher mobility

More prominent MZTR has been observed in samples with higher mobility

(µ > 1 × 107 cm2/Vs). The MZTR is not only observed from the differential

resistance (rxx) but also directly from the dc resistance (Rxx). An example is

shown in Fig. 3.7. We explain the more prominence of the MZTR in higher mobility

samples by the increasing relative contribution from the short range scatterers.

3.4.3 Indication of the role of interface roughness on

MZTR

In a front gated quantum well sample, initially the MZTR is very weak, however

eventually this effect can be very strong by increasing the positive gate voltage, as

shown in Fig. 3.8. We interpret this result as possible indication of the involvement

of interface roughness, since more positive gate voltage will push the electrons more

close to the interface, thus a larger contribution to the scattering from the interface

roughness.
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Figure 3.7. MZTR observed in a GaAS/Al0.3Ga0.7As heterostructure with
ne = 2.03 × 1011 cm−2 and µ = 10.6 × 106 cm2/Vs. The MZTR is very strong
in differential trace (rxx) as well as in dc trace (Rxx). The effect in this sample is
much more prominent than that shown in Fig. 3.1 where the sample mobility is
µ ≈ 3× 106 cm2/Vs.



40

2.0

1.5

1.0

0.5

0.0

r xx
 (Ω

/s
q.

 )

-2.0 -1.0 0.0 1.0 2.0

 Magnetic Field B (kG)

30nm QW;  w = 100µm
T=0.4K; Idc=50µA

VFG=0mV
 ne = 3.3

VFG=200mV
       ne = 4.0

VFG=100mV; 
       ne = 3.7

 VFG=300mV
        ne = 4.3

Figure 3.8. MZTR observed in a gated 0.24Ga0.76As/GaAs/Al0.24Ga0.76As quantun
well. Initially the MZTR is rather weak, but eventually it becomes very strong by
applying a positive gate voltage.



CHAPTER 4

MAGNETO OSCILLATIONS INDUCED BY

MICROWAVE AND THE EMERGENCE

OF THE ZERO-RESISTANCE OR

ZERO-CONDUCTANCE STATE

Interesting new phenomena in dc transport can arise in a high-mobility two-

dimensional electron system (2DES) when it is subjected to microwave (MW)

radiation [3, 4, 5, 38]. Giant MW photoconductivity oscillations (in 1/B, the

inverse magnetic field) were originally observed in a 2DES in GaAs/AlxGa1−xAs

heterostructures with a mobility ∼ 3 × 106 cm2/Vs [3, 38]. In samples of a very

high mobility (typically > 1 × 107 cm2/Vs), a remarkable “zero-resistance state”

(ZRS) emerges from the oscillation minima [4, 5]. The discovery of MW-induced

magneto oscillations and the ZRS has stimulated considerable current theoretical

interest [39, 40, 41, 42, 43, 44, 45, 46].

Corresponding to the ZRS in samples with Hall bar geometry, we have also

observed a “zero-conductance state” (ZCS) in samples with Corbino geometry [20].

We demonstrated that, regardless of the presence of the MW fields, the conductance

and resistance are invertible according to a standard dc transport tensor relation;

hence, the observed ZCS is equivalent to ZRS. This observation indicates that the

ZRS (ZCS) behaves like an insulator rather than a superconductor as proposed in

Ref. [5].

In this chapter, Sec. 4.1 and 4.2 describe the observations of the MW-induced

oscillatory magnetoresistance and the subsequent ZRS associated with the oscilla-

tion minima. Sec. 4.3 concentrates on our experimental observation of the ZCS,
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which reveals the insulator nature of the ZRS (ZCS). Some theoretical explanations

will be given in Sec. 4.4.

4.1 Observations of microwave-induced

photoconductivity resonance

The microwave-induced photoconductivity resonance (MIPCR) was firstly ob-

served by Zudov et al. [47] in 1997 in a systematic study of the photoresistence

of a 2DES under crossed microwave and weak magnetic fields. As an example,

Figure 4.1 shows photoresistance traces measured on a heterostructure sample with

the electron density, ne ≈ 2.0× 1011cm−2, and mobility, µ ≈ 3× 106 cm2/Vs. The

remarkable MW-induced oscillations are found to be controlled by the ratio between

the MW frequency (ω) and the cyclotron frequency (ωc):

ε ≡ ω

ωc

=

{
j maxima
j + 1/2 minima

j = 1, 2, 3, .... (4.1)

Although the resonant photoconductivity associated with cyclotron resonance

(refer to the peak at ε = 1) was well known in the literature, the observation of

oscillatory photoresistance was considered a surprise. Not only the observation of

high order peaks ( ε > 1) but also the large amplitude was completely unexpected.

Similar oscillatory photoresponse with even higher amplitude was subsequently

observed by Ye et al. [38], using lower frequency microwaves ( 4–40 GHz) guided

by transmission lines.

4.2 Toward the zero-resistance state – role of

the electron mobility

Concurrent with the MIPCR, the photo signal (defined by the change of the

resistance due to applying microwave) alternates in sign, specifically, the MW

contribution to resistance is positive at the maxima and negative at the minima.

Moreover, it was noticed that with higher sample mobility, the amplitude of the

oscillations is larger and consequently the oscillation minima are closer to zero
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Figure 4.1. Oscillatory microwave photoresistance observed in a sample with
mobility µ ≈ 3 × 106 cm2/Vs. For clarity, traces are vertically shifted in steps of
1.0. [Adapted from Ref. [3].]
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under similar experiment conditions. This naturally leads to the speculation that

the minima would ultimately reach zero in samples with very high mobility.

To explore the possibility of a “zero-resistance state” (ZRS) in the MIPCR

minima, extensive surveys were pursued on the MIPCR by our group utilizing

various samples. The initial evidence for the existence of the ZRS was obtained by

Yang et al. in October 2000, from a 2DES with µ ≈ 10 × 106 cm2/Vs. As shown

in Fig. 4.2, in addition to very strong MIPCR oscillations, the first oscillation

minimum, at negative B side, indeed reaches zero when microwave frequency f >

70GHz. Although the overall quality of this sample is not good enough to be

conclusive, data shown in in Fig. 4.2 had indeed indicated an inceptive ZRS.

Eventually, in spring 2001, solid evidences for the ZRS were obtained by Zudov

et al. from a 2DES with an ultrahigh mobility µ ≈ 25×106 cm2/Vs [4, 48]. A typical

photoresistance trace Rxx is shown in Fig. 4.3. This trace shows very strong and

sharp oscillations up to many orders ( ε > 10), and most strikingly, the emergency

of wide, apparently zero-resistance, regions at the first three oscillation minima.

At first glance, this Rxx trace resembles remarkably those of IQHE, but the Rxy

trace, also shown in Fig. 4.3, is essentially classical, without showing quantization

in the zero-resistance regimes. Typical residual resistances at the major minima

are within ±0.01Ω, roughly the noise level of the experiment. Moreover, the

temperature dependence of the resistances at these minima shows a thermally

activated behavior, Rxx(T ) ∝ exp−T0/T , hence they would ultimately become

zero at T = 0 [4]. This is the physical meaning of the term “zero-resistance state”

used for this phenomenon. Although the experimental evidences for the ZRS were

quite clear then, the underlying physics of the ZRS remained elusive due to the

fact that even a theoretical explanation for the MIPCR was not available for quite

a while.

The ZRS was independently reported also by Mani et al. and was initially

interpreted by them as evidence for superconductivity [5].
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4.3 The observations of MW-induced

zero-conductance state

A general feature of the 2DES transport is that the resistivity and conductivity

are fundamentally related. It is well known [49] that, in the quantized Hall effects,

a vanishing diagonal resistivity (ρxx) is equivalent to a vanishing conductivity (σxx)

and these two quantities relate to each other by

σxx = ρxx/(ρ
2
xx + ρ2

xy) ≈ ρxx/ρ
2
xy = (nee/B)2ρxx, (4.2)

where ne is the electron density.

Experimentally, it remained unclear whether Eq. 4.2 holds for the microwave-

induced oscillations and the subsequent ZRS. This question is relevant, in particu-

lar, to the understanding of the nature of the ZRS.

To address the above question, we performed direct conductivity measurements

utilizing Corbino samples of a high-mobility 2DES. We have observed MW-induced

vanishing dc conductance state, corresponding to ZRS. Such a state is termed

“zero-conductance state” (ZCS) in the context of its thermally activated behavior.

The experiments demonstrate that, regardless of the presence of the MW fields,

the conductance and resistance are invertible according to Eq. (1), up to a scaling

factor; hence, the observed ZCS is equivalent to ZRS. Macroscopically, the 2DES

behaves like an insulator in ZCS regime. Such an observation imposed constraints

on theoretical models of ZRS, for example, the superconductivity origin for the

ZRS is ruled out because of the equivalence between ZRS and ZCS.

4.3.1 Samples and experimental setup

Our samples were cleaved from a Al0.24Ga0.76As/GaAs/Al0.24Ga0.76As quantum

well (QW) wafer grown by molecular beam epitaxy. The width of the QW is 25 nm

and the electrons are provided by Si δ-doping layers 80 nm above and below the

QW. After illumination by a red light-emitting diode at T ≈ 1.5 K, the electron

density, ne, and mobility, µ, reached 3.55 × 1011 cm−2 and 12.8 × 106 cm2/Vs,

respectively. The Corbino samples, with an inner diameter d1 ≈ 0.5 mm and an
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outer diameter d2 ≈ 3.0 mm, were made on a ∼ 4 mm×4 mm square. Ohmic

contacts were made of indium. To compare the conductance measurement with a

resistance measurement, a ∼ 4 mm×4 mm square sample (from the same wafer)

was made with eight indium contacts placed along the perimeter.

The experimental setup is shown in Fig. 4.4. Except for the I–V characteristics,

the conductance or resistance traces were recorded employing a low-frequency (2.7

Hz) lock-in technique while the sample was immersed in 3He liquid and under

continuous microwave irradiation of fixed frequency, f , and power, P .

The diagonal conductance, Gxx = I/V , of the Corbino sample was obtained

by measuring the current (I) passing through the 2DES, while applying a voltage

(V ) between the inner and outer contacts. Here x denotes the direction along the

radius. A typical bias of V ∼ 1 mV was used for the measurements. The inset of

Fig. 4.5 shows a schematic circuit of the measurement.

Without the MWs and while sweeping the magnetic field, the Gxx trace shows

sequentially, in Fig. 4.5, a Drude conductance around B = 0, sharp Shubnikov–de

Haas oscillations at B & 1.5 kG, and the integer quantum Hall effect (IQHE)

minima at B & 10 kG. The trace is strictly symmetrical with respect to B = 0,

indicating that the recorded Gxx is essentially free of mixture with the Hall con-

ductance. Altogether, such standard dc transport attests to an exceptional quality

of the Corbino sample. We note that at this temperature a residual conductance in

the IQHE remains measurable. For example, at Landau level filling factor ν = 4, its

value is typically . 5×10−7 S, which is ∼10−7 of the conductance at B = 0. Finite

residual conductance in the IQHE is commonly attributed to thermally activated

conduction [50] or variable-range hopping conduction [51]

4.3.2 Conductance oscillations and the

zero-conductance state

Figure 4.6 shows a Gxx trace with MW f = 57 GHz and with an incident power

P ≈ 10 µW on the sample surface. Notice that the temperatures marked in both

Fig. 4.5 and Fig. 4.6 are those measured in the 3He liquid. Strong MW induced
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Figure 4.4. Setup for measuring microwave photoresponse of a 2DES: The
measurements were performed in a sorption-pumped 3He cryostat equipped with a
superconducting magnet. The microwaves were generated by Gunn diodes and
guided down to the sample (Faraday configuration) via an oversized (WR-28)
waveguide.
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conductance oscillations up to 5 orders are observed. The peaks are marked by ε ≡
ω/ωc = 1, 2, 3, . . ., where ωc = eB/m∗ is the cyclotron frequency, m∗ = 0.068 me

is the effective mass of the electron, and ω = 2πf .

Our central finding from such measurements, however, concerns the “zero-

conductance state” observed at the lowest oscillation minimum, around B = ±1.05

kG. This minimum spans a wide range of Landau level filling factors, ν = neh/eB,

from ν ∼ 160 to ν ∼ 120. Similar to the resistance measured in the ZRS, the

conductance in the ZCS is found to be thermally activated. The temperature-

dependent conductance at B = 1.05 kG (the center of the lowest minimum),

corresponding to two different MW power levels, is shown in Fig. 4.7 and 4.8. The

activated conductance spans almost one decade and can be reasonably fitted by an

exponential dependence Gxx ∝ exp(−T0/T ), with an activation energy T0 ≈ 4.5 K

(9.3 K) for P ≈ 10 µW (100 µW). Comparing the value 9.3 K with the T0 ≈ 20

K measured under a similar magnetic field and MW power, but in the ZRS of a

cleaner sample [4], we interpret that the activation energy in this regime strongly

correlates with the sample mobility.

On the other hand, we observed a drastic departure from the activated behavior

in the lower temperature regime T < 1 K (2 K) for power level P ≈ 10 µW

(100 µW). In particular, the conductance becomes flat at reduced temperatures,

rendering a residual conductance, Gxx . 2 × 10−5 S, at the lowest T of the

experiment, T ≈ 0.65 K. The above observation of a temperature independent

residual conductance has been confirmed by separate measurements performed in

a dilution refrigerator, where the lowest T of 170 mK can be attained with f = 30

GHz and P ∼ 100 µW.

While at this stage the origin of the residual conductance remains to be clarified,

two possible mechanisms can be proposed here: a) electron heating due to the MW

irradiation, b) a parallel conduction channel created by MW excitation. In fact,

we observed an enhanced residual conductance at ν = 4 IQHE (from 5× 10−7 S to

20× 10−7 S) due to MW irradiation, as shown in Fig. 4.9.
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It is interesting to compare the residual conductivity in the ZCS with the

conductivity quantum e2/h. Considering the geometric factor of the Corbino

sample and assuming a uniform distribution of the electric current passing through

the contacts, we estimate a residual conductivity . 6× 10−6 S, which is much less

than e2/h. We therefore conclude that the 2DES behaves like an insulator in the

ZCS regime.

4.3.3 Invertibility between the MW-induced

conductance and resistance – equivalence

between the ZCS and ZRS

In order to compare the MW-induced conductance oscillations with the re-

sistance oscillations, we calculate a diagonal conductance (G′
xx) from a diago-

nal resistance (Rxx) measured on a square sample, using the inversion relation

G′
xx ≈ Rxx/ρ

2
xy = (nee/B)2Rxx. The quantity that can be directly compared

between different samples is not the conductance but the conductivity. Since the

conductivity is proportional to the conductance, we can normalize the conductance

to a specific point B0 (e.g., the first maximum of the oscillations), and compare the

normalized conductances gxx [≡ Gxx(B)/Gxx(B0)]. Figure 4.10 displays both the

gxx measured from the Corbino sample and the g′xx converted from Rxx measured

on a square sample. The Rxx of the square sample, measured under the same

conditions as the Gxx (T = 0.65 K, f = 57 GHz, P ≈ 10 µW), is also shown in

Fig. 4.10. Slight asymmetry of the Rxx with respect to B = 0 might indicate a

weak mixing of resistance tensor elements. Excellent agreement between the gxx’s

clearly demonstrates that under MW irradiation the dc conductance and resistance

remain invertible up to a scaling factor.

4.3.4 I–V characteristics in the ZCS regime

We have also measured the I–V characteristics in the ZCS regime. In order to

establish a constant bias voltage (V ) across the contacts of the Corbino sample, a dc

voltage was applied and the dc current (I) was measured using a current amplifier.
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The signal was then averaged using a pair of sweeps with alternating bias polarity.

Under the same experimental conditions the conductance traces measured in this

way are nearly identical to those measured using a low-frequency lock-in technique

(quasi-dc, shown in Fig. 4.5 and 4.6). The inset of Fig. 4.11 shows Gxx (dc) traces

around the ZCS minimum taken with different bias voltages. Notice that the Gxx

is shown on a logarithmic scale; similar to that found in quasi-dc measurements,

a small residual conductance ( Gxx . 1.5 × 10−5 S, at 1 mV) can be seen at low

temperatures. On this scale the ZCS minimum exhibits a reproducible doublet

shape.

Linear electrical transport is observed in ZCS in a large range of bias up to 10

mV in this sample. In Fig. 4.11 we present an Gxx–V curve measured on ZCS for

a MW frequency f = 57 GHz, along with a Gxx–V curve at the first oscillation

maximum for comparison. A linear I–V regime (constant Gxx) can be found for

small bias, V < 10 mV, followed by a nonlinear regime, V > 10 mV, where a gradual

increase (or decrease) of conductance at the oscillation minima (or maximum) is

observed.

Before discussing the origin of the non-linear regime it is useful to estimate the

electric field strength in the bulk of the 2DES. Note that the electric field, Ex, along

the radius of the Corbino ring, depends on the radial position; in our samples the

Ex on the inner perimeter is about 6 times of that on the outer perimeter. The top

axis on Fig. 4.11 shows the estimated maximum Ex (i.e., on the inner perimeter).

Our data at large bias, V > 10 mV, can be interpreted as due to the electron

heating effect in the presence of a bias Ex above 0.2 V/cm. Notice that, at further

larger bias ( V > 100 mV), the conductance curves at the minimum and maximum

overlap one another which means the oscillations totally disappear. One of the

possible mechanisms for such a heating effect is the Zener tunneling between Landau

orbits at a low magnetic field, relevant to the ZCS regime. We have observed

Zener tunneling effect [2] at a magnetic field ∼ 1 kG where conductance of a

2DES resonates due to opening of new scattering channels. Such tunneling events

take place at a characteristic electric field of ∼ 1 V/cm. Recall also that this
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has been discussed in Chapter 3. It appears possible that Zener tunneling between

Landau orbits occurs in some part of the Corbino sample giving rise to the nonlinear

conductance. Variable-range hopping conductance can also be promoted by an

increasing Ex [51].

4.3.5 Conductance oscillations at different MW

frequencies

In addition, we have measured the conductance at different MW frequencies

(from 25.5 GHz to 130 GHz) but at roughly the same MW power P ≈ 10 µW (on

the sample surface) and the same temperature T ≈ 0.65 K. Selected conductance

traces against ε = ω/ωc are shown in Fig. 4.12. Strong oscillations as well as

the ZCS are observed at all MW frequencies. The period and the phase of the

oscillations seen here are consistent with those observed in ZRS [4, 52]. We also

notice a trend in which the strength of the oscillations, as measured by the peak

height, is decreasing with increasing frequency. Such an observation can be partially

accounted for by the number of photons incident on the 2DES. Since the MW power

is roughly the same, the number of photons is inversely proportional to the MW

frequency, leading to a diminishing of the oscillations at higher f . For f < 40 GHz,

an additional maximum at ε ≈ 1/2 is observed; an example can be seen on the

f = 30 GHz trace. Such additional peaks have been previously seen in the ZRS

experiments [4] and could be attributed to multiple-photon processes [52].

4.3.6 Summary of the conductance measurements

In conclusion, we have observed a MW-induced zero-conductance state in a

high-mobility 2DES of Corbino geometry. While the effect is driven by an ac

microwave field, the dc conductivity and the resistivity are found to be invertible

using the standard dc transport tensor relation. Combining both the ZCS (in a

Corbino sample) and ZRS (in a Hall bar sample), we present evidence for a new

dissipationless 2D electronic transport effect induced by microwaves. The electrical

transport in the ZCS regime is ohmic in the small bias limit; at larger bias, the
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transport is affected by electron heating. Such observations indicate that the ZCS

is remarkably robust, a fact which is consistent with an unusually large energy

scale associated with such states. How these macroscopic properties relate to the

theoretical models, especially to the proposed microscopic inhomogeneous phases

[41, 42, 43, 45], is a subject for further experimental and theoretical work.

4.4 Survey for theoretical explanations

The observation of the MW-induced ZRS has stimulated considerable current

theoretical interest in the research community [39, 40, 41, 42, 43, 44, 45, 46]. The

origin of the ZRS is proposed to be either the self-organization of sliding charge

density waves [39], or a instability caused by a absolute negative conductivity

(ANC) [41, 42] at the MW-induced oscillation minima, or a quantum interference

effect in a 2DES [53].

The instability of 2DES with a negative conductivity and its connection to

the ZRS is shown by Andreev et al [41] and further justified by Vavilov and

Aleiner [54]. They have shown that, independent of the microscopic details, a state

with negative conductivity is absolutely unstable; the consequence of this instability

is that the system rearranges itself to form current domains (for a system with Hall

bar geometry) with a local current jx = j0 and local electric field Ex = 0, giving rise

to the macroscopically observed ZRS. Based on this scenario, understanding the

ZRS becomes the task of addressing: a) the origin of the MW-induced oscillations,

and b) the occurrence of ANC at the oscillation minima.

Since there are experimental results that favor the existence of ANC at the ZRS

regime [55], in the following paragraphs I will only present more details for the

origin of the MW-induced oscillations and the subsequent ANC at the minima.

To illustrate how the MW can induce oscillatory dc conductance, a simple

picture adapted from Ref. [40] is shown in Fig. 4.13. In this picture, an electron

absorbs energy ~ω from a photon and is promoted to a virtual state somewhere

among the stationary Landau levels which are spatially tilted by the probe dc

voltage. The excited electron can be scattered forward or backward along the
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Figure 4.13. A simple picture for the MW-induced-photoconductivity resonance.
The Landau levels are tilted by the applied dc bias electric field Ex. Electrons
absorb photons and are excited by energy ω. Photoexcited electrons are scattered
by disorder and kicked to the right or to the left by a distance ∆x. If the final
density of states to the left exceeds that to the right, dc current is enhanced. If
vice versa, dc current is diminished. [Adapted from Ref. [40].]
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dc voltage by impurities, causing a negative or positive dc current. The total

current depends on the rate difference between the forward scattering and backward

scattering, which is proportional to the difference in the density of states of the final

states. Consequently, it is proportional to the derivative of the density of states at

the specific energy of the virtual electron. Since the density of states is periodic in

Landau level spacing ~ωc, the current induced should depend only on the position

of the excited electron relative to the nearest Landau level. it is clear that this

relative position is an oscillatory function controlled by the ratio ε = ω/ωc, and

so does the total induced dc current. This explains the oscillatory dc conductance

observed. The induced conductance is negative at the oscillation minima. With

sufficient MW intensity, the oscillation can be so strong that at a minimum the

induced conductance can overcome the background conductance and cause a net

negative conductance or absolute negative conductance (ANC).

One serious question raised in the simple picture of Fig. 4.13 is that how

the electrons can transit between Landau levels with index difference ∆n ≥ 2

since there is no nonzero matrix elements between these states through the dipole

coupling of electrons to the microwave. In a perturbative picture, the answer is

that the electrons are promoted by MW to a virtual state through high-order

perturbation involving many Landau levels. In a non-perturbative picture, the

microwave field should be directly included into the Hamiltonian and hence both

the energy levels and wavefunctions are time-dependent [43, 56, 57]. According

to an exact solution [57] to the Hamiltonian where the MW field is taken as an

uniform ac electric field, an electron initially at Landau level |n〉 without MW can

be mapped into a set of stationary energy levels with energy εn±m~ω after the MW

is introduced, where εn is the Landau level energy without MW, m is an integer and

ω is the MW frequency. Hence, the electron transition shown in Fig. 4.13 can be

understood as a mapping of a time-dependent electron level (which is corresponding

to εn if without MW) to the stationary level εn + ~ω.



65

As for the mechanism of ANC, it has been shown that, in addition to the

impurities, the acoustic phonon scattering [58, 59] or a small change in the electron

mass due to the MW irradiation [44] can also produce the ANC.



CHAPTER 5

POSSIBLE APPLICATION OF THE NEW

OSCILLATIONS TO THE STUDY OF

COMPOSITE FERMIONS

5.1 Quantum Hall effect

The quantum Hall effect(QHE) [60, 61] consists of the integer quantum Hall

effect (IQHE) discovered by von Klitzing et al. [62] and the fractional quantum

effect (FQHE) discovered by Tsui et al. [63], which is observed in very strong

magnetic field (typically B ∼ 10 T) at low temperatures (T < 4 K). In magneto

transport, the QHE exhibits precise plateau in Hall resistivity at the vicinity of an

integral or fractional filling factor ν

ρxy =
~

νe2
, (5.1)

where ν is an integer or simple rational fraction. Corresponding to a Hall plateau

the diagonal resistivity (σxx) is almost vanishing at sufficiently low temperatures.

A nice overview of experimental transport traces on IQHE and FQHE is presented

in Figure 5.1.

The IQHE can be understood in a single electron picture with localization by

impurities in a strong magnetic field. It is established that, at high magnetic field,

most of the electron states are localized except those at the center of Landau levels.

The regions of localized states are called mobility gaps and their boundaries with

the extended states are mobility edges. In the mobility gap, the electrons have no

contributions to the conductivity. At an integer filling factor, the Fermi level is at

the center of a mobility gap (in the middle of two adjacent Landau levels). So if the

filling factor is varied at the vicinity of an integer, the Hall conductivity will keep
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Figure 5.1. Diagonal resistivity and Hall resistivity Traces showing integer and
fractional quantum Hall effect. [adapted from Ref. [64].]
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constant and so does the vanishing diagonal conductivity. Transition from plateau

to plateau happens when the Fermi level is swept across a mobility edge.

However, the FQHE is mainly due to the many-body interactions between

electrons, and the 2DES has proven to be a unique playground for the study of

many-body physics in the FQHE regime. Many significant accomplishments have

been brought about by the study of FQHE and have contributed tremendously

to the advance in condensed-matter physics. Theoretically, the FQHE has been

addressed by various approaches and understood by different point of view. One

of the sound theories is based on a new kind of quasiparticle called a composite

fermion, possibly providing a unified view of the FQHE [65]. This will be discussed

in next section.

5.2 Composite fermions

The composite fermion (CF) was proposed by J. K. Jain [66] to account for the

fractional quantum Hall effect series at

ν =
p

2mp± 1
. (5.2)

Jain pointed out that there is a mapping between this series of FQHE to the IQHE.

By attaching an even number (2m) of zeros of the many-body wavefunction to each

electron, the system can be regarded as a collection of weakly interacted composite

fermions. A composite fermion can be envisaged as an electron carrying an even

number (2m) flux quanta (φ0 = h/e) and experiences and effective magnetic field

B∗ = B − 2mφ0ne, (5.3)

where the electron density ne is also the density of the composite fermions. The

composite fermions also form Landau levels in this effective magnetic field, with a

cyclotron frequency and filling factor given by

ω∗c =
e|B∗|
mCF

, (5.4)
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ν∗ =
neh

e|B∗| . (5.5)

where mCF is the effective mass of a composite fermion. The filling factor for

electrons ν = neh/eB can then be expressed by ν∗ as

ν =
ν∗

2mν∗ ± 1
, (5.6)

which is exactly the form of Eq. 5.2. Thus the FQHE of electrons at filling factor

ν = p/(2mp ± 1) can be mapped onto the IQHE of composite fermions at filling

factor ν∗ = p, and the FQHE and IQHE are unified in this way.

The composite fermion picture is supported by a Chern-Simon field theory and

also by various experimental observations. In particular, the composite fermion

model predicts a well-defined Fermi surface of composite fermions at B∗ = 0 (ν =

1/2m), thus the behavior of the composite fermions around ν = 1/2m at high B

can be mapped to those of the electrons at low B. These predictions are verified by

various experiment techniques such as surface acoustic wave attenuation, geometric

resonance, magnetic focusing, and SdH analysis. To date, it is widely believed that

the composite fermion model contains most of the essence of the FQHE physics

and it is a very good starting point for addressing the remarkably rich and complex

properties of a quantum Hall system.

5.3 Search for the new magneto-oscillations

of composite fermions

Since the discoveries of the new magneto resonances (see Chapters 2, 3, 4 of this

thesis), we have attempted to search for these new effects around ν = 1/2 within the

context of the analogy between the composite femions and the electrons. Although

experimentally it is proven to be extremely challenging, conceptually we believe

such effects should be there and it is worthwhile to pursue along this direction. In

following, some thoughts are presented for the work along this line.

The CF-acoustic phonon scattering at exact ν = 1/2 have been experimentally

studied [67, 68, 69] and it is found to be consistent with the CF theory. If the

magneto-acoustic-phonon resonance (MAPR) is observable for CFs, the effective
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mass of a composite fermion (mCF ) could be directly measured. This is of great

significance since the mCF possesses important information on the electron-electron

interactions but so far is measured only indirectly and wide discrepancies exist. The

regular resistance measurement may not be sensitive enough to observe MAPR

because the measurement has to be performed at low temperature (at least below

1K, otherwise the the CFs are not stably formed) where the acoustic phonons with

momentum 2kF (energy > 5 K) are not populated. More sensitive methods such as

thermopower measurement may be more suitable to the study of MAPR for CFs.

The magneto-zener-tunneling resonance (MZTR), if observed for CFs, not only

can address the effective mass mCF , but also can explore short-range interactions

presented to CFs. In the Chern-Simons field theory of CFs, the electric field seen by

CFs is also an effective electric field which is the physical electric field (measured

by a voltmeter, equal to the Hall field of electrons) plus a Chern-Simons gauge

electric field associated with the CFs. This effective electric field is equal to a

Hall field at the effective magnetic field. However, so far all the theories are

on the vanishing electric field limit, how a finite electric filed affects the energy

spectrum of CFs has not been explicitly treated. Of course we can assume it is the

effective electric field that enters the energy spectrum according to the mapping

to electrons. However, this needs to be experimentally addressed, possibly by the

MZTR. In our experimental survey, the difficulties arose from the large physical

electric field (Hall field) induced by a relatively large dc current at ν = 1/2 where

the B is large. The electric field can easily disturb the 2DES such as causing

large density inhomogeneity or even quenching the electron density, so that a large

current sufficient to render a resonance can not be passed through the 2DES without

deteriorating its quality. We think this is mainly a material issue, and can be

improved in the future.

Moreover, the electrodynamical response of CFs is of great interest to study.

The microwaves, in principle, would not destroy the CFs [57] because of the Kohn

theorem [70] which states that in system with translation symmetry the relative

motion of the particles is not affected by photons. However, also because of



71

the Kohn theorem, the CFs may hardly respond to a microwave, a fundamental

reason which makes the task of resonating the CFs with MW quite non-trivial.

Some modifications to the sample, for example a potential modulation, has to be

introduced to break the translation symmetry (but not severely reduce the mobility)

in order to promote the MW response.
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