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Abstract

Transport Properties of Topological Phases in Broken Gap
InAs/GaSb Based Quantum Wells

by

Ivan Knez

The quantum Spin Hall Insulator (QSHI) is a two-dimensional variant of a novel

class of materials characterized by topological order, whose unique properties have

recently triggered much interest and excitement in the condensed matter commu-

nity. Most notably, the topological properties of these systems hold great promise in

mitigating the di�cult problem of decoherence in implementations of quantum com-

puters. Although QSHI has been theoretically predicted in a few di�erent materials,

prior to the work presented in this thesis, only the HgTe/CdTe semiconductor system

has shown direct evidence for the existence of this phase. Ideally insulating in the

bulk, QSHI is characterized by one-dimensional channels at the sample perimeter,

which have a helical property, with carrier spin tied to the carrier direction of mo-

tion, and protected from elastic back-scattering by time-reversal symmetry. In this

thesis we present low temperature transport measurements, showing strong evidence

for the existence of proposed helical edge channels in InAs/GaSb quantum wells,

which thus emerge as an important alternate to HgTe/CdTe quantum wells in stud-



iii

ies of two-dimensional topological insulators and superconductors. Surprisingly, edge

modes persist in spite of comparable bulk conduction of non-trivial origin and show

only weak dependence on magnetic �eld in mesoscopic devices. We elucidate that the

seeming independence of edge on bulk transport comes due to the disparity in Fermi

wave-vectors between the bulk and the edge, leading to a total internal re�ection

of the edge modes. Furthermore, low Schottky barrier of this material system and

good interface to superconductors allows us to probe topological properties of helical

channels in Andreev re�ection measurements, opening a promising route towards the

realization of topologically superconducting phases hosting exotic Majorana modes.
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Chapter 1

Introduction

1.1 Topological Order

An overarching goal of condensed matter physics is the classi�cation and understand-

ing of various phases of matter and its phase transitions. A substantial proportion of

all phase transitions can be understood in terms of the celebrated Landau-Ginzburg

framework of spontaneous symmetry breaking and the notion of a local order param-

eter which describes the onset of the particular order in the system. For example,

in ferromagnetic systems rotational symmetry is spontaneously broken at the Curie

temperature, while the concurrent onset of magnetic order is characterized by the

local order parameter of net magnetization. Nevertheless, the concept of symmetry

breaking and local order parameter describing the phase transition, although a general

concept, does not su�ce to explain some intriguing phenomena such as the integer

quantum Hall e�ect [1] and many body phases of the fractional quantum Hall e�ect

[2]. In fact, it is the study of these e�ects which has led to a new paradigm in the

classi�cation of condensed matter systems, that is the notion of topological order [3],

which lacks a local order parameter and is instead characterized by some non-local

property. Speci�cally, in the integer quantum Hall e�ect (IQHE), Hall resistance

plateaus have shown a ba�ing degree of precision in quantization, some one part
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in billion, universally appearing across many di�erent systems. Indeed, it has been

shown theoretically [3], that the fundamental reason for such remarkable quantization

is the existence of topological invariants, in this case Hall conductance, which do not

change for smooth variations of material parameters and hence can be considered as

non-local order parameters of the system.

More recently, a topologically distinct class of electronic insulators has been pre-

dicted to occur in some 2D and 3D systems [4, 5] which preserve time reversal sym-

metry and have strong spin orbit coupling. This novel type of materials is insulating

in the bulk but posseses Dirac type surface (3D case) or edge states (2D case), which

are guaranteed by the symmetry of the bulk bands alone and are independent of the

microscopic details at the sample edge. Just like normal insulators (NI), topological

insulators (TI) have an energy gap in the bulk between the lowest empty band, which

we normally refer to as the conduction band, and the highest �lled band, which we

call the valence band. Because all of the bands are either empty or �lled, the bulk

conductance of both materials (NI and TI) vanishes in the zero-temperature limit.

Nevertheless, it has been recognized in the early 1980s by Volkov and Pankratov [6, 7]

that the opposing symmetry of the valence and conduction states at the interface be-

tween two distinct insulators necessitates the existence of linearly dispersing gapless

interface states, leading to systems which are uniquely conductive along surfaces or

edges but insulating elsewhere. These ideas have been independently rediscovered

and further developed in the mid-2000s, leading to an emerging �eld of topological
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phases [4, 5], whose experimental studies are the subject of this thesis. Here we focus

primarily on the transport studies of the 2D TI phase, which is also known as the

quantum spin Hall insulating (QSHI) phase, realized in the broken gap InAs/GaSb

semiconducting material.

1.2 Motivation for InAs/GaSb Material System

In 2D TIs time reversal symmetry leads to the helical property of the linearly dispers-

ing Dirac edge modes, where the electron momentum and spin degrees of freedom are

locked-in, leading to the vanishing of the elastic backscattering probability of edge

electrons. As a result, within certain limits, edge modes in 2D TI are by its nature

dissipationless, making topological insulators not only fundamentally interesting but

also practically relevant. In fact, the ability to tune from the NI to the TI phase in a

single device would not only enable the �rst dissipationless transistor - a holy grail of

the modern semiconductor industry - but also allow the study of topological quantum

phase transitions [8]. Furthermore, in the latest theoretical developments, it has been

predicted that the combination of the TI edge and an ordinary superconductor can

lead to a superconducting topological phase and realizations of Majorana bound states

[9, 10]. Majorana fermions (MFs) [11], which can be thought of as half-fermions, are

their own anti-particles, and possess non-Abelian exchange properties [12, 13], i.e.

exchange of two MFs does not modify the wave function by a simple phase factor but

generates a completely di�erent wave function. As a result, manipulation of MFs is
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instrumental for the realization of braiding operations in topological quantum com-

puters [14]. Both of the mentioned thrusts open exciting opportunities in the study

of topological phases, and as we will discuss for the remainder of this thesis, they

are uniquely suited for the InAs/GaSb material system, which shows evidence for

the existence of the TI phase and also exhibits a strong superconducting proximity

e�ect [15] - a necessary requirement for the realization of TI/superconductor hybrid

structures.

Most of the progress in topological phases that has so far been achieved is mainly

theoretical, and despite intense experimental e�orts many of the interesting propos-

als are yet to come to fruition, such as axion dynamics and Majorana fermion bound

states [4, 5]. In 2D, the TI phase has been �rst predicted to occur in graphene [16]

and strained GaAs [17]; shortly thereafter in inverted HgTe QWs [18], and InAs/GaSb

composite quantum wells (CQWs) [8], which proved to be much closer to the current

experimental reach. The QSH phase has a natural extension in 3D topological in-

sulators [19] where the surface exhibits a graphene-like electronic structure with a

single Dirac cone that bridges the bulk gap. These unique states have been observed

in angle resolved photoemission spectroscopy (ARPES) in Bi1−xSbx [20] and Bi2Se3

[21]; in addition, some evidence for the non-trivial surface states has been shown

in scanning tunneling microscopy [22, 23, 24, 25, 26] and transport measurements

[27, 28, 29, 30, 31].

Unfortunately, 3D topological insulators are notoriously conductive [4, 5] and
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from the transport perspective prior to the work presented in this thesis, inverted

HgTe/CdTe quantum wells were the only material showing truly insulating bulk and

helical edge mode transport � a de�ning characteristic of 2D TIs [32, 33]. Never-

theless, the mercury content in HgTe QWs imposes some strict fabrication restric-

tions and in this material, the TI phase can be tuned only through the thickness of

the well, which is a discrete parameter. On the other hand, InAs/GaSb is another

mature material, commonly used in infrared detectors and in high electron mobility

transistors (HEMTs) [34] with well developed molecular beam epitaxy (MBE) growth

and device fabrication techniques. Compared to HgTe/CdTe, InAs/GaSb carries a

series of advantages, including low Schottky barriers to most metals, with good inter-

face to superconductors [15] and continuously tunable band structure via electrical

�elds [35], making this material uniquely suited for the study of the phase transition

from TI to NI via a continuously varying parameter as well as for the realization of

TI/superconductor hybrid structures [4, 5].

1.3 2D Topologically Insulating Phase in InAs/GaSb

InAs, GaSb, and AlSb belong to a class of lattice matched compounds, commonly

referred to as the 6.1Å family [34], which is the approximate lattice constant of

all three materials. In this system, AlSb serves as a good quantum well barrier to

narrow gap InAs with a very high band o�set of 1.35 eV, enabling deep quantum

wells. In addition, the small electron e�ective mass in InAs results in the second
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highest room temperature mobility of all semiconductors (the �rst is InSb), making

this material very interesting, especially from a device perspective. Nevertheless, the

most attractive aspect of the 6.1Å family is its unusual �broken gap� band alignment

between InAs and GaSb, with the conduction band of InAs some 150 meV lower than

the valence band of GaSb [34]. In wider quantum wells, this allows for the coexistence

of closely separated electron (in InAs) and hole (in GaSb) two-dimensional gases, that

are con�ned by neighboring AlSb barriers.

Furthermore, when the in-plane momentum and energy of electrons and holes are

equal, carriers can tunnel between the wells and the system is strongly coupled. In

this case, due to the hybridization of the bands, a mini-gap opens in the otherwise

semimetallic band structure, resulting in a non-monotonic band dispersion. Note that

in this case the progression of the states is inverted, with conduction states being

lower in energy than the valence states. A smooth connection of bands inside and

outside of the sample (vacuum or insulator) leads to gapless edge modes with a linear

dispersion at the sample boundary. Time reversal symmetry considerations require

these states to be helical, i.e. counterpropagating spin up and spin down states, which

are protected from elastic backscattering by time reversal symmetry. Thus, in the

context of TIs, the hybridization gap of inverted InAs/GaSb CQW is the bulk energy

gap, while the edge states arise due to the broken gap band alignment and not from

the spin-orbit coupling as in HgTe/CdTe, graphene and strained GaAs. Nevertheless,

we note here that the spin-orbital coupling due to inversion asymmetry is still an
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essential ingredient for the opening of the hybridization gap, as it mixes light and

heavy hole bands and hence leads to non-vanishing matrix elements between electron

and what is considered predominantly heavy hole states which otherwise would be

zero based on the conservation of angular momentum. This is also a hint of how

hybridization gap can be increased beyond current values of 30 K to 40 K in order to

possibly support room temperature operation.

Existence of the hybridization gap has been con�rmed experimentally in trans-

port [36, 37] and far-infrared measurements [38, 39]; however, a true bulk insulator,

which shows temperature activated conductivity has never been observed. In fact,

theoretical studies have shown that �nite, even in principle vanishing amount of dis-

order will lead to a residual conductivity in the mini-gap regime. Interestingly, this

conductivity is independent of the amount of scattering and strongly dependent on

the band parameters as suggested theoretically [40] and shown experimentally in this

thesis [41]. The presence of residual bulk conductivity has important implications for

the TI phase and stability of the proposed helical edge states. The existence of states

inside the bulk gap would presumably allow for scattering of the edge states from the

opposite side of the sample, thus destroying the helical edge modes [42, 43, 44]. How-

ever, at the moment of writing the thesis, this issue is not settled even theoretically.

A counterargument is that, 3D systems which are also conductive in the bulk, still

show surface states characteristic of TIs, such as in ARPES measurements. In fact,

our work presented in this thesis shows remarkable resilience and decoupling of edge
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states to bulk conduction, which is believed to be a result of large disparity in Fermi

wave-vectors between the bulk and edge states, leading to a total internal re�ection

of the edge modes and consequent edge-bulk decoupling.

1.4 This Thesis

Work presented in this thesis [41, 45, 46, 47] is the �rst experimental study of the

InAs/GaSb CQW hybridization gap in the light of the recent theoretical proposal

[8, 9] for this system regarding topological phases. We present detailed low tempera-

ture transport measurements of inverted InAs/GaSb CQWs in the mini-gap regime,

con�rming the existence of the hybridization gap. The mini-gap shows substantial

residual conductivity, which is consistent with the theoretical work of Naveh and

Laikhtman [40] and in agreement with the previous experimental studies [36, 37], and

masks a possible contribution from the edge. Nevertheless, we �nd that the residual

conductivity decreases as the overlap between valence and conduction subbands is

reduced and as the system approaches the critical point where the band structure

changes from inverted to normal, thus promoting QSHE. Furthermore, the length

and width dependence of conductance in such a regime of reduced band inversion

shows strong evidence for the existence of helical edge modes proposed by Liu et al

[8]. Surprisingly, edge modes persist in spite of comparable bulk conduction and show

only weak dependence on magnetic �eld for mesoscopic structures. We elucidate that

the seeming independence of edge to bulk transport comes due to the disparity in
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Fermi wavevectors between the bulk and the edge, leading to a total internal re�ec-

tion of the edge modes. Finally, the low Schottky barrier of this material system and

good interface to superconductors allows us to probe topological properties of helical

channels in Andreev re�ection measurements, opening a promising route towards the

realization of exotic Majorana modes.



Chapter 2

Background

2.1 Band Lineups and Band Structure of InAs/GaSb QWs

InAs, GaSb, and AlSb form a well lattice matched material system dubbed the 6.1Å

family for the approximate value of their lattice constants [34]. Energy gaps in the

6.1Å family vary from 0.36 eV in InAs and 0.78 eV in GaSb to 1.69 eV in AlSb, o�ering

a wide range of available gaps and great electron con�nement with well depths of up

to 1.35 eV. This allows for electron densities in InAs quantum wells of up to 1013 cm−2

achieved via modulation doping. Furthermore, the e�ective mass of InAs is around

0.03 in units of free electron mass and is the second smallest only to InSb, with Fermi

velocities exceeding 108 cm/s, thus exhibiting near-metal properties and providing

an excellent interface to superconductors. As previously mentioned, this is of great

importance for experimental realizations of topological superconducting phases, which

might have profound technological impact leading to topological quantum computing.

The primary interest in the 6.1Å family comes from the unusual band lineup

shown in Fig. 2.1. It has been observed very early that InAs/GaSb heterostructures

possess a broken gap band alignment [48] and this discovery propelled much of the

research interest in antimonides in the 80's and early 90's. The bulk valence band

top of GaSb is some 150 meV higher than the bottom of the conduction band in InAs
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Figure 2.1 : Band lineup in the 6.1Å family and lattice constants of each material.
Shaded regions are the bandgaps and all energies are in eV [34].

[34], resulting in charge transfer between GaSb and InAs layers and a built-in electric

�eld at the interface, which enables an excellent tunability of the band structure with

external electric �elds [35]. In AlSb, the valence band is some 0.4 eV lower than the

valence band in GaSb, while the conduction band of AlSb is approximately 0.4 eV

higher. Thus, AlSb can serve as a quantum well barrier, con�ning both electrons and

holes in the InAs and GaSb layers, respectively.

This is utilized in composite quantum well structures (CQWs) shown in Fig. 2.2

a. Note that because holes have a negative e�ective mass, in band diagrams hole

quantum wells are in the opposite direction to that of electrons, analogous to the

electron and positron case in Dirac's relativistic quantum theory. Thus, CQWs are
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e�ectively a composite of seperate electron (InAs) and hole (GaSb) wells, placed

in immediate proximity. Furthermore, due to the broken gap band alignment, the

inverted CQW structure should intrinsically have equal densities of both 2D electron

and hole gases. However, the high density of surface states usually pins the Fermi

level some 130 meV high above the bottom of the bulk conduction band in InAs [49],

and depending on the CQW width parameters, gating is necessary to induce holes in

the GaSb layer. We will discuss this issue seperately in the experimental section of

this thesis.
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Figure 2.2 : Panel a) shows the structure and energy spectrum of inverted CQW
with E1 < H1. Panel b) shows the energy dispersion of uncoupled E1 and H1
bands (dashed) and coupled (full line). At the anti-crossing point, where n ∼ p, a
hybridization gap D opens. Separation of the bands, Ego, as well as Fermi energy EF
can be tuned with front and back gates shown in a.

The width of the CQW well determines two fundamentally di�erent regimes of

this system: normal, with the usual progression of bands from valence to conduction

for increasing energy; and an inverted regime, with the opposite arrangement. In

quantum wells, energy levels are discrete and hence conduction and valence states
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will form subbands. For the CQWs studied in this thesis only the �rst electron and

heavy-hole subbands, E1 and H1, are experimentally relevant and hence we restrict

our discussion only to those. In the in�nite quantum well approximation, the position

of the edges of these subbands in energy from the bottom of the electron and hole well

goes as ∼ h2

8me,ha
2
e,h
, where ae,h is the electron and hole quantum well width and me

and mh are electron and hole e�ective masses. Thus, for a narrow CQW, i.e. smaller

ae,h, E1 will be higher than H1, resulting in normal structure. On the other hand,

for wider wells, E1 will be below H1, as shown in Fig. 2.2 a, and such structure is

referred to as inverted.

The inverted regime is of particular interest because in this case electrons and holes

coexist in their respective quantum wells. Due to their proximity, the electron wave-

function extends into the hole layer, inducing quantum mechanical coupling between

2D electron and hole systems. When the in-plane momentum and carrier energy in

the two wells are nearly equal, the system will be strongly coupled, and electron and

hole states will be mixed [50, 35]. In analogy to the familiar case of bonding and

antibonding states, a small hybridization gap D on the order of 2 − 5 meV opens.

Thus, the semimetallic band dispersion, shown in dashed in Fig. 2.2 b, becomes non-

monotonic, shown with full line, with a distinct mini-gap [50, 35, 36, 37, 39]. In other

words, E1 and H1 bands anticross at a �nite momentum value, and with a suitable

coupling potential between the bands, this degeneracy is lifted, opening a mini-gap

in the spectrum. Because this hybridization gap is the essence of our study presented
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in this thesis, we discuss its theoretical origin and experimental implications in detail

in the following sections. Note that for the moment we ignore the phenomena which

manifest at the sample edge, and focus exclusively on the bulk band structure. Based

on symmery arguments, we will later argue for the existence of helical edge states in

structures with a hybridized band spectrum.

2.2 Hybridization of Electron-Hole Subbands and Mini-gap

Conductivity

Electron-hole hybridization is a textbook band anticrossing problem and in the sim-

plest model it can be described within a two-band Hamiltonian using uncoupled

electron, |ψe〉 , and hole states, |ψh〉 as a basis:

H =

 Ee V (k)

V (k)? Eh

 , (2.1)

where Ee = ~2k2

2me
and Eh = Eg0− ~2k2

2mh
are uncoupled electron and hole energies and Eg0

is the overlap between the H1 and E1 subbands. Notice that for the inverted regime

Eg0 > 0, and the two bands will anticross when Ee = Eh, so that the anticrossing

point in in-plane momentum is kcross =
√
Eg0

m∗

2~2 , where m∗ = memh
me+mh

is the reduced

mass. In this simple model we neglect e�ects of the self-consistent potential, which

will only shift band edges of the quantum well, and thus to lowest order a�ects only

the value of Eg0 [51]. Coupling between the wells is described with the o�-diagonal
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element V (k) which generally depends on the wavevector k. Tunneling is allowed only

for the states of the same symmetry, i.e. same angular momentum, and thus electron

states (J = 1/2, mJ = ±1/2) can couple to heavy-hole states (J = 3/2, mJ = ±3/2)

only through the mixed-in light-hole component (J = 3/2,mJ = ±1/2), which goes to

zero as k goes to zero [52, 53]. In addition, electron states are derived from s-orbitals,

while the hole states come from spin-orbit coupled p-orbitals with px + ipy rotational

symmetry around the growth axis of the wells. Because these states have opposite

parity, parity selection rules require that these states be coupled through an operator

which is odd under space inversion. Hence, to the second order, the o�-diagonal

coupling element will be linear in k. Furthermore, to preserve symmetry, within this

k · p approach, the coupling element will go as V (k) = w(kx + iky) [50, 52] where w is

a constant. In other words, due to the conservation of angular momentum, coupling

between electron and hole states happens only due to the light-hole component of the

heavy-hole band, which is mixed-in due to an inversion asymmetry type term in the

Hamiltonian that is linear in momentum. Finally, following the approach of Quinn

[51] we can further simplify this model by setting V (k) = D/2 to give a constant

splitting D. Thus, the two-band Hamiltonian describing the system is:

H =

 ~2k2

2me
D/2

D/2 Eg0 − ~2k2

2mh

 , (2.2)

Diagonalizing this Hamiltonian, we obtain eigenenergies as [54]:
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E1,2 =
Ee + Eh

2
±

√(
Ee − Eh

2

)2

+

(
∆

2

)2

, (2.3)

and eigenstates as:

|ψ1,2〉 = cosθ |ψe,h〉+ i · sinθ |ψh,e〉 , (2.4)

where sin2θ = ∆√
(Ee−Eh)2+∆2

.

When the di�erence in particle energies is much larger than the size of the particle

coupling, then the eigenstates of the system correspond to the eigenstates of two

uncoupled quantum wells. The conductivity of such an uncoupled system can be

described with the Drude formula: σxx = neµe + peµh. On the other hand, when the

carriers in the two wells are isoenergetic, and ignoring the presence of disorder for a

moment, then the band structure will be gapped due to hybridization, and in this

case, expected bulk mini-gap conductivity will vanish in the low temperature limit.

This comes solely due to the nonlocal nature of electrons in the growth direction

of quantum wells and is not a manifestation of simple charge transfer but of real

quantum mechanical coupling.

According to Einstein's relation, conductivity varies proportionally to the density

of states of the system, DOS, which can be obtained from the energy dispersion

given in Eq. (2.3) as DOS = k
π
·
(
∂E
∂k

)−1
and is shown in Fig. 2.3. Clearly, within

the hybridization gap DOS vanishes, and thus, the expected conductivity of the sys-

tem in the low-temperature limit would be identically zero. Furthermore, due to the
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non-monotonic dispersion of the system, shown in Fig. 2.2, hybridized energy bands

have local extrema at nonzero wavevector values, which according to the expression

for DOS leads to van Hove singularities at mini-gap edges. We note here in passing,

that such a large DOS may be conducive to the emergence of many-body phenomena,

which have been theoretically considered for this system but to date have remained

experimentally unexplored [55]. Also, we caution the reader here that in Fig. 2.3 the

DOS is based on a simple two-band calculation and does not include the e�ect of

disorder, which even in the vanishing limit has a profound e�ect on mini-gap conduc-

tivity as will be argued in the subsequent parts of the thesis. In fact, it is evident from

our experiments that disorder leads to reconstruction of DOS singularities, putting

a �nite number of states inside the hybridization gap; however, at the moment, real-

istic density of states calculations, which include e�ect of disorder, are absent in the

literature.
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Figure 2.3 : Density of states in strongly coupled electron-hole system versus energy.
Within the hybridization gap ∆ density of states is zero for an ideal case of no disorder,
while the mini-gap edges are marked by sharp van Hove singularities.
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Figure 2.4 : Dispersion of E1 and H1 bands, for spin up and down projections,
calculated self-consistently in 8-band k · p model shown for [110] and [100] crystal
directions for 150Å InAs/80Å GaSb CQW in a), and 125Å InAs/50Å GaSb CQW
in b). Only experimentally relevant bands are presented and energy is with respect
to the conduction band of bulk InAs, i.e. bottom of InAs well [56].

The actual band structure of CQWs is slightly more complicated than the two

band model might suggest. More advanced calculations, such as an 8-band k ·p model,

whose detail is beyond the scope of this thesis, elucidate some of the de�ciencies of

the two-band model, such as the non-parabolicity and anisotropy of bands at higher

k values as well as the importance of spin degrees of freedom. Fig. 2.4 shows band

structure calculated [56] using an 8-band k ·p model for 150Å InAs/80Å GaSb CQW

in a) and 125Å InAs/50Å GaSb CQW in b) - structures that were experimentally

studied in this thesis. Note that these structures are inverted, and as previously

claimed, only the �rst subbands are important; however, the gap opens at di�erent

momentum values for di�erent crystal directions, which is a consequence of band
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anisotropy, resulting in a smaller hybridization gap. Also, the mini-gap is di�erent

for the spin-up and spin-down projections; however, the qualitative physical picture

discussed above is unchanged. We also note that the overlap between the electron

and hole subbands Eg0 is sign�cantly reduced in the narrower structures as earlier

discussed, and as we will see in the latter parts of the thesis, this can have signi�cant

impact on the transport properties of the hybridization gap in realistic samples.

2.3 Double-gated CQWs

Besides the broken gap band alignment, another interesting aspect of InAs/GaSb

CQWs is the tunability of the band structure via electric �elds applied perpendicular

to the wells [35, 57], as in the double gated structures shown in Fig. 2.2 a. Applying

an electric �eld
−→
F across the CQW will lead to band bending such that

−→
F = 1

e
∇E,

where E is the band energy. This changes the energy pro�le of the wells and results

in a shift of the electron and hole subband energy levels in the quantum well in the

opposite direction. For example, if we apply an electric �eld F in the +z direction,

shown in Fig. 2.2a, then the E1 band will shift downwards, while H1 will move

upwards and the overlap between the subbands Eg0 will increase, and anticrossing

will occur at higher k values. Similarly, applying F in the −z direction will move the

subbands in the opposite direction, decreasing the overlap between the subbands.

A more quantitative description can be obtained via a simple perturbative treat-

ment. For smaller electric �elds, we can treat the electric �eld as a perturbation,
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and to �rst order, the energy correction will be 〈ψ|V (z) |ψ〉 , where V (z) = eFz for

electrons and V (z) = −eFz for holes, indicating that the electron and hole subbands

will shift in opposite directions by ∆E = ±eF 〈ze,h〉, respectively. Hence, in princi-

ple, the E1 and H1 bands can be tuned to an arbitrary position with an appropriate

perpendicular electric �eld, which allows switching between the normal and inverted

regimes via a pair of gates, as shown in Fig. 2.2.

Figure 2.5 : Dispersion of E1 and H1 bands, for di�erent perpendicular electric �elds,
in 170Å InAs/50Å GaSb CQW. Switching from normal to inverted regime can be in
principle achieved via experimentally accessible electric �elds [35].

Furthermore, numerical solutions of Poisson and Schrödinger equations in a self-

consistent manner with realistic band parameters [35] show that biases to achieve

such switching are experimentally accessible for suitable parameters of the CQW.
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Fig. 2.5 shows the results of such calculations for 170Å InAs/50Å GaSb CQW. Note

that switching can be achieved with modest electric �elds of ∼ 100 kV/cm, or in

more useful units, ∼ 1V/kÅ. Typical dielectric thicknesses in our samples are on the

order of kÅ and thus the required biases to achieve the switching are theoretically

expected to be on the order of one Volt. Small biases are especially important because

higher operating biases necessarily lead to charge trapping at the interface between

the semiconductor and the dielectric and hence unavoidable hysterisis. In addition,

such surface charging e�ects limit the absolute value of biases which can be applied.

We will discuss this issue in more detail in the experimental section of the thesis.

Besides changing the band structure, gates allow us to tune the Fermi level, i.e.

change the carrier density in the wells. This can be understood as a simple capacitor

charging e�ect, that is, the carrier density will change as ∆n = ε
ed

∆V , where ε is

the dielectric constant and d is the thickness of the dielectric layer, while ∆V is the

applied bias. As previously mentioned, because the Fermi level is usually pinned

high above the H1 band, gating allows us to push the Fermi level in between the H1

and E1 bands and explore the interesting regime of strongly coupled electron-hole

systems. It should be noted that only in a double-gate geometry one can change

both, the overlap between the subbands, and hence the position of the hybridization

gap in k-space, as well as the position of the Fermi level, to an arbitrary value. In

other words, in order to control these two degrees of freedom in the energy spectrum,

one needs to have access to two di�erent experimental knobs, in this case front and
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back gates. Note that the absolute value of the gate biases determines the position

of the Fermi level, while the relative di�erence between the biases determines the

overlap of the H1 and E1 bands.

Finally, double-gated CQWs, originally proposed by Naveh and Laikhtman [35]

and experimentally demonstrated by Cooper et al [37] o�er unprecedented control of

the CQWs' band structure and allow us to place the Fermi level into the hybridization

gap. In this regime, as previously discussed, due to the strong electron-hole coupling

and resultant carrier hybridization, the longitudinal resistance exhibits strong re-

sistance peaks, which have been previously observed by Cooper et al [37]. More

importantly, the mini-gap is the regime where some fascinating and novel phases of

matter are predicted to occur.

2.4 QSHE in InAs/GaSb CQWs

2.4.1 Theory

Recent theoretical calculations [8] suggest that InAs/GaSb CQWs in the inverted

regime should exhibit the QSH phase, which is characterized by an energy gap in the

bulk and protected gapless edge modes. The edge modes in InAs/GaSb arise due to

the inverted structure, i.e. the energy gap between the conduction and valence states

is �negative� in the bulk of the sample. However, outside of the sample in vacuum or

insulator, the energy di�erence between the conduction and valence states is always

positive. In other words, the con�nement potential for electrons is always pointed
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upwards in energy, while for the holes the con�nement potential of the sample is

pointed downwards in energy. For the inverted structure, a smooth connection of

energy states outside and inside of the sample necessarily leads to gap closing at

the boundary and thus guarantees the existence of gapless edge modes. This is

demonstrated in Fig. 2.6, which schematically shows the energy spectrum of the

normal and inverted band structure in real space. If we place the Fermi energy into

the gap, then in the case of the normal structure, the Fermi energy stays in the gap

for the entire sample, while for the case of the inverted structure, the Fermi energy

will necessarily cross the energy states at the sample edges [58].

Figure 2.6 : Energy spectrum in real space for normal regime in a) and inverted regime
in b). The con�nement potential for electrons and holes has opposite direction. For
the inverted structure and Fermi level EF in the gap, EF crosses energy states at
edges, while for the normal regime EF stays in the gap for the entire width of the
sample [58].

In addition, in a slightly di�erent picture, the energy of lifting up one electron from

the valence band and placing it into the conduction band, i.e. the gap energy, can

be related to the mass by Einstein's equivalence principle. This Einsteinian mass will

be negative inside the sample due to the band inversion, while outside of the sample
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this mass is naturally positive. As a result, the smooth connection of this mass inside

and outside of the sample indicates that at the edges the mass will be zero. As a

consequence, similarly to photons, which also have zero Einsteinian or rest mass, edge

modes must have linear dispersions, i.e. E ∼ k. As a consequence, inverted structure

necessarily invokes edge modes with linear dispersion; however, inverted structure

alone does not necessarily guarantee the protection of such linerarly dispersed edge

states, which is a signature mark of the QSH phase.

This protection comes from the time-reversal symmetry of the system. The Hamil-

tonian of the system is a general function of momenta, spin and position operators,

such that H = H(p2, −→s · −→p , −→r ), where −→p is the momentum, −→s is the spin, and −→r

is the position operator. The �rst term is related to the kinetic energy, the second

describes spin-orbit coupling, while the last term describes the role of di�erent po-

tentials which generally only depend on −→r . Under time reversal, −→p and −→s change

sign while−→r stays the same. As a result, a Hamiltonian of this form will be invariant

under time-reversal, unless we apply a magnetic �eld, which breaks this symmetry

because −→p→ −→p + e
−→
A where

−→
A is the vector potential and does not change sign un-

der time reversal. Furthermore, Kramers' theorem requires double degeneracy at the

time reversal invariant points, which is in this case the middle of the Brillouin zone

also known as the Γ point (k = 0), and thus, we must have a Kramers pair of edge

modes at this point. Furthermore, in order to preserve time reversal, for k→ −k we

must have s → −s, and hence edge states will be helical, with counter-propagating
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spin up and spin down states.

A natural question to ask is whether helical edge states are stable against elastic

backscattering. Very simple symmetry considerations indicate that the QSH phase

has built-in protection against elastic backscattering. Consider, for example, scatter-

ing of the QSH state by a nonmagnetic impurity shown in Fig. 2.7. The re�ected

electron must rotate its spin by π in order to satisfy the time-reversal symmetry, as

it goes around the impurity. However, there are two distinct paths, clockwise and

counter-clockwise, and thus, the total phase di�erence between these two rotations

will be 2π. However, upon a full 2π rotation, the wavefunction of a spin 1/2 particle

changes sign, and thus, clockwise and counter-clockwise paths will interfere destruc-

tively [5]. This simple argument illustrates topological protection of the helical edge

states and robustness of the edge modes against disorder. Nevertheless, this protec-

tion does not extend to higher-order processes, such as two simultaneous spin �ips,

as well as inelastic processes [16, 59, 60, 19, 61]. In addition, the role of time reversal

symmetry in edge backscattering protection is not clear, with some authors suggest-

ing that such protection may be independent of the symmetry if the con�nement

potential of the wells is su�ciently smooth [62]. This is of particular importance for

the magnetic �eld dependence of the mini-gap resistance, which we discuss in Chapter

4.

So far the discusssion of the QSH e�ect and its proposal in InAs/GaSb has been

mainly qualitative. However, real systems always exhibit additional complexities that
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a)

b)

Figure 2.7 : Scattering of a quantum spin Hall edge state around a non-magnetic
impurity. Due to time reversal symmetry the spin rotates by π in the clockwise
direction and −π in the counterclockwise direction, with a total change in phase of
2π. Upon 2π spin rotation the wavefunction changes sign and the two paths interfere
destructively [5].

simple arguments cannot adequatly address. As a result, we present the model of the

QSH e�ect in InAs/GaSb as proposed by Liu et al [8]. A starting point for such a

model is the 8-band k ·p model, which is a standard model describing semiconductors

with outer s-like and p-like bands around the Γ point. The eight-band model is

comprised of two s−bands, |Γ6, mJ = ±1/2〉, which form conduction states, and six

p−bands which form valence states: heavy hole |Γ8, J = 3/2, mJ = ±3/2〉, light hole

|Γ8, J = 3/2, mJ = ±1/2〉 , and split-o� band |Γ7, J = 1/2, mJ = ±1/2〉 [63]. Without

spin-orbit coupling, the Γ8 and Γ7 bands would be degenerate; however, due to L · S

coupling, Γ8 is lifted high above the Γ7 band. Furthermore, due to quantization

e�ects in quantum wells and spin-orbital interaction the band edge of Γ8 band is

further separated into light and heavy hole components because of di�erent e�ective
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masses. Fig. 2.4 shows that the experimentally relevant bands are only Γ6, previously

labeled as E1, and heavy hole Γ8, which we labeled as H1, and hence we can describe

the system in terms of a four-component spinor: |E1, mJ = 1/2〉 , |H1, mJ = 3/2〉,

|E1, mJ = −1/2〉, and |H1, mJ = −3/2〉.

If inversion symmetry and axial symmetry around the growth axis are conserved,

then spin-up and spin-down components will be decoupled, and the e�ective Hamil-

tonian will be block diagonal and thus can be described in terms of two diagonal

2 × 2 blocks. The o� diagonal blocks are zero as assumed. Due to the time reversal

symmetry, the upper and lower diagonal blocks are time reversed to each other and

hence we have:

Heff (kx, ky) =

 H(k) 0

0 H∗(−k)

 . (2.5)

H(k) is a 2×2 matrix of the formH(k) = E(k)+di(k)σi, E(k) is a diagonal matrix,

representing the uncoupled energy of the bands and is of the form E(k) = C0 +M2k
2,

where C0 takes into consideration the quantization energy, while M2 is related to

the inverse of the e�ective mass. Furthermore, σi are Pauli matrices, and the d(k)σi

term describes spin-orbit coupling of the bands, where d(k) is a scalar function of

k. The �rst two Pauli matrices have only o�-diagonal elements and hence d1,2(k)

connect states of di�erent parity and hence must be odd under two-dimensional spatial

inversion. As a result, to lowest order d1,2(k) = A·k. On the other hand, σ3 is diagonal
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and thus d3(k) connect states of the same parity, and consequently, must be an even

function in k. With convenient rearranging and re-labeling of some of the coe�cients,

the Hamiltonian Heff (k) becomes [8]:

ε(k) +



M0 +M2k
2 A(kx + iky) 0 0

A(kx − iky) −(M0 +M2k
2) 0 0

0 0 M0 +M2k
2 A(−kx + iky)

0 0 A(−kx − iky) −(M0 +M2k
2)


, (2.6)

where ε(k) = (C0 + C2k
2) I4×4 matrix describes unimportant band bending, 2M0 =

−Eg0 corresponds to the energy gap between bands and is negative in the inverted

regime; M2 describes the curvature of the bands and corresponds to the inverse of

the e�ective mass, while A includes interband coupling to lowest order. Note that

this model Hamiltonian is an extension of the two-band model given in Eq. (2.2)

to include spin, with an important bonus. The Hamiltonian has the form of the

Dirac relativistic equation in 2+1 dimensions, i.e. with the rest mass on the diagonal,

with opposite mass for the electron (particle) and hole (antiparticle), and o�-diagonal

elements linear in momentum which couple electron (particle) and hole (antiparticle)

of the same spin. As such, the InAs/GaSb CQW is a voltage-tunable graphene like

system, in which the Einsteinian rest mass can be tuned from positive values (normal

regime) to negative values (inverted regime). Of special interest is the critical point
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where the band structure changes from normal to inverted and in this case the rest

mass M0 will be near zero for small k, and the bulk dispersion will be graphene-like

with a single Dirac cone. In the inverted regime, this mass will be negative, and

as previously discussed the smooth connection of this mass inside and outside of the

sample leads to gapless edge states with a linear dispersion, protected by time reversal

symmetry.

The underlying assumption of the model presented in Eq. (2.6) is that the sys-

tem preserves bulk and structural inversion symmetry, which is generally not true in

InAs/GaSb with its zinc-blende crystal structure and strong Rashba coupling [8]. In

consequence, the di�erent spin components in Eq. (2.6) will be coupled. Neverthe-

less, numerical calculations that include these e�ects indicate that such contributions

cannot destroy the QSH phase, although they can certainly modify the quantum

phase transition [8]. The outcome of such calculations is given in Fig. 2.8 for 81Å

InAs/100Å GaSb CQW (normal regime), and 100Å InAs/100Å GaSb CQW (in-

verted regime), showing gapless edge states for the latter case.

Furthermore, because in a double-gated geometry the band structure of CQWs

can be tuned from the normal to the inverted regime as discussed earlier, one can

describe the relevant state of the system based on the front and back gate bias values,

in the phase diagram shown in Fig. 2.9. The phase diagram is clearly separated into

normal (in blue) and inverted regimes (in red). In the case when the system is in the

normal regime and the Fermi level is in the gap, the system will be a normal insulator,
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Figure 2.8 : Band dispersion obtained through tight binding calculations for 81Å
InAs/100Å GaSb CQW (normal regime) in a), and 100Å InAs/100Å GaSb CQW
(inverted regime) in b). Inverted structure shows gaples edge states with linear dis-
persion [8].

while when the Fermi level is in the gap of the inverted regime, then the system will

exhibit a topologically insulating phase, with time-reversal protected edge states.

The primary goal of our experiments is to explore the phase diagram shown in

Fig. 2.9, primarily in the inverted regime and towards the critical point, where the

band structure changes from normal to inverted, �xing the Fermi level into the gap

and looking for the QSH phase in transport measurements. However, before moving

to the experimental section, it is necessary to discuss the transport signatures of the

QSH phase.

2.4.2 Landauer-Büttiker Formula and Helical Edge States

As mentioned in the previous section, as long as time reversal symmetry is preserved,

helical edge modes are protected from elastic backscattering due to destructive inter-
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Figure 2.9 : Phase diagram of 100Å InAs/100Å GaSb CQW showing the TI phase
in inverted regime (red) and the NI phase in normal regime (blue). For Fermi levels
outside the gap, the system can be either n or p type [8].

ference of clockwise and counterclockwise spin rotation paths; however, an important

caveat is that such wavefunction cancelation requires phase coherence. In any case, in

the zero temperature limit, edge channels are perfectly ballistic and quantum trans-

port in this regime can be described by the Landauer-Büttiker formula [64, 65, 66].

The Landauer-Büttiker formalism describes electrical transport in multiterminal

devices in terms of transmission functions and is generally valid under two important

constraints. The �rst constraint is that transport must be coherent across the device,

i.e. a single wavefunction can be de�ned from one contact to another, and the second

is that there should be no vertical �ow of electrons from one energy to another [67].

In this case, the relationship between terminal current and voltage is:
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Ip =
∑
q

[GqpVp −GpqVq], (2.7)

where q and p are contact labels, Gpq ≡ 2e2

h
T p←q is conductance and T p←q is the

transmission from contact q to contact p. In the case of QSH helical edge states this

transmission probability is 1 for neighboring contacts, i.e. T p←q=1 if q and p are

neighbors, and edge states are not spin degenerate so Gpq ≡ e2

h
T p←q [58].

Figure 2.10 : Six-probe Hall bar device with depicted QSH edge states [58].

Thus, in the case of a six-probe device, also known as a Hall bar, shown in Fig.

2.10, the matrix Gpq will be:
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Gpq =
e2

h



0 1 0 0 0 1

1 0 1 0 0 0

0 1 0 1 0 0

0 0 1 0 1 0

0 0 0 1 0 1

1 0 0 0 1 0



, (2.8)

giving the following system of linear equations:



I1

I2

I3

I4

I5

I6



=
e2

h



2 −1 0 0 0 −1

−1 2 −1 0 0 0

0 −1 2 −1 0 0

0 0 −1 2 −1 0

0 0 0 −1 2 −1

−1 0 0 0 −1 2





V1

V2

V3

V4

V5

V6



. (2.9)

By setting one of the voltages to zero and using the conservation of current, one

row and one column can be eliminated. In this case, we choose to ground V4 = 0 and

we pass the current from 1 to 4. Contacts 2, 3, 6, and 5 are voltage measurement

contacts and we have: I2 = I3 = I5 = I6 = 0. Solving for the remaining variables, we

have:

I1 =
2e2

h
(V2 − V3) and G14,23 =

2e2

h
. (2.10)



34

Thus, measuring the four probe conductance in the six-terminal device, we would

expect to observe conductance quantized to a value of 2e2

h
. However, Eq. (2.10) is

valid only when the conductor is phase coherent. For samples whose size is larger than

the phase coherence length, L� Lφ, we can estimate the conductance by dividing the

conductor into phase coherent sections. This approach is due to Büttiker, who was

the �rst to note that voltage probes can serve as phase-breaking scatterers [66]. Thus,

for longer devices, we can still use the Landauer-Büttiker formula if we account for the

lack of phase coherence by inserting phase-breaking probes between our measurement

probes. As a result, for a sample of length L we place N = L
Lφ
− 1 phase-breaking

probes between contacts 2 and 3 and similarly between contacts 6 and 5. Applying

the Landauer-Büttiker formula from Eq. (2.7) to such a system of 2N + 6 contacts

in a similar fashion as demonstrated for six contacts, we obtain:

G14,23 =
2e2

h

1

N + 1
or G14,23 =

Lφ
L

2e2

h
. (2.11)

In consequence, in order to observe conductance quantization, which is a signature

of the QSH e�ect in transport measurements, one needs to make devices which are

smaller than the phase coherence length, as illustrated by Eq. (2.11). In addition, for

larger devices this relationship can also help us determine the phase coherence length

of the edge states, which does not necessarily have to be the same as in the bulk.

At any rate, we emphasize here that for macroscopic devices where L � Lφ edge

conductance vanishes acording to Eq. (2.11), and hence there is no apparent di�er-
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ence in transport between macroscopic normal insulating and topologically insulating

structures.

1

2 3

4 1

2 3

4

2/ eh
a) b)

Figure 2.11 : Panel a) shows four-probe device in which edge conductance doubles to
G14,23 = 4e2

h
as compared to six-terminal case. Panel b) shows equivalent resistance

circuit. When the bottom two electrodes are removed from six-terminal con�guration,
current in the upper branch is reduced by a factor of two, resulting in doubling of
edge conductance.

Besides six-terminal Hall bar structures, experiments presented in this thesis are

also performed on four-terminal structures because in such structures edge conduc-

tance doubles to G14,23 = 4e2

h
for mesoscopic devices. This comes directly from the

Landauer-Büttiker formula given in Eq. (2.7) but can be understood quite simply

based on the equivalent circuit structure given in Fig. (2.11). In this circuit, neigh-

boring terminals are connected by a quantum of resistance h/e2 and removing lower

two voltage probes reduces the current through the upper branch by a factor of two,

which reduces the voltage drop between the upper two leads and results in doubling

of conductance as compared to the six-terminal case. Note that the above picture

can be extended to devices where L � Lφ by placing N = L
Lφ
− 1 resistors of value

h/e2 in each current branch, giving four terminal edge conductance:
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G =
2e2

h

[
Lφ
L

+

(
Lφ
L

)2
]
. (2.12)

Similar to the six-terminal case, here edge conductance also vanishes in the macro-

scopic limit, reiterating the earlier point that there is no apparent di�erence in trans-

port measurements between normal and topological insulators in macroscopic devices,

i.e. in both cases conductance is vanishingly small, and that the number of contacts

in this limit is irrelevant, although two cases certainly exhibit di�erent functional

dependence on the device length.

Nevertheless, at least in the mesoscopic limit the transport in QSH devices is non-

local and this has some profound consequences on transport behavior of the system.

One rather apparent corollary is that even the probes, which are outside the voltage

measurement contacts, i.e., outside of contacts 2-3 and 5-6 in Fig. 2.10, can a�ect the

voltage measurement between leads 2-3 and 5-6. For example, if we put an additional

contact (see Fig. 2.10) between probes 5 and 4, and again pass the current from 1 to

4 and measure the voltage drop in between probes 2 -3, and 5-6, we obtain:

G14,23 =
7

4

e2

h
or G14,65 =

7

3

e2

h
. (2.13)

Hence, the simple Landauer-Büttiker formula suggests that the presence of even

one phase breaking center, and even outside measuring contacts, can introduce a
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variation from the expected quantized value of 2e2

h
. This may explain some of the

�uctuations in six-probe measurements in HgTe/CdTe [32] and indicates that due to

the potential �uctuations in gating and other imperfections of real samples, for ex-

ample variation of the QW thickness across the wafer, perfect quantization cannot be

expected for helical edge modes. In addition, we note here an important comparison

to the chiral edge transport in QHE, which is also non-local, but does not show such

sensitivity to phase breaking centers. In chiral edge modes the value of the transverse

and longitudinal conductance is independent of the number of voltage probes or phase-

scattering centers between the measuring probes. Hence, quantization will be perfect,

regardless of the presence and distribution of local phase-scatterers. This comes di-

rectly from applying the Landauer-Büttiker formula to chiral edge states in a similar

way as presented in this section for the helical modes, except that Gpq ≡ 2e2

h
T p←q,

where in this case T p←q = 1 only for neighboring contacts in one direction. In conclu-

sion, helical edge states, although having a non-local property, are not as robust as

chiral edge states, and as revealed by the Landauer-Büttiker formalism, this illustrates

a simple, yet fundamental di�erence between a two-way and one-way tra�c.

2.5 Previous Experimental Work

Before we delve into our experimental �ndings it is useful to quickly review previous

experimental work in light of the theoretical proposal by Liu et al [8]. Mini-gap

opening due to electron-hole hybridization has been �rst experimentally established
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in capacitance and transport measurements by Yang et al [36], who have studied front-

gated InAs/GaSb composite QWs in both inverted and normal regimes. Furthermore,

evidence for the hybridization gap has been presented in far-infrared measurements

of Kono et al [38] and later Yang et al [39]. Similarly, transport experiments by

Cooper et al [37] on double-gated structures have shown strong resistance peaks,

corresponding to the hybridization gap; however, Cooper et al have found that the

resistance of the mini-gap does not diverge and does not show thermal activation,

as may be expected for a purely insulating system, and have ascribed this oddity to

possible band anisotropy and impurity states within the mini-gap. In fact, in the

earliest study, it has been found by Yang et al [36] that capacitance signal, which

corresponds directly to the density of the states, exhibits only a slight dip in the

hybridization gap, compared to large reduction of density of states in the normal

gap, presumably due to localized states present in the hybridization gap but curiously

absent in the normal gap of similar size.

These early studies have all been performed on macroscopic samples, and based on

the analysis given in the previous section, possible edge contributions to the observed

�nite gap conductivity in these studies can be safely excluded. As a result, �nite

mini-gap conductivity in these experiments must be understood as a predominantly

bulk e�ect, and as such has been theoretically studied by Naveh and Laikhtman

[40], who considered tunneling between the wells to be dissipative, albeit slightly.

In early theoretical studies, Caldeira and Legett [68] have found that dissipation,
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i.e. coupling of the quantum mechanical particle to external degrees of freedom, will

lead to a reduced quantum mechanical capacity of the particle for tunneling. Thus,

dissipative tunneling will leave some proportion of electronic states non-hybridized,

giving nonzero density of states in the gap and �nite gap conductivity. Suprisingly,

only a slight amount of electron and hole level broadening leads to drastic changes

in transport behavior, giving �nite bulk conductivity even at zero temperature and

even in the limit when level broadening is much smaller then the size of the mini-

gap [40]. Nevertheless, for negligible level broadening, mini-gap bulk conductivity

depends exclusively on band parameters. We further explore this subtle issue of bulk

mini-gap conduction in the following chapter.



Chapter 3

Bulk Transport in Hybridized InAs/GaSb QWs

3.1 Sample Fabrication and Experimental Setup

The InAs/GaSb CQW sample was grown by molecular beam epitaxy on a silicon-

doped N+(100) GaAs substrate. The structure, which is shown in Fig. 3.1, consists

of a standard bu�er with AlSb and Al0.8Ga0.2Sb layers which compensates for about

seven percent lattice mismatch between GaAs and AlSb [69]. On top of this, a 500Å

AlSb lower barrier layer was grown, followed by 150Å InAs and 80Å GaSb quantum

wells with a 500Å AlSb top barrier layer and a 30Å GaSb cap layer.

Figure 3.1 : Sample structure. 2D electron and hole gases are marked by dash lines
and labeled as n and p, respectively.
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Our experiments were performed on Hall bar samples from the same wafer, and

were processed using standard photo- and e-beam lithography with wet etching. Fig.

3.2 sketches the fabrication steps. A lithographically de�ned mesa was etched with a

phosphoric based etchant, and subsequently, a 2500Å Si3N4 layer was deposited using

plasma enhanced chemical vapor deposition. This layer serves as both a protection

layer, as well as the dielectric for the front gate. Contact windows were etched through

the Si3N4 layer and ohmic contacts to the electron-hole layers were made with indium

and without annealing. A 1000Å Al or Ti/Au front metal gate was evaporated on

top of the dielectric, while the N+GaAs substrate serves as a back gate for our devices

and was contacted using silver resin.

Here we present data on Hall bar samples of two di�erent lengths with two distinct

transport regimes. Sample A is a Hall bar with a width and length of 10 mm× 20 mm

and is in the di�usive regime, while sample B has a width and length of 0.7 mm×1.5 mm,

and as our data suggests, is in the mesoscopic regime. An optical image of sample

A and an SEM image of the sample B are shown in Fig. 3.3, panel a) and b),

respectively. Low temperature magnetotransport measurements were carried out in

a 3He refrigerator (300 mK) combined with a 12 T superconducting magnet, or in

a 3He/4He dilution refrigerator (20 mK) with a 18 T magnet at the National High

Magnetic Field Laboratory. A standard lock-in technique with an excitation current

of 100 nA at 23 Hz was employed.
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Figure 3.2 : Device fabrication steps.

b)
1um

a)

Figure 3.3 : Panel a) shows an optical image of a 10 mm×20 mm Hall bar, while panel
b) shows an SEM image of a 0.7 mm× 1.5 mm Hall bar (mesoscopic regime).
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3.2 Sample Characterization

3.2.1 Single vs. Two-Carrier Transport

In the double-gate geometry, both the overlap between the subbands, Eg0, and the

Fermi energy EF can be tuned. Hence, not only the carrier density, but also the

carrier character, i.e. electron or hole, can be changed. In fact, depending on the

position of the Fermi level, the carriers can be electrons-only, holes-only, and both

electrons and holes. Single and two-carrier regimes have distinct magnetoransport

behavior, which becomes very important in sample characterization. In the single

carrier regime, which occurs for either EF above H1 (electrons) or below E1 (holes),

the Hall or transverse resistance Rxy in the classical regime depends linearly on the

magnetic �eld B according to:

Rxy = −B
ne

and Rxy =
B

pe
, (3.1)

for electrons and holes respectively, where n and p are electron and hole densities.

The longitudinal resistance at B = 0 T is:

Rxx =
1

neµe

L

W
and Rxx =

1

peµh

L

W
, (3.2)

where L
W

is the ratio of Hall bar section length to the section width and µe,h are

electron and hole mobilities. Thus, in the single carrier regime, electron or hole

densities can be determined from the slope of the Hall resistance, while the carrier
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mobility is extracted from the zero-�eld longitudinal resistance, as described by Eqs.

(3.1) and (3.2).

Furthermore, for single carrier transport, the carrier density can be obtained from

Shubnikov-de Haas oscillations (SdH) of Rxx in a magnetic �eld. The constant density

of states of a two-dimensional electron gas (2DEG) or a hole gas (2DHG), separates

into Landau levels, each with density per unit area equal to eB/h. Because the carrier

density is �xed, the number of �lled Landau levels, also known as �lling factor will

be: ν = nh
Be
. When the Fermi level lies in a Landau level, the density of states will be

high, and the conductivity, which in a magnetic �eld is proportional to the resistivity,

will be high as well. Thus, peaks in SdH oscillations correspond to Landau level �lling

and from the relative separation of the Rxx peaks in 1/B single carrier density can

be determined as [70]:

n =
∆ν

∆
(

1
B

)
h
e

, (3.3)

where ∆ν = 2 if the spin degeneracy is not lifted, which is generally true in moderate

magnetic �elds.

On the other hand, two-carrier transport occurs for EF between H1 and E1, and

hence, electrons and holes coexist in their respective layers. This regime is marked

by a non-linear dependence of the Hall resistance, Rxy, on the magnetic �eld, B and
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in independent electron-hole classical model Rxy is given as [71]:

Rxy =
B [(p− nb2) + µ2

eB
2 (p− n)]

e
[
(bn+ p)2 + µ2

eB
2 (p− n)2] , (3.4)

where b = µe
µh
. Note that in the limit of high magnetic �elds, i.e. B � 1

µe
, Rxy ≈ B

(p−n)e

and the net carrier density can be determined from the slope of the Hall resistance

in a magnetic �eld. The longitudinal resistance at B = 0 T is given by:

Rxx =
1

e (nµe + pµh)

L

W
. (3.5)

In the two-carrier regime, carrier densities and mobilities are extracted by �tting Eq.

(3.4) and using Eq. (3.5) as a �t constraint. In conclusion, even in the classical

regime and assuming that electrons and holes are independent, single and two-carrier

regimes show a di�erent dependence of transport coe�cients in magnetotransport,

which is important from a transport characterization perspective. We note here that

Eqs. (3.4) and (3.5) are not valid when electrons and holes are coupled [40], which is

the case in our samples for Fermi energies near the hybridization gap.

3.2.2 Sample Characterization at Zero Gate Bias

In our CQW, the Fermi level is pinned by the surface states in the GaSb cap layer some

130 meV above the bottom of the InAs bulk conduction band [49]. In consequence,

under zero applied bias or in ungated samples, only electrons are present in the well.
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In this case, using the expressions from the previous section, the low temperature

electron density is determined to be approximately 7 · 1011cm−2, while the electron

mobility is 9 ·104 cm2/Vs. Fig. 3.4 shows representative magnetotransport data in the

electron transport regime for a larger Hall bar sample (sample A) and a smaller Hall

bar sample (sample B) at T = 0.3 K. In the larger sample SdH oscillations can be

observed in Rxx starting at 1.8 T with no evidence of parallel conduction, while the

Hall resistance varies linearly with magnetic �eld until the appearance of quantum

Hall plateaus. As described earlier, this is indicative of the single carrier regime.
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Figure 3.4 : Magnetotransport data at T = 0.3 K is shown in a) for a 10 mm×20 mm
(sample A), and in b) for a 0.7 mm×1.5 mm (Sample B) Hall bar where Rxx exhibits
strong �uctuations. c) The �uctuations in conductivity (sample B) are on the order
of e2/h, indicating mesoscopic regime [41].

In contrast to larger samples which show clear SdH, micron-size devices show

strong �uctuations in Rxx at low temperatures. Fluctuations are reproducible in

magnetic �eld, and decrease in magnitude for higher temperatures, disappearing at



47

around 10 K. As shown in Fig. 3.4 c), the conductivity varies on the order of e2/h,

indicating a mesoscopic regime. This is more evident by estimating the coherence

length from the size of the conductance �uctuations. A very rough estimate of the

size of conductance �uctuations is given as [67]: δg ∼
(
Lφ
L

) 3
2 e2

h
, where Lφ is the

coherence length and L is the length of the sample. Using the latter expression,

Lφ ∼ 1µm, and is on the same order as the sample B length, which is a necessary

requirement for observing transport signatures of QSH edge modes.

3.2.3 Gate Characterization

When applying a voltage bias on the front and back gates, the carrier density will

change as described in Chapter 2. When only electrons are present in the well, the

electron density changes linearly with the front bias as approximately 1.5·1011cm−2/V

and with the back gate bias as 0.4 · 1011cm−2/V. Electron densities are extracted by

sweeping gate biases at a �xed magnetic �eld or through analysis of SdH oscillations.

The values are consistent and agree well with the parallel plate capacitor model

described in Chapter 2.

Extracting the densities and mobilities of the holes is not as straightforward as

those of electrons, because in this particular structure, when induced, holes always

coexist with electrons in the device bias range. Thus, the analysis of carrier densities

and mobilities is complicated by the non-linear form of the two carrier transport Eq.

(3.4). In principle, four parameters describing electron/hole densities and mobilities
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can be extracted from �ts to the Hall resistance with Eq. (3.4), assuming non-

interacting electrons and holes [71]. In practice, such �ts are rather sensitive to the

�tting parameters and data range, and inherently �awed due to the electron-hole

coupling [40]; nevertheless, far from resonance, coupling e�ects are weak, and the

change of the hole density with the front gate bias is consistent with the value for

unscreened electrons and in agreement with the parallel plate capacitor model.

Fig. 3.5 shows Hall resistance Rxy versus the perpendicular magnetic �eld B, with

the front gate bias Vfront varied from 0 V to −10 V in 1 V steps. At Vfront = 0 V, Rxy

varies linearly with B for small �elds, while at higher �elds quantum Hall plateaus

develop, indicating exclusively electron type transport. At Vfront = −1 V, Rxy still

varies linearly with B, but with a larger slope, indicating electronic transport with a

smaller carrier density, in agreement with Eq. (3.1). On the other hand, at Vfront =

−2 V Hall resistance starts to bend downwards at higher �elds, suggesting two-carrier

transport described by the Eq. (3.4). This trend continues as Vfront is made more

negative, and at very negative biases and large magnetic �elds, Rxy changes its sign,

indicating a two carrier-hole dominated regime. In consequence, carrier character

in our system can be changed via Vfront from electron-only to hole-dominated, thus

allowing us to tune the Fermi energy through the hybridization gap as advertised

earlier.

This is further illustrated in Fig. 3.6, where we conveniently plot B/eRxy vs. Vfront,

for various back gate biases Vback and for a �xed magnetic �eld of B = 1 T. In the
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Figure 3.5 : Shows Hall resistance Rxy versus the perpendicular magnetic �eld B in
sample A, while the front gate bias Vfront is varied from 0 V to −10 V in 1 V steps.
Bending of the Hall trace at more negative biases indicates coexistence of electrons
and holes in transport. Carrier character in our system can be changed from electron-
only to two-carrier hole-dominated.
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single-carrier regime, B/eRxy corresponds to the electron density and changes linearly

with the applied bias. For a more negative front gate bias, B/eRxy curve is non-linear

indicating two-carrier transport, and in this regime B/eRxy does not correspond directly

to the carrier density. However, we can further simplify Eq. (3.4) by noting that the

B2 terms are comparably small, and when p � nb2, we have that B/eRxy ≈ n + 2p
b
,

where b can be �tted to b ≈ 6. Once we start inducing holes in the GaSb well, the

electron density stays approximately constant due to the screening from the top hole

layer, while the hole density increases linearly [72]. As a result, the minimum in the

B/eRxy curve approximately corresponds to the minimum carrier density of the system,

and hence resonant carrier density, i.e. n ∼ p. In summary, in our devices the carrier

character can be changed from electrons-only to predominantly holes, indicating that

the Fermi level can be tuned from the conduction band to the valence band, and hence

through the hybridization gap whose transport properties we aim to study. Before

we proceed to this goal, a note regarding unavoidable hysterisis in our gated devices

is in order.

As previously mentioned, our gates exhibit some hysterisis in up and down gate

bias sweeps, especially if large biases are applied. This is due to the charge trapping

sites at the interface of the semiconductor and the dielectric for the front gate, or

at the interface between di�erent semiconductors in the case of the back gate. At

the interface, surface states exist, usually somewhere in the bulk energy gap. As a

positive gate bias is applied, the Fermi level is lifted above the surface states due to
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Figure 3.6 : Shows B/eRxy vs. front gate bias at T = 0.3 K, B = 1 T, Sample B.
Back gate bias is changed from 10V to -10V in 1V steps. In linear regime, B/eRxy
corresponds directly to electron density, while non-linear regime indicates two-carrier
transport.

band bending, which results in their �lling, and in this case, the e�ect of the gate on

the 2DEG/2DHG is screened. On the other hand, when the Fermi energy is lowered

below the surface states, these states become empty and the density of the modulated

2DEG/2DHG changes immediately with the gate bias. However, for more negative

biases, electrons will tunnel from the surface to the 2DEG, providing a lower limit on

the carrier density in the quantum well.

Hence, the variation of the carrier density with the gate bias will inherently possess

memory, and the degree of such hysterisis depends on the density of surface states,

which in antimonides is unfortunately rather high, some 1012cm−2 [73]. This might

be unacceptable from a device point of view, and potential applications necessitate
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the resolution of this important issue; however, from our perspective of fundamental

physics, where a conceptual framework is studied and basic premises are tested, hys-

terisis is merely an experimental nuisance which must be carefully taken into account.

In our case, and as evident from the above discussion, hysterisis is reproducible in full

cycles of gate bias as long as the range of gate bias is unchanged, and this property

is utilized to preserve the consistency of our measurements.

3.3 Resistance Peaks and Existence of Hybridization Gap

As demonstrated in the previous section, in our devices the Fermi level can be swept

through the hybridization gap, and in this case, due to the strong electron-hole cou-

pling, we observe strong resistance peaks in Rxx, shown in Fig. 3.7 as solid lines for

mesoscopic device (sample B). Similarly to Fig. 3.5, in this �gure, we sweep the front

gate bias from −10 V to 10 V, and change the back gate bias from −10 V to 10 V in

1 V steps at T = 0.3 K, B = 0 T.

Peaks correspond to near equal electron-hole density in our system, i.e. n ∼ p,

although as discussed in Chapter 2, strictly speaking, the traditional paradigm of

electrons and holes breaks down near resonance and one can question whether electron

and hole density is a meaningful concept [40]. However, for the lack of better way,

we will continue using electron and hole densities as the relevant parameters.

Clear peaks in Rxx indicate the existence of the hybridization gap; however, the

size of the resonance peaks Rxx(max). 4.5 kΩ is a few times smaller than the expected
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Figure 3.7 : Shows Rxx vs. Vfront in sample B for Vback from 10 to -10 V, in 1V
steps, B = 0 T, T = 0.3 K; and in sample A (dashed) for Vback = −10 V. Inset a) At
the anti-crossing point, where n ∼ p, a hybridization gap D opens. For EF in the
gap, Rxx exhibits resonance peaks, which decrease for increasing Vback. b) Resonance
peaks vary lineary with n−1 for n . 5 · 1011cm−2 [41].
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contribution from the edge of ∼ h
2e2

= 12.9 kΩ, and peak values strongly depend on

the resonance carrier density. In fact, the resonance peaks, Rxx(max), increase with

decreasing back-gate bias, and hence, vary inversely with the resonance electron-hole

density, ncross = n ∼ p and corresponding kcross(Fig. 3.7 a). In particular, for ncross .

5 · 1011 cm−2, the resonance peaks vary inverse proportionally with ncross as shown in

the inset of Figure 3.7 b). This inverse relationship, which we subsequently discuss,

cannot be explained with an increasing mini-gap, for coupling between wells varies

proportionally with k [53] as discussed in Chapter 2. Furthermore, the resonance

carrier density ncross can be related to the overlap between the electron and hole

subbands Eg0, which is a more meaningful parameter in this case, as Eg0 = ncross
π~2

m∗
,

where m∗ = memh
me+mh

is the reduced mass, with carrier masses me = 0.03 and mh =

0.37 (in units of free electron mass) [36]. As a result, the mini-gap resistance scales

inversely with Eg0, which is in agreement with the bulk conductivity description given

by Naveh and Laikhtman [40], upon which we elaborate in the later parts of the thesis.

Furthermore, larger Hall bars (10 mm×20 mm) also show a resistance peak of similar

size, i.e.∼ 4.5 kΩ, (shown in Fig. 3.7, dashed line). This behavior is in contrast to

the case of HgTe/CdTe QWs where the quantized value is approached from larger

resistances as the device length is reduced [32]. A lack of size dependence and inverse

scaling of mini-gap resistance with Eg0, suggests that observed resonance peaks are

predominantly a bulk e�ect, with a residual conductivity on the order of 10e2/h. This

residual conductivity is a few times larger than the predicted contribution from the
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edge and precludes the investigation of proposed edge modes in the current setup.

We note that Cooper et al [37] have reported a peak resistance value of ∼ 15 kΩ,

which is close to h/2e2. However, this value re�ects only the bulk transport in the

macroscopic samples used in their measurements, where L � Lφ, and is consistent

with our measurements if the geometric factor is taken into account. In conclusion, the

strong resistance peaks are clear evidence for the existence of the hybridization gap;

however, rather large conductivity indicates that the hybridization gap is not fully

insulating in the bulk as a simple two-band model may indicate. In the next sections,

we estimate the size of the mini-gap and investigate possible origins of residual bulk

conductivity.

3.4 Resistance Dips and Size of the Hybridization Gap

Even in measurements at the lowest temperature, T = 20 mK (Fig. 3.8 a), the

resistance peak values do not change signi�cantly and are approximately . 5 kΩ for

mesoscopic samples, which is again at least 2-3 times smaller than h/2e2. Thus,

the residual bulk conductivity does not vanish even in the low temperature limit.

However, measurements at very low temperature reveal another feature, which are

dips in Rxx in the vicinity of resonance peaks, for Vback < −9 V, as shown in Fig. 3.8

a). This regime corresponds to small on-resonance carrier densities, and the observed

dips can be explained by van Hove singularities in the DOS (Fig. 3.8 b) at gap

edges [53]. In fact, this is the �rst time that such singularities have been observed in
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transport, attesting to the high quality of our samples. Resistance dips occur only for

smaller k due to the otherwise increasing anisotropy of the valence band, smearing

out DOS singularities. When applying an in-plane magnetic �eld, as shown in Fig.

3.8 d), bands move in the k direction with respect to each other as: ∆k|| ≈
eB||4z

~ ,

where 4z is the relative separation between 2DEG and 2DHG. In this case, the mini-

gap opens at di�erent k−values as shown in Fig. 3.8 d), and due to the induced gap

anisotropy [36], DOS singularities are expected to be smeared out and resistance dips

should weaken, as observed in Fig. 3.8 c).
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Figure 3.8 : a) Shows Rxx vs. Vfront in sample A for Vback from -9 to -11V, in
0.5 V steps, B = 0 T, T = 20 mK. Resistance dips occur at singularities in DOS
near gap edges shown in b). From relative position of dips and peaks in Vfront we
determine D ≈ 3.6 meV. Dips weaken with in-plane magnetic �eld in c), due to
induced anisotropy in the dispersion in d) [41].

It is worth mentioning that resistance dips have not been observed at T = 0.3 K in

these structures, which is presumably due to the higher carrier density. At T = 20 mK

density of carriers is on average ten to �fteen percent less than at T = 0.3 K due to
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the carrier freeze out. Nevertheless, resistance dips can be used to estimate the size of

the mini-gap from the relative position of resistance dips and peaks (Fig. 3.8) in the

front gate bias as: 4 = 2 (Vpeak − Vdip) ∆n
∆V

1
DOS

, where ∆n
∆V

is the rate of carrier density

change with the front bias, and DOS = (me +mh)/π~2. We obtain 4 = 3.6 meV, in

agreement with previous studies [36, 37, 39].

3.5 Temperature Dependence of Resistance Peaks

A similar value of the hybridization gap can be deduced from the temperature de-

pendence of the resonance peaks shown in Fig. 3.9. For temperatures varied from

T = 0.3 K to T = 40 K the size of the resistance peaks decreases, indicating the

insulating character of the hybridization gap. On the other hand, we do not observe

temperature-activated resistance, as one would expect for a true insulator. Reso-

nance peaks increase only by a factor of 2-3 over a three orders of magnitude change

in temperature, for six anti-crossing points measured, and saturate for T < 2 K as

suggested by a 1/T plot of the resistance peaks. Nevertheless, peaks persist up to

40 K for all six cases, which is consistent with a gap value of 3 − 4 meV. In con-

clusion, the temperature dependence of the resistance peaks con�rms gap existence,

albeit with non-vanishing residual bulk conductivity.
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Figure 3.9 : a) Shows the temperature dependence of resonance peaks in sample A
for Vback=−10 V for T from 0.3 K to 40 K consecutively in roughly 2 K steps. b)
Resonance peaks shown vs T−1 saturate for T < 2 K, for six di�erent kcross [41].

3.6 Analysis of Scattering and Potential Fluctuations

So far we have established the existence of the mini-gap and estimated its size, noting

that the mini-gap is not trully insulating as expected and as desired for observing

the TI phase in this material system. Scattering and potential �uctuations in our

samples induced by gating could be a likely culprit for the residual conductivity in

a very trivial way, i.e. if the broadening of electron and hole energy levels due to

the material imperfections is larger or comparable to the size of the hybridization

gap. Thus, analysis of scattering and potential �uctuations is required in order to

understand the nature of the observed resistance peaks.

Hence, we determine the carrier scattering times characterizing the transport in

a zero magnetic �eld. At zero gate bias, the electron scattering time is τr = µeme
e

=

1.5 ps and the associated level broadening is Γe = ~/2τr = 0.2 meV. The electron

mobility shows a linear dependence on electron density and drops to approximately
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4·104 cm2/Vs for the case of the smallest electron density of 3.3·1011cm−2, giving Γe =

0.5 meV. The linear dependence of mobility on the electron density is indicative of

short range scattering, presumably from dislocations at interfaces, which is con�rmed

by extracting the quantum time τq from the SdH oscillations [74, 75], giving τr/τq≈7

at zero bias and validating the predominance of large angle scattering. The estimated

τq has been corrected for density inhomogeneity [76] with a Gaussian width of dn ≈

0.35 · 1011 cm−2. This suggests that the random potential �uctuations are on the

order of dE = dn/DOS ∼ 0.25 meV, and thus dE � ∆. Here we brie�y mention

the procedure which is used to deduce the density inhomogeneity. We start from the

semi-classical expression for Shubnikov-de Haas (SdH) oscillations given as:

4Rxx (n) = R0 (n) · e−πme/eBτqcos
(
πh

eB
n− π

)
, (3.6)

which is further convoluted with a Gaussian distribution of carrier density and �tted

to our data according to the following expression:

4R′xx (n0) =

ˆ
dn · 4Rxx (n) · 1√

2πdn
e−

(n−n0)2

2dn2 . (3.7)

For holes, Γh = bme
mh

Γe, where b is the ratio of electron to hole mobilities. From

a �t to Rxy in the two-carrier transport regime, b ≈ 6, giving Γh = 0.3 meV. Thus,

the total level broadening is less than Γ ≤ Γe + Γh ≈ 0.8 meV, which is a few times

smaller than the size of the gap. As a result, because the level broadening due to
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scattering and potential �uctuations is smaller than the size of the hybridization gap,

we conclude that disorder may play only a non-trivial role in the origin of residual

conductivity. We clarify how this non-trivial role comes about in the following section.

3.7 Origin of Residual Conductivity - Discussion and Implica-

tions

In this section we primarily focus on the origin of residual gap conductivity and

discuss its implications for the stability of the proposed edge modes. We consider

band anisotropy, and level broadening due to scattering and potential �uctuations

as possible sources of bulk mini-gap conductivity. We �rst note that the anisotropy

of the heavy hole band may play a role in the gap anisotropy at the Fermi energy,

which could lead to a residual conductivity. Anisotropy is more apparent for larger

kcross [53] and may explain the decrease of Rxx(max) with larger ncross (Fig. 3.7 b).

To what extent such anisotropy would a�ect the gap value is a subject for numerical

calculations with realistic materials parameters [77]. However, evidence for resistance

dips indicate that at least in the small carrier density regime, anisotropy cannot be

responsible for the observed residual conductivity. In fact, because dips disappear for

a in-plane magnetic �eld of approximately 2 T, the size of the gap anisotropy for the

observed case is < 1 meV. Thus, although anisotropy certainly plays an important

e�ect for higher kcross, for smaller wavevectors and hence lower densities, evidence

for van Hove singularities suggests that the band anisotropy is weak and thus cannot
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account for the rather large mini-gap conductivity.

On exactly the same grounds, because potential �uctuations induced by gating

and associated density inhomogeneity would also destroy the resistance dips associ-

ated with DOS singularities, we argue that this contribution cannot explain large

gap conductivity. In fact, estimates of potential �uctuations from the analysis of

the SdH indicate that this contribution is more than an order of magnitude smaller

than the size of the gap as well. Furthermore, analysis of the scattering parameters

indicates that the level broadening due to disorder is smaller than the size of the gap

as well. Finally, one can argue that the observation of resistance dips due to the DOS

singularities indicates that level broadening in general cannot explain the residual

conductivity in a trivial way, i.e. simply by smearing out the mini-gap.

This issue has been resolved theoretically by Laikhthman and Naveh [40] who

studied the transport in the inverted regime of the InAs/GaSb system, concluding

that even negligible but �nite level broadening due to the carrier scattering will result

in �nite on-resonance conductivity at T = 0 K. Speci�cally, the residual conductivity

will go as g ∼ e2

h

Eg0
∆
, when Γ � ∆ � Eg0, and is independent of scattering parame-

ters. Since Eg0 = ncross
π~2

m∗
, where m∗ = memh

me+mh
, it follows that Rxx(max) ∼ n−1

cross as

observed in Fig. 3.7 b) for ncross . 5 · 1011cm−2. In addition, in Fig. 3.10 we show

bulk conductivity versus on-resonance carrier density showing both experimental val-

ues and theoretical estimates, giving good agreement at lower densities where the

band anisotropy can be ignored. A discrepancy at larger densities is presumably due
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to the band anisotropy, which for simplicity has been ignored in the Naveh-Laikhtman

theory.
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Figure 3.10 : Figure shows bulk conductivity versus anti-crossing density for both
experiment and theory [40], giving a good agreement at lower densities where band
anisotropy can be ignored.

The latter result can be understood by re-examining the original premise for carrier

hybridization, which is the non-locality of electron states in the growth direction of

the wells [78]. This non-locality can be suppressed through carrier scattering, i.e.

coupling to external degrees of freedom, destroying carrier hybridization [68]. The

relevant time-scale is the carrier tunneling time, τt = ~/2∆, and in the relaxation

time model, the total number of scattered carriers within τt will go as n · (1− e−
τt
τr ),

or equivalently as n·(1−e− Γ
∆ ). Ignoring smaller contribution from scattered holes and

using µe = e
m

~
2Γ
, we obtain g ∼ e2

h

Eg0
Γ

(
1− e− Γ

∆

)
, recovering g ∼ e2

h

Eg0
∆

for Γ� ∆. As

a result, because the number of non-hybridized carriers goes as G and their mobility

goes as 1/G , then it follows that the bulk conductivity, which is their product, will
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have a constant value independent of level broadening.

In conclusion, in inverted InAs/GaSb quantum wells disorder has a singular ef-

fect, resulting in �nite bulk conductivity even in the limit of relatively small level

broadening of electron and hole levels, as revealed by theoretical work of Naveh and

Laikhtman [40], and con�rmed by our experiments. We emphasize here that the resid-

ual bulk conductivity is not a simple dirt e�ect, which can be removed by improving

the cleanliness of the system, but a subtle yet profound consequence of dissipative

quantum tunneling in realistic electron-hole systems. Nevertheless, this result sug-

gests that bulk conductivity can be substantially reduced as the band structure is

tuned towards the critical point, by decreasing the overlap between the bands Eg0,

thus potentially opening a viable regime for observing a quantum spin Hall insulating

phase. Experimentally, this can be readily achieved using narrower QWs. In the

next section, we look in exactly such a parameter regime, where bulk conductivity is

reduced, and by studying the length and width dependence of mini-gap conductance

we �nd evidence in support of helical edge modes.



Chapter 4

Evidence for Helical Edge Channels and Topological

Band Structure

4.1 Transport in narrower quantum wells - motivation and

experimental preview

Motivated by the previous results, we have reduced the size of the quantum wells

to 125Å InAs/50Å GaSb, resulting in a reduced bulk conductivity by a factor of

2-3, but with similar quantum well quality, i.e. comparable zero gate bias mobility.

Furthermore, in order to increase the relative edge contribution to transport we study

four-terminal structures, where edge conductance is doubled to 4e2/h compared to six-

terminal mesoscopic structures, as described in Chapter 2. With these modi�cations,

the expected bulk contribution to electronic transport will be comparable to or smaller

than the edge conductance, allowing us to investigate topological properties of the

predicted helical edge channels. Note that unlike in mesoscopic structures where

both edge and bulk conductance contributions are expected, in macroscopic samples

only bulk conduction is measurable, because for macroscopic QSH samples, where

L� Lφ, the edge contribution vanishes (see Chapter 2). In this regard, macroscopic

samples can be used as an important diagnostic of bulk mini-gap conduction, allowing

us to separate the edge from the bulk contributions which coexist in mesoscopic



65

samples. This simple yet powerful idea has guided experiments presented in this

chapter [45, 46].

4.2 Transport in narrower quantum wells - trade-o�s and sam-

ple characterization

We �rst note that the reduced quantum well width has two competing e�ects on

bulk conductivity in our structures. While the reduction of the quantum well width

is necessary in order to decrease the value of Eg0 and hence the bulk conduction

in our samples, such an approach necessarily leads to lower sample moblities due

to the increased interface scattering, with consequent larger level broadening, which

generally increases bulk conductivity. However, in the case of InAs, this e�ect is

signi�cant only when the well widths are . 100Å, in which case the sample mobility

drops o� with power law dependence on the QW width [69]. In structures studied

here, the electron mobility is still in the 104 − 105 cm2/Vs range, as can be seen in

Fig. 4.1, and hence the bulk conductivity will decrease compared to the case of wider

wells. Nevertheless, even in these structures, which are wider than 100Å, interface

scattering is the limiting factor in sample mobility, as can be concluded from the near

linear dependence of mobility on the carrier density, and hence predominant short-

range scattering. In any case, our narrower structures are still of very high quality,

evidenced by the maximum mobility in excess of 2 · 105 cm2/Vs at a carrier density of

approximately 2.5·1012cm−2. The reduction in mobility at higher densities is due to the
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populating of the second electron subband and consequent inter-subband scattering

[79]. Two-subband electron occupation is clearly visible in SdH data shown in Fig.

4.2 b for the high density case. In this case, SdH can be described as a product of

two cosine functions, each oscilatting with di�erent frequency according to Eq. (3.6)

and producing a signature beating pattern.
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Figure 4.1 : Mobility versus density in 125Å InAs/50Å GaSb QW at T = 300 mK.

Furthermore, similar to the case of wider wells, in the narrower structures we can

also tune the Fermi level through the hybridization gap, as demonstrated in Fig. 4.2

by plotting Rxy and Rxx versus B for front gate biases from Vfront = 6 V down to

−6 V. At Vfront = 6 V (in red), Rxy varies linearly with B for small �elds, while at

higher �elds quantum Hall plateaus develop, indicating single carrier electron type

transport. As Vfront is reduced to lower voltages, electron density is reduced and the

slope of the Rxy trace increases, in agreement with Eq. (3.1) describing single car-
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rier transport. However at Vfront = −4 V(dark-blue), Hall resistance sharply bends

downwards, suggesting two-carrier transport according to Eq. (3.4), and becomes neg-

ative at larger magnetic �elds, indicating hole-dominated conduction. Furthermore,

as Vfront is further reduced to −6 V(violet), the slope of Rxy decreases, indicating a

higher hole density. Fig. 4.2 is comparable to Fig. 3.6 presented in Chapter 3 for the

case of wider wells; however in this case the bending of the Hall trace is much steeper

and more abrupt, which is indicative of a lower electron density in the two-carrier

regime, and hence lower on-resonance ncross = n ∼ p density and reduced Eg0, as we

expect for narrower wells. From the �ts to the Hall trace in Fig. 4.2 with Eq. (3.4), for

the case when Vfront = −4 V(dark-blue) and the Fermi level is slightly below the hy-

bridization gap, we obtain carrier densities as n ∼ 1.5·1011cm−2 and p ∼ 3.6·1011cm−2

indicating that on-resonance carrier density is roughly ncross ∼ 2 · 1011cm−2 and thus

Eg0 = ncross
π~2

m∗
' 16 meV, where m∗ is the reduced mass. The latter number is also

con�rmed by data presented in Fig. 4.3 and theoretical calculations presented in Fig.

2.4. In comparison, this Eg0 value is roughly two times smaller than in the case of

wider wells discussed in Chapter 3. Having established that the overlap between the

electron and hole bands is reduced in these narrower wells, we next look at the e�ect

of the reduced Eg0 on the bulk conduction in the hybridization gap. Here we analyze

macroscopic samples, which, as argued earlier, exhibit only bulk transport and are

thus good diagnostic of bulk conduction in our structures.

Fig. 4.3 shows longitudinal resistance Rxx (in red) vs. front gate bias Vfront for a
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Figure 4.2 : Panel a) shows Rxy versus B for Vfront = 6 V(red), 4 V(orange),
2 V(ocher), 0 V(green), −2 V(light-blue), −4 V(dark blue), and −6 V(violet), while
panels b-h show respective Rxx versus B traces for a 50µm × 100µm device;
T = 300 mK.
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macroscopic Hall bar, with length L = 100 mm and geometric factor � = L/W = 2,

at B = 0 T, T = 300 mK. As Vfront is swept from 0 V to −4 V, the Fermi energy

EF is pushed from the purely electron to the two-carrier hole-dominated regime.

When n ∼ p, a strong resistance peak of Rmax ∼ 10.2 kΩ is observed, which for this

macroscopic sample re�ects only the bulk transport, with bulk gap conductivity of

gbulk = �
Rmax

= 5.05e2/h.

The entry of the Fermi energy into the hybridization gap is also signaled by non-

linearity in B/eRxy (taken at B = 1 T) shown in Fig. 4.3 in blue. The negative values

of B/eRxy indicate a hole-dominated regime although in a two-carrier regime direct

correspondence to carrier density no longer exists as discussed in earlier chapters.

Similarly, the size of the mini-gap can be determined from the relative position in

Vfront of the resistance dip, which corresponds to the van Hove singularity at the

gap edge, and the resistance peak which corresponds to the middle of the gap 4 =

2 (Vpeak − Vdip) ∆n
∆V

1
DOS

, where ∆n
∆V

= 4.2 · 1011cm−2/V is the rate of carrier density

change with Vfront, giving 4 ∼ 4 meV. We note here in passing that this mini-gap

value is slightly larger than the one reported for wider wells, presumably due to the

�squeezing� of the electron-hole wavefunctions in narrower wells and larger overlap of

the tails. Furthermore, from the minimum in B/eRxy which corresponds to an anti-

crossing density of ncross ∼ 2 · 1011 cm−2, we can estimate Eg0 = ncross
π~2

m∗
∼ 16 meV,

which is similar to the value obtained earlier. The expected bulk conductivity is

then gbulk ∼ e2

h

Eg0
∆
∼ 4e2

h
, consistent with the observed value of 5.05e2/h in Fig.
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4.3. Besides validating the Naveh-Laikhtman theory of bulk conduction, these results

clearly show that bulk conduction in our samples can be controlled and reduced so

that edge conduction may become apparent, as we show in the next few sections

[45, 46].
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Figure 4.3 : Shows longitudinal resistance Rxx (in red) at B = 0 T and B/eRxy (in
blue), taken at B = 1 T, vs. front gate bias Vfront for 50µm × 100µm device. As
EF is pushed into the hybridization gap Rxx exhibits a strong peak, concomitantly
B/eRxy becomes non-linear, signaling two-carrier transport and mini-gap entry [45].

4.3 Scaling evidence for the helical edge channels

In order to investigate possible edge transport in our samples, we compare the con-

duction in devices of various lengths, ranging from macroscopic down to mesocopic.

As a result we reduce the length of devices from L = 100µm, down to 10µm, 4µm,

and 2µm, while adjusting the width to keep the constant geometric factor � = 2, thus

keeping the bulk contribution approximately the same in all devices. As the length
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of the device is reduced form macroscopic to mesoscopic dimensions, the value of the

resistance peaks decreases sharply as shown in Fig. 4.4, indicating the �activation� of

edge transport at shorter length scales, in agreement with Eq. (2.12). Furthermore,

noting that the edge contribution in the macroscopic L = 100 mm sample is negligible,

the resistance peak of this device can be used to estimate the gap resistance of the

bulk Rbulk ∼ 10.2 kΩ. A parallel combination of Rbulk and the expected helical edge

resistance of h/4e2 gives a resistance value of Rbulk||h/4e2 ∼ 3.95 kΩ (dashed black line

in Fig. 4.4 a, which is just slightly above the measured valued of Rmax ∼ 3.75 kΩ for

the L = 2 mm device, in clear support of theoretically proposed helical edge channels.
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Figure 4.4 : Panel a) shows Rxx vs. Vfront for devices with L = 100µm, 10µm, 4µm,
and 2µm (AFM image in inset) while W is varied to give a constant geometric factor
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and approach the limit Rbulk||h/4e2 (dashed line) for 2µm device. Panel b) shows gap
conductance G vs. L−1 and is �tted with Eq. (2.12) (dashed) giving coherence length
Lφ = 2.07 ± 0.25µm. Conductance di�erence between mesoscopic and macroscopic
device is ∼ 4e2/h suggestive of helical edge transport [45].
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Similarly, the gap conductance G plotted versus inverse device length 1/L in Fig.

4.4b, can be �tted reasonably well with Eq. (2.12), obtaining a phase coherence length

of Lφ = (2.07± 0.25) µm. This is in agreement with the rough estimates of phase

coherence length from universal conductance �uctuations in the previous chapter,

as well as with values inferred from measurements on superconducting junctions [80].

We emphasize here that the di�erence in conductance between mesoscopic structures,

which show both bulk and edge contributions, and macroscopic structures with bulk

transport only, is just slightly above 4e2/h - exactly the value which we expect for

helical edge channels. Note that the bulk conductivity also scales with the length,

however this logarithmic correction [81] to bulk conductance can be estimated as

∆G = e2

�ph · Ln(100 mm
2 mm

) ∼ 0.6 e
2

h
and thus accounts for only a fraction of the total

observed di�erence in conductance between the mesoscopic and macroscopic samples.

Additional evidence for edge modes is found in the width dependence of the gap

resistance in mesoscopic samples. Fig. 4.5 shows the resistance peaks of four devices

of equal length L = 2µm, but with di�erent widths, W = 0.5µm, 1µm, 1.5µm, and

2µm. In this case, the resistance peak decreases as the device width is increased, as

expected for bulk transport; however, gap conductance, which shows linear depen-

dence on W , has a nonzero intercept from the linear �t, which is in sharp contrast

to exclusive bulk conduction. In fact, the intercept value of Gedge = (4.08± 0.69) e2

h
,

strongly suggests the existence of helical edge conduction channels. As an important

check, the slope of the same �t gives a bulk conductivity of gbulk = (5.46± 1.01) e2

h
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which is consistent with previously determined values. In conclusion, both the length

and width dependence of the gap conductance consistently con�rm the existence of

helical edge channels in inverted InAs/GaSb quantum wells.
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Figure 4.5 : Panel a) shows Rxx vs. Vfront for devices with W = 0.5µm, 1µm,
1.5µm, and 2µm; L = 2µm. Resistance peaks decrease with increasing W . Gap
conductance G vs. W in panel b) shows a linear relationship. The intercept of the
linear �t is Gedge = (4.08± 0.69) e2

h
, as expected for helical edge transport, while slope

of the �t gives bulk conductivity gbulk = (5.46± 1.01) e2

h
, consistent with data in Fig.

4.4 [45].

4.4 Resilience of edge transport to the presence of bulk states

and edge-bulk decoupling

Data presented in the previous section suggests that edge transport shows a remark-

able degree of resilience to the presence of bulk states. This issue is further investi-

gated in experiments where the anticrossing point in the band structure and therefore

the bulk conductivity is further tuned via back gate bias. In the �rst experiment we
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tune the anticrossing point kcross to lower values by applying more negative Vback,

thereby suppressing gbulk.
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Figure 4.6 : Shows Rxx vs Vfront for devices with L = 100µm in a) and L = 2µm in
b), with � = 2 in both cases, with Vback varied in 2 V steps from 0 V to −8 V; B = 0 T,
T = 20 mK. As Vback is tuned to more negative values, the mini-gap moves to smaller
wavevectors and the resistance peaks increase. Inset shows di�erence in conductance
between mesoscopic and macroscopic sample, i.e. between 2µm and 100µm sample,
DG = G2 mm −G100 mm versus vs Vback, which stays around ∆G ∼ 4e2/h for all values
of Vback. These suggests that edge and bulk transport are seemingly decoupled. Note
that in these structures gbulk . 5e2/h [45].

Fig. 4.6 shows Rxx vs Vfront with Vback varied in 2 V steps from 0 V to −8 V for

devices of L = 100 mm in a) and L = 2 mm in b), with � = 2 in both cases. As

Vback is tuned to more negative values, the overlap between the bands Eg0 is reduced,
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and the resistance peak of the L = 100 mm sample increases from Rmax ∼ 10 kΩ at

Vback = 0 V, to Rmax ∼ 50 kΩ at Vback = −8 V. On the other hand, the resistance peak

of the mesoscopic sample increases only slightly, from Rmax ∼ 4 kΩ at Vback = 0 V, to

Rmax ∼ 6 kΩ at Vback = −8 V. In fact, the conductance di�erence between mesoscopic

and macroscopic samples, DG = G2 mm −G100 mm stays around ∼ 4e2/h for all values

of Vback, as shown in the inset of Fig. 4.6, giving further evidence in support of helical

edge channels. We mention here in passing that the resistance peak shifts towards

more positive Vfront as Vback is made more negative, which is due to the fact that the

resistance peak occurs at the charge neutral point, and hence DQ = 0. As a result,

from simple capacitance considerations we have ∆Vback · Cback + ∆Vfront · Cfront = 0,

where Cback and Cfront are capacitances of front and back gates. In fact, the ratio of

shifts in gate biases corresponds directly to the ratio of respective capacitances.

Furthermore, note that for the case of Vback = −8 V, the bulk resistance value is

an order of magnitude larger than the corresponding edge resistance, as is the case

in another model QSH system of HgTe/CdTe quantum wells [32, 58]. Of course,

this comes with the added bene�ts of band structure tunability, selective etchability,

and low Schottky barrier for a great number of metals and superconductors. This

proves the presumption that bulk conductivity in our samples can be signi�cantly

suppressed, making InAs/GaSb a preferred system for studying many of the interest-

ing QSH phenomena, such as proposed Majorana bound states and topological phase

transitions within a variety of experimental techniques, ranging from transport to
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scanning probe measurements.
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Figure 4.7 : Shows Rxx vs Vfront for bias cooled devices with L = 100µm in a) and
L = 2µm in b), with � = 2 in both cases, with Vback varied in 2 V steps from 0 V to
−8 V. Panel c) shows ∆G versus bulk conductivity gbulk. Edge conduction is apparent
for gbulk . 10e2/h [45].

Before we proceed, a word of caution is here in order, for the data presented in

Fig. 4.6 may suggest that edge conduction is completely independent of the gap bulk

conductivity, gbulk. However, this is valid only in the regime of low gbulk. Note that in

Fig. 4.6 the gap bulk conductivity is varied from about gbulk ∼ 5e2/h at Vback = 0 V, to

gbulk ∼ 0.5e2/h at Vback = −8 V. Using the bias cooling technique, it is possible to shift

the starting point deeper into the inverted regime, i.e. a larger Eg0 can be obtained,

so that at Vback = 0 V, gbulk ∼ 19e2/h, while at Vback = −8 V, gbulk ∼ e2/h, as shown

in Fig. 4.7. In this case, the edge conductance, i.e. DG = G2 mm −G100 mm, goes from

DG ∼ 0 for a large bulk conductivity of gbulk ∼ 19e2/h to about DG ∼ 3e2/h as



77

the bulk conductivity is reduced to gbulk . 5e2/h, as shown in Fig. 4.7. In fact, the

cut-o� bulk conductivity at which edge conduction �activates� can be estimated to be

gbulk ∼ 10e2/h. In consequence, bulk conductivity clearly suppresses edge transport

but only when it is su�ciently large. In the case of low bulk conductivity, edge and

bulk transport are seemingly decoupled.

The apparent resilience of edge conduction to bulk transport, at least for smaller

values of bulk conductivity, which is seen in Figs. 4.6 and 4.7, is quite surprising,

considering that a conductive bulk would allow edge electrons to tunnel from one

side of a sample to another, resulting in inter-edge scattering and a reduced edge

conductance [42, 43, 44]. In a recent theoretical study of QSH edges in a quantum

point contact geometry where tunneling between edge modes on opposite sides is

enabled by reducing the device width, it has been found that the decrease in two-

terminal helical edge conductance is roughly proportional to ∝ Tsin2j, where j is

the angle between spin direction and growth axis and T is the tunneling probability

between the edges [43]. Thus, even for a large tunneling probability, edge conductance

will not diminish if the spins are normal to the quantum well plane, which is the case

for weak Rashba spin-orbital interaction. Note that due to the low Fermi velocity

of edge states v = 1
~
∂E
∂k
∼ 1

~ ·
∆

2kcross
∼ 3 · 104 m/s, relativistic e�ects of Rashba spin-

orbital interaction might be small, and electron spins may very well be aligned along

the growth axis, reducing inter-edge tunneling due to the Pauli exclusion [44].

Furthermore, the tunneling probability T between the opposite-side edges may
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be signi�cantly reduced by a large Fermi wavevector mismatch. Note that bulk gap

states are inherited from a non-hybridized band structure and generally have Fermi

wavevector equal to kcross � 0 while edge modes, for EF situated in the middle of

the gap, have kedge ∼ 0. Thus, for larger kcross edge modes will be totally re�ected

from bulk states. In fact, the tunneling probability for the edge electrons will be

proportional to the edge-bulk transmission probability, which scales as kedge/kcross,

as well as the bulk transmission, which scales as bulk conductivity and hence is

proportional to the overlap between the subbands Ego and thus varies as∝ k2
cross. It

follows then that the overall inter-edge tunneling probability will decrease as kcross is

reduced. This picture qualitatively agrees with the data presented in Fig. 4.7 where

edge conduction activates for smaller bulk conductivity, i.e. in the regime of reduced

Eg0 and kcross, and thus closer to the critical point. Nevertheless, the full quantum

theoretical treatment of the problem, which would include dissipation in the tunneling

between the wells, similar to Ref. [40], is expected to reveal in more detail the stark

resilience of edge transport to the conductive bulk. In the next section, we look into

a similar resilience of edge transport to weak magnetic �elds.

4.5 Weak �eld behavior

Next we turn to the magnetic �eld dependence of gap transport in mesoscopic and

macroscopic samples. Surprisingly, resistance peaks of mesoscopic samples show only

weak dependence on in-plane and perpendicular magnetic �elds as shown in Fig. 4.8,
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while macroscopic samples show much stronger dependence. At a �rst glance, this

appears to be in contrast to the strong �eld dependence reported for HgTe/CdTe

quantum wells and the notion of time reversal breaking, which spoils the perfect

destructive interference of backscattering paths and leads to the fast decay of edge

conductance in a perpendicular �eld.
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Figure 4.8 : Panel a) shows Rxx vs. Vfront at in-plane �eld B|| = 0 T (full line)
and B|| = 1 T (dashed line) for L = 100µm, 10µm, 4µm, and 2µm, indicating weak
�eld dependence of gap resistance; T = 300 mK. Panel b) shows Rxx vs. Vfront at
perpendicular �elds of Bperpen. = 0 T, 1 T, and 2 T for L = 2µm, and in panel c) for
L = 100µm [45].

However, we note that even in HgTe/CdTe strong magnetic �eld dependence has

never been observed in the smallest micron-size samples, but in the 20 mm long sam-

ples [58]. In fact, it has been shown theoretically by Maciejko et al [82], using the

full quantum approach of the Keldysh formalism, that the magnetic �eld decay of

edge modes depends sensitively on the disorder strength, with pronounced cusp-like
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features of the conductance in a magnetic �eld occurring only when the disorder

strength is larger than the size of the gap. The interpretation of this result was that

by providing the states in the bulk by disorder, which is larger then the size of the

gap, edge electrons can di�use into the bulk enclosing larger amounts of �ux whose

accumulation destroys destructive interference of backscattering paths, resulting in a

linear decay of conductance with B. Thus, surprisingly enough, and in contrast to

the simple notion of symmetry breaking by applying a magnetic �eld, bulk states are

necessary for edge conduction decay in a magnetic �eld. In the case of HgTe/CdTe,

bulk states were provided by inhomogenous gating, which is more pronounced for

longer devices.

Thus, it would naively seem that edge modes in InAs/GaSb should have very

strong �eld dependence due to apparent bulk conduction. However, bulk-edge wave-

vector mismatch reduces this possibility in InAs/GaSb, at least in shorter devices.

Note that unlike in HgTe/CdTe where the gap opens at k = 0, in InAs/GaSb the

mini-gap opens at k values generally much larger than zero, and hence, in the middle

of the gap, bulk states will necessarily have Fermi wave-vectors signi�cantly larger

than the edge. Consequently, due to this decoupling of edge from bulk, the magnetic

�eld dependence of edge modes is expected to be weak. On the other hand, the

decay of bulk conductivity with magnetic �eld may not necessarily be weak due

to the localization of the non-hybridized carriers which contribute to nonzero bulk

conductivity in the �rst place. However, this localization is more pronounced for
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longer samples, where disorder is naturally stronger. In addition, we note that edge-

bulk decoupling is valid only in the limit of smaller disorder, while for larger disorder

edge conductance is expected to decay in the magnetic �eld, similar to the HgTe case.

In any case, longer samples are expected to show stronger magnetic �eld dependence

due to both the bulk states' localization and edge supression e�ects, as experimentally

observed in Fig. 4.8 c.

In fact, a clear zero-�eld conductance enhancement in the hybridization gap is ob-

served in Fig. 4.9 in a 50µm×100µm device, where we plot magnetoresistance traces

for various front gate biases. As the hybridization gap is approached, small spikes in

conductivity at zero magnetic �eld are observed. Because these features in magne-

toconductance are absent for front gate biases away from the mini-gap regime, they

presumably stem from the small edge contribution to transport, which is quickly

supressed in small magnetic �eld, similar to the case of long HgTe/CdTe devices.

At any rate, magnetic �eld dependence in both InAs/GaSb and HgTe/CdTe is far

more similar than an initial assessment of data presented in Fig. 4.8 might suggest,

i.e. in both cases �eld dependence is weak for mesoscopic devices, while in longer

devices clear zero-�eld conductance enhancement is observed. We note here that

weak antilocalization features that are observed in longer devices in both InAs/GaSb

and HgTe/CdTe might be a bulk e�ect after all, enhanced by gating due to Rashba

spin-orbital interactions. In fact, recent theoretical work [62] argues that for suit-

ably smooth con�nement potential and low disorder, QSH gapless edge states are
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Figure 4.9 : Panel a) shows Rxx (in blue) at B = 0 T for 50µm×100µm device; T =
20 mK. Colored markers represent Vfront biases at which we take magnetoresistance
traces, and are shown in normalized form in panel b), while panels c) through h) show
unscaled conductivity traces versus B. Note clear conductivity enhancement at zero
�eld.
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protected by the band topology alone, rather than any symmetries, making QSH

inherently more robust to magnetic �elds than originally envisioned. Next, we look

into transport at high magnetic �elds, where we observe dramatic re-entrant quan-

tum Hall behavior - a signature mark of topologically distinct band structure, which

validates the topological origin of helical edge modes at zero magnetic �eld.

4.6 Topological band structure and re-entrant quantum Hall

behavior

Re-entrant quantum Hall behavior has been previously observed in HgTe/CdTe QWs,

where the system switches from an insulating to an integer quantum Hall regime at

n = 1 and back to insulating at higher �elds [32]. This has been taken as direct

evidence of a topologically non-trivial gap. Similarly, such metal-insulator oscillations

have also been previously observed in InAs/GaSb QWs [83, 84, 85, 86] and also by us in

the context of proposed topological phases for the InAs/GaSb system and in a di�erent

parameter regime. The origin of re-entrant behavior in InAs/GaSb can be traced

back to its non-monotonic band structure. Under a perpendicular magnetic �eld

the continuous density of states separates into series of discrete Landau levels whose

dispersion in a magnetic �eld can be obtained from zero-�eld simply by transforming

k →
√

(2ν − 1) · e ·B/~ [35], where ν is the Landau level index. In consequence,

the non-monotonic zero-�eld spectrum will give a similarly non-monotonic Landau

level spectrum. At �eld values which can be related to anti-crossing wave-vector and
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band extrema, the Landau level spectrum is gapped and the system switches to an

insulating regime. Further away from band extrema, the system exhibits a normal

quantum Hall behavior. Fig. 4.10 shows the �rst twenty Landau levels of electron

and heavy hole subbands in 125Å InAs/50Å GaSb QWs calculated within an 8-band

k · p approach [56, 77]. Note great number of anti-crossing points in the spectrum,

which ultimately lead to re-entrant quantum Hall behavior.
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Figure 4.10 : Landau level spectrum in 125Å InAs/50Å GaSb QWs calculated
within 8-band Kane approach, showing �rst twenty Landau levels of electron and
heavy-hole subbands [56].

As the magnetic �eld is increased, the separation between the Landau levels is

increased, causing their depopulation. In turn, the Fermi level will oscillate with

an amplitude which is inversely proportional to the Landau level index. Assuming
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a single carrier regime, the magnetic �eld at which the Fermi energy drops from

(ν + 1) to ν Landau level is Bν+1→ν = n·h
ν·e , where n is the carrier density at zero

�eld. The associated change in Fermi energy is ∆EF = ELL

(
ν + 1, Bν+1→ν

)
−

ELL

(
ν, Bν+1→ν

)
∼ ~ e·Bν+1→ν

me
= 2n

ν
· π~2

me
, which for our system parameters can be

in the tens of meVs. Thus, even for a purely electronic system, with the Fermi energy

above the hybridization gap, the oscillations of the Fermi level due to Landau level

depopulation can put the Fermi energy below and into the mini-gap resulting in a

re-entrant quantum Hall behavior.

Fig. 4.11 a) shows Rxx (in red) and Rxy (in blue) in a macroscopic 50µm ×

100µm Hall bar sample with n = 9.5 · 1011cm−2, T = 20 mK, and B = 0 T to 10 T.

Pronounced Shubnikov-de Haas oscillations are observed in Rxx starting at about

1.5 T, as well as clear integer quantum Hall (IQH) plateaus in Rxy starting at about

2 T. At B ∼ 4.2 T both Rxx and Rxy increase drastically as the system exits the

n = 10 IQH state and turns towards the insulating regime. The system returns from

the insulating regime at B ∼ 4.7 T, entering the n = 8 state with Rxx ∼ 0. Similarly,

such a re-entrant quantum Hall behavior is also observed at B ∼ 5.6 T, albeit with a

slightly weaker insulating regime, and again at B > 7 T for which the system turns

strongly insulating. The �elds at which the system turns insulating form a regular

ratio of 2 : 3 : 4 and can be related empirically to the anti-crossing density (i.e. kcross

in zero-�eld spectrum) as Bcross ∼ 2ncross·h
i·e where i is an integer, and the anti-crossing

density has been estimated to be ncross ∼ 2 · 1011cm−2 via density measurements.
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Figure 4.11 : Panel a) shows Rxx (in red) and Rxy (in blue) versus magnetic �eld
B in a macroscopic 50µm× 100µm Hall bar, T = 20 mK. System exhibits re-entrant
quantum Hall behavior at B = 4.2 T, 5.6 T, and 7.5 T. Panel b) shows Hall conduc-
tivity svxy versus B, for Vback = 0 V, and Vfront = 0 V, −1 V, −2 V, −2.5 V. Clear
oscillations between IQH and insulating regimes are observed at similar �elds for all
values of Vfront. Panels c-f show svxy versus B, for Vfront = 0 V, and Vback = 0 V,
−2 V, −4 V, −6 V. Insulating regions shift to lower B as the system is tuned towards
normal regime with more negative Vback.
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It is more illustrative to look at the Hall conductivity svxy shown in Fig. 4.11 b),

which shows clear oscillations from quantum Hall plateaus to insulating behavior as

B is varied from 0 T to 16 T. We also vary Vfront changing the electron density from

n = 13 ·1011cm−2 down to n = 2.8 ·1011cm−2, with the hole well empty. Nevertheless,

in all cases, insulating regions happen at the same B, which suggests that with the

front gate bias only the Fermi level is changed, i.e. there is no change in kcross and

Eg0. On the other hand, by varying Vback towards more negative values, insulating

regions shift to lower �elds as shown in Fig. 4.11 c)-f), indicating a reduced kcross

and a smaller overlap between the E1 and H1 subbands. Thus, by applying a back-

gate bias, the band structure can be continuously tuned. We note here that the

independence of insulating regions on the front gate bias could also be due to the

fact that contact arms actually become insulating versus the active region of the Hall

bar. In this case, the back gate bias can still tune the carrier density and the band

structure, in agreement with what we observe. In conclusion, at �eld values which

correspond to band extrema, the Landau level spectrum of inverted InAs/GaSb is

gapped and the system switches to the insulating regime. Further away from band

extrema, the system exhibits normal quantum Hall behavior with clear plateaus in

Rxy. Such re-entrant quantum Hall behavior is a clear signature of topologically

distinct band structure and validates the existence of helical edge modes at zero

�elds.
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4.7 Tuning InAs/GaSb quantum wells into �bilayer graphene�

In the previous portions of this thesis we have demonstrated signi�cant tunability of

the InAs/GaSb system via electrical �elds, changing the overlap between the electron

and hole subbands from several meVs to tens of meVs, and similarly changing the

bulk resistance over two orders in magnitude; however, a transition from inverted to

normal band structure, i.e. from red to blue regions in the phase diagram in Fig.

2.9 has not been demonstrated. This transition, however, is important for several

reasons. First, it would make InAs/GaSb the only known system in nature whose

band structure can be tuned from topologically non-trivial to topologically trivial via

modest electrical �elds, giving unique insight into the nature of such a topological

quantum phase transition. Furthermore, such a transition may be important from

a technological perspective because it would demonstrate a novel type of switch,

which is dissipationless in its on state and highly resistive in its o� state [8]. The

practical utility of such a device would be limited by its low temperature operation

requirement, which in principle could be extended to room temperatures. Finally,

exactly at the critical point where E1 = H1, the Hamiltonian given in Eq. (2.6)

suggests that this system behaves as a massive Dirac or chiral fermion system, in

analogy to bilayer graphene but without degeneracies [8]. Such a system has been

shown to exhibit non-trivial quantum Hall e�ect, in zeroth �lling factor due to the

2π Berry phase, which is accumulated along cyclotron trajectories [87, 88]. Thus,

besides massless Dirac fermions at the sample edge in the inverted regime, this system
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also hosts massive Dirac fermions at the critical point where the band structure

changes from inverted to normal. We note here in passing that when contacted with

superconducting electrodes, InAs/GaSb QWs in the critical regime may also exhibit

the recently proposed topological superconductivity, which hosts Majorana fermion

bound states. Unlike bilayer graphene where Majorana bound states are not possible

due to spin and valley degeneracies, InAs/GaSb does not have valley degeneracy,

while spin degeneracy is lifted due to inversion asymmetries [8], allowing for the

possibility of non-degenerate zero-energy modes. Note that in this case the zero-�eld

spin splitting in our structures should be further increased to leave one Dirac point

at the Fermi level and hence to obtain unpaired Majoranas, which can be easily done

by bringing the back-gate closer to the InAs/GaSb quantum wells.

Here we tune the band structure from inverted towards normal regime via the

front and back gate bias, as already shown in this thesis, and use transport under

an in-plane magnetic �eld to gauge the actual regime of the system. Fig. 4.12

shows a sketch of band dispersions in inverted and normal regimes. Applying an

in-plane magnetic �eld shifts electron and hole bands in opposite directions in k-

space, resulting in a relative shift of the band dispersions: ∆k|| ≈
eB||4z

~ , where 4z

is the relative separation between electron and hole two-dimensional layers [36, 41].

In the inverted regime, the DOS will be markedly modi�ed in the hybridization gap,

resulting in a gap opening at di�erent energies for positive and negative momentum

values, and hence nonzero DOS across the hybridization regime. As a result, under
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an in-plane magnetic �eld, resistance in the mini-gap will be signi�cantly reduced.

On the other hand, in the normal regime, the in-plane magnetic �eld does not a�ect

the DOS in the gap, and the gap resistance will be unchanged.
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Figure 4.12 : Shows a sketch of band dispersions for inverted regime in a) and normal
regime in b) at zero �eld. Applying in-plane magnetic �eld shifts E1 and H1 bands
in opposite direction, as shown in �gured c) and d) for the two regimes. In the case
of inverted regime, transport will be markedly modi�ed in the hybridization regime
under in-plane magnetic �eld, and una�ected in the normal regime.

In Fig. 4.13 we show Rxx versus Vfront at in-plane magnetic �elds of 0 T (red), 5 T

(green), 10 T (pink), and 15 T (blue), while the back gate bias Vback is varied from 8 V

to −8 V. At Vback = 8 V, the system is clearly in the inverted regime with signi�cant

reduction of resistance peaks with the in-plane magnetic �eld. On the other hand,

for Vback = −8 V resistance peaks are practically una�ected by the in-plane magnetic
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�elds of up to 15 T, which is su�cient to shift the band dispersions by as much as

∼ 2 · 106 cm−1, indicating normal or close to the normal regime.

Further insight into transport properties at highly negative back gate biases and

the regime where the band structure approaches the crtical point, can be inferred

from regular magnetotransport in perpendicular magnetic �elds. Here it is useful

to schematically compare two distinct quantum Hall e�ects that are relevant to our

system: a conventional one describing massive fermions in regular semiconductors,

and an unconventional one describing massive Dirac or chiral fermions, such as found

in bilayer graphene [89], and shown in Fig. 4.14 a) and b), respectively [87]. In the case

of conventional QHE, the Landau level spectrum is given by Eν =
(
ν + 1

2

)
~ωc, where

ωc is cyclotron frequency, while for chiral fermions the Berry phase accumulation of 2π

leads to Eν = ±~ωc
√
ν (ν − 1) [88]. As a result, for chiral fermions, ν = 0 and ν = 1

are degenerate zero-energy states, unlike in conventional quantum Hall systems, where

no zero-energy states are possible. Now, the carrier density per single Landau level is

given as eB/h, and thus the number of occupied Landau levels can be tuned by either

changing the carrier density or the magnetic �eld. Only the Landau levels that are

completely �lled will give a conductance contribution of e2/h to the Hall conductance.

In consequence, reducing the carrier density in a constant magnetic �eld will lower

the number of �lled Landau levels, and hence the Hall conductance will change in a

step-wise fashion as sketched in Fig. 4.14. This is valid for all quantum Hall systems,

with the notable di�erence between chiral fermions and ordinary fermions being the
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Figure 4.13 : Panels a-h show Rxx versus Vfront at in-plane magnetic �elds of 0 T
(red), 5 T (green), 10 T (pink), and 15 T (blue) for back gate biases Vback = 8 V,
4 V, 2 V, 0 V, −2 V, −4 V, −6 V, and −8 V respectively. As the back gate bias is
tuned more negative the overlap between H1 and E1 bands is reduced and system
switches from inverted structure in a) (signi�cant in-plane �eld e�ect) to non-inverted
structure in h) (insigni�cant in-plane �eld e�ect).
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absence of ν = 0 Hall conductance plateau. For chiral fermions, due to the zero-

energy Landau levels, the Hall conductance jumps directly from positive to negative

conductance values, i.e. from ge2/h to −ge2/h, where g is the number of degeneracies,

as the system is tuned through the charge neutral point.

Figure 4.14 : Schematic representation of quantum Hall e�ects for regular fermions
in semiconducting structures in a) and for chiral fermions in b). Dependence of Hall
conductivity σxy on carrier density is the same at all �lling factors ν, except at ν = 0.
Unlike regular fermions in a), chiral fermions in b) show no plateau at ν = 0, but a
double step from +e2/h to −e2/h [87].

In Fig. 4.15 we plot Hall and longitudinal conductivities σxx and σxy versus front

gate bias, at di�erent values of back gate bias, while the perpendicular �eld is �xed

at B = 4.13 T. As Vfront is tuned across the hybridization gap, σxy changes sign

indicating a transition from the electron to hole dominated regime. On the electron

side, clear plateaus in σxy are observed, while concomittantly σxx goes to zero. For

Vback = 8 V (red trace) the sample is in an inverted regime, and the last well resolved

plateau on the electron side is at ν = 4, while lower �lling factors are irregular
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and away from the quantized value due to the electron-hole coupling and consequent

hybridization. Because ν < 4 plateaus are not developed, one can estimate electron-

hole resonance or anti-crossing density to be ncross ∼ 3 · 1011cm−2. Similarly, on

the hole side, ν = 2 starts to develop, although away from the quantized value due

to electron-hole hybridization. Note the apparent zero plateau in σxy, as expected

for typical semiconducting systems. Furthermore, as Vback is tuned to more negative

values, the overlap between E1 and H1 bands is reduced, i.e. band inversion is

reduced, the anticrossing wave-vector and density are pushed to lower values, and as

a result, the plateaus at lower �lling factors develop fully. For example at Vback=−4 V

(middle blue trace), all lower index quantum Hall plateaus are developed on the

electron side, including ν = 1 , indicating anticrossing density ncross < 1 · 1011cm−2

and hence only a small overlap between E1 and H1 bands, i.e. Eg0 of few meVs.

Similarly, on the hole side well resolved ν = 2 plateau and features at ν = 4, ν = 6,

and ν = 8 are visible. In addition, a clear ν = 0 plateau is visible. On the other hand,

as Vback is tuned to even more negative values, the zero conductance plateu starts to

lift o�, suggesting a transition from an ordinary fermion type quantum Hall e�ect

to a chiral fermion quantum Hall e�ect, as expected when the critical point where

E1 = H1 is approached.

This is even more apparent in corresponding Rxy plots which we show in Fig. 4.16

(top panel). Note that in these experiments we have actually measured Rxy and Rxx,

but we have chosen to show σxy = Rxy
r2
xx+R2

xy
and σxx = rxx

r2
xx+R2

xy
, where rxx = Rxx ·W/L,
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Figure 4.15 : Shows Hall and longitudinal conductivities, σxy and σxx, in top and
bottom panels, versus Vfront, and for Vback = 8 V, 4 V, 2 V, 0 V, −2 V, −6 V, and
−8 V (red to violet); B = 4.13 T, T = 20 mK. The system is tuned from the deeply
inverted regime to the critical regime where the E1 and H1 bands are degenerate, and
quasiparticles are chiral fermions.



96

mainly for the sake of clarity in data presentation. Nevertheless, for the purpose of

discussing featues at ν = 0, looking at Rxy is more informative, as it magni�es small

changes in the zero-plateau as the band structure is tuned towards the critical point.

For Vback values of 8 V down to −2 V, clear zero-step features are visible. However,

as Vback is made more negative to −4 V, −6 V, −8 V, and the system is pushed

towards the critical point, where band ordering changes, the zero-step feature in Hall

resistance is lifted and the quantum Hall system becomes of a chiral fermion type

analogous to bilayer graphene. Hence, we have shown that the band structure in the

InAs/GaSb system can be tuned from the deeply inverted regime, where the system

exhibits massless Dirac fermions at sample edges, towards the critical regime, where

E1 and H1 subband edges are near degenerate and the quasiparticles are massive

Dirac or chiral fermions. As a side note, the critical regime has also been explored in

HgTe/CdTe QWs in Ref. [90], but their data shows a clear zero σxy plateau, which

is contrary to the chiral fermion characteristic (see Fig. 4.14), and in their case the

zero-energy Landau levels have been inferred only by extrapolation. This is mainly

due to the fact that their system can be tuned in discrete steps and may not have

been exactly at the critical point, while here we tune the system in-situ and in a

continuous fashion.

Finally, for completeness we also show B/eRxy versus Vfront for the same exper-

iments in the bottom panel of Fig. 4.16. For larger Vback, B/eRxy shows non-linear

behavior in the hole regime, indicating two-carrier transport (Eq. (3.4)) and hence
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Figure 4.16 : Top panel shows Hall resistance Rxy versus Vfront for the same ex-
periment presented in 4.15. For Vback = −8 V(in violet) the system switches from
−h/2e2 towards +h/e2 without a zero step in Rxy as expected for chiral fermions
and in analogy to bilayer graphene. Bottom panel shows B/eRxy versus Vfront for
the same experiment, where for Vback = −8 V, B/eRxy (violet) trace is near-linear
in both electron and hole regime, indicating single carrier transport and near-normal
band ordering.
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band inversion, while for Vback = −8 V, the B/eRxy trace is near-linear in both the

electron and hole regimes, indicating single carrier transport and near-normal band

ordering. We have thus clearly demonstrated that the band structure in our system

can be tuned from the deeply inverted to the critical regime. However, due to the

limiting operating range of our back gates, the deeply normal regime in these 125Å

InAs/50Å GaSb wells has remained outside of our experimental reach. Nevertheless,

transport in this regime is also important, because it provides an important compari-

son and validation of data presented in support of helical edge modes in the inverted

regime. For this purpose we have studied even narrower quantum wells, which are in

the normal regime as grown. We present this data in the following section.

4.8 Transport in structures without band inversion

In this section we look into the transport behavior of 80Å InAs/80Å GaSb wells.

These devices are also top gated, and the fabrication and characterization procedure

is similar to the ones presented previously for wider wells. As the width of the

quantum wells is reduced, the E1 subband is shifted upwards and H1 is shifted

downwards resulting in normal band structure, with hole states being lower in energy

then electron states. Note that for the same reduction in well width, the E1 subband

experiences a shift which is an order of magnitude larger than the corresponding shift

in the H1 subband due to the much smaller e�ective mass of electrons. As a result,

the character of the band structure, i.e. whether it is inverted or normal is mostly
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determined by the width of InAs layer, while the width of GaSb layer plays only a

minor role. According to the theoretical 8-band k · p calculation [8], the critical InAs

thickness at which the band structure changes from inverted to normal is ∼ 9 nm,

and hence our 8 nm structure is in the normal regime.
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Figure 4.17 : Panels a) shows magnetotransport in 80Å InAs/80Å GaSb wells, which
are in the normal regime. In this case gate bias is grounded. Panel b) shows Rxx

versus Vfront at in-plane magnetic �elds of 0 T (blue), and 15 T (red) for macroscopic
(full line) and mesoscopic structures (dashed line). Transport is indi�erent on in-plane
�elds con�rming that E1 > H1. Also shape of the resistance peak is signi�cantly
di�erent, being much wider as compared to resistance peaks in inverted structures.
Note that di�erence in conductance between mesoscopic and macroscopic structures
is ∼ 0.3e2/h and can be fully accounted by localization type logarithmic correction
to conductivity, unlike in inverted structures where such di�erence is ∼ 4e2/h.

This is also evident from the transport data under in-plane magnetic �elds shown

in Fig. 4.17 b), where we show the longitudinal resistance Rxx versus Vfront for a

macroscopic 50µm × 100µm device (full line) and a mesosopic 1µm × 2µm device
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(dashed line). Measurements are performed at in-plane magnetic �elds of 0 T (blue)

and 15 T (red). Transport is notably insensitive to in-plane �elds, and hence, ac-

cording to the discussion presented earlier in Fig. 4.12 the system has normal band

structure alignment with E1 > H1. Note that the di�erence in conductance between

mesoscopic and macroscopic structures is ∼ 0.3e2/h and can be fully accounted by

logarithmic correction to conductivity due to localization, unlike in inverted struc-

tures where such di�erence is ∼ 4e2/h even for structures whose bulk is comparably

resistive to normal structures presented here. This con�rms that edge conduction

which is observed for wider structures in mesoscopic devices, is due to the topological

reasons, i.e. band inversion, and is guaranteed by band considerations alone.
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Figure 4.18 : Shows Rxx and Rxy versus Vfront in a) and similarly σxx and σxy in b) for
a macroscopic device, under prependicular �eld B = 5 T. σxy shows linear dependence
on Vfront (dashed), as the sysytem is switched from electron to hole conduction,
indicating single carrier regime and hence normal band ordering (E1 > H1).
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As mentioned earlier, in these narrower wells carrier mobility is signi�cantly su-

pressed to about ∼ 2 · 104 cm2/V · s due to interface scattering. Nevertheless, clear

SdH and quantum Hall plateaus are still observed as presented in Fig. 4.17 a). Note

that these structures show signi�cantly higher contact resistance due to the reduced

mobility of the 2DEG in the Hall bar arms, which results in an overall lower quality

of SdH and QHE features. This is particularly evident in Fig. 4.18, which shows Rxx

and Rxy versus Vfront in a) and similarly σxx and σxy in b) under a perpendicular �eld

of B = 5 T. Note that σxy shows a linear dependence on Vfront (dashed-line), as the

system is switched from electron to hole conduction, indicating a single-carrier regime

and hence normal band ordering (E1 > H1). This is because in InAs/GaSb QWs

two-carrier transport is possible only in the inverted regime, where both electron and

hole Fermi surfaces may exist. Furthermore, a clear plateau at ν = 0 is observed in

σxy, and similarly, a zero resistance feature in Rxy, as expected for a trivial semicon-

ducting system. A strong oscillation in Rxy near ν = 0 may be an artifact due to

capacitive coupling and high contact resistance. Nevertheless, oddly enough, on the

electron side ν = 5 and ν = 3 are much better developed than ν = 2 and ν = 4.

Finally, transport in 80Å InAs/80Å GaSb quantum wells indicates that these

structures clearly have normal band ordering with the lowest electron states higher

in energy than the highest hole states. As expected, magnetotransport shows typical

features found in ordinary semiconducting systems, while the scaling of the gap re-

sistance with length can be fully accounted for within logarithmic correction due to
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localization. This validates the picture of helical edge conduction in wider structures

with inverted band alignement, and con�rms the topological argument that the edge

modes in this system are solely guaranteed by topological ordering of the bands.

4.9 Discussion and implications

Work presented in this chapter [45, 46] clearly establishes the InAs/GaSb system as

a quantum Spin Hall or 2D topological insulator, making it a great alternative to

another model QSH system of HgTe/CdTe. In fact, this system shows far better tun-

ability, especially via back gates, allowing us to continuously tune the system from

the inverted regime to the critical point, and allowing us to probe the topological

phase transition in a continuous fashion. Nevertheless, there is much room for im-

provement. The back gate action in this system can be signi�cantly improved via

back-side processing, allowing a transition from the inverted to the normal regime in

a single bias swing. Due to its chemical properties, antimonides are ideally suited

for �ip-chip techniques, which are already well developed for GaAs [91] and directly

applicable here. This will enable the probing of the helical edge channels via scanning

probe techniques [92, 93], which at this point in HgTe/CdTe are very much limited

due to the lack of e�ective back gates. An improvement may also come by growing

structures on lattice-matched GaSb substrates, which is in progress as of writing this

thesis. Furthermore, a particular appeal for this system comes from its low Schottky

interface and transparent interfaces to superconductors, opening a possibility for re-
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alization of Majorana bound states and topological qubits [10]. While at this point it

is not clear whether such topological qubits would be substantially better than any

other qubit realizations [94, 95], this is nevertheless an important research direction,

which has been also pursued in this thesis, and will be discussed in its remainding

part.

Nevertheless, here we pause for a momement to dispel a common misunderstood-

ing that arises in the research community, which often regards inverted InAs/GaSb

to be bulk conductive. This is only partially true and disregards the fact that

bulk conductivity in inverted InAs/GaSb is in its magnitude a band structure e�ect

[41, 45, 46, 40], and hence can be easily tuned in a very large range as demonstrated

in this chapter. Fig. 4.19 shows bulk resistance versus anticrossing density, i.e. den-

sity when ncross = n ∼ p for two inverted structures presented in this thesis. As

the anticrossing point is pushed to lower resonance densities, i.e. lower ncross, the

bulk resistance is increased by two orders of magnitude. In fact, in the limit of low

ncross, the bulk resistance is comparable to values reported for HgTe/CdTe. The edge

resistance in this case is about an order of magnitude smaller, and hence majority

of transport occurs along sample edges. As a result, InAs/GaSb is a robust QSH

system, which can be su�ciently insulating in the bulk to observe clear edge e�ects

in transport. In the next chapter, we interface our structures with superconducting

electrodes, probing the topological protection of helical edges against backscattering.
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Figure 4.19 : Shows bulk resistance versus anticrossing density, i.e. density when
ncross = n ∼ p for two inverted structures presented in this thesis. As the anticrossing
point is pushed to lower resonance densities, i.e. lower ncross, bulk resistance is in-
creased by two orders of magnitude, and in this limit is comparable to values reported
for model QSH system of HgTe/CdTe. Note that edge resistance in this case is about
an order of magnitude smaller, and hence the majority of transport occurs along the
sample edges.



Chapter 5

Probing Helical Edge Channels via Andreev

Re�ection Measurements

5.1 Andreev re�ection in QSH systems

A remarkable property of quantum spin Hall edge modes is their inherent protection

against elastic backscattering. As we have seen in the previous chapter, this has a no-

table impact on transport properties leading to nearly quantized conductance values

in mesoscopic structures. Additional insight regarding the dissipationless character of

quantum spin Hall edges can be obtained by combining QSHI with superconductors

[96, 97, 98], and probing the helical edge modes via Andreev re�ection measurements.

Marrying 2D TIs with superconductors is also the next experimental challenge, pos-

ing fundamental questions regarding the nature of topological superconductors and

the possible realizations of Majorana fermion excitations. As suggested earlier, the

InAs/GaSb material system is well suited for the task, due to its low Schottky barrier

and its good interface to superconductors.

Andreev re�ection is a process unique to a superconductor-normal metal (S-N)

interface, where an impinging normal quasiparticle retrore�ects, having thus not only

opposite velocity but also opposite charge, and resulting in the enhancement of the

total current across the interface. The electrical current through a single S-N interface
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can be calculated using the Blonder-Tinkham-Klapwijk (BTK) model [99]:

I =
N · e
h

ˆ
[f (E + eV )− f (E)] [1 + A (E)−B (E)] dE (5.1)

where N is the number of modes in the normal conductor, f (E) is the equilibrium

Fermi distibution function, V is the voltage drop at the interface, and A (E) and

B (E) are the probabilities for Andreev and normal re�ection of the electron at the

interface. In the case of an ideal interface, and for biases within the superconducting

gap, quasi-particles are only Andreev re�ected, i.e for V < ∆S

e
, where ∆S is the size

of the superconducting gap. This is because there are no states within the super-

conducting gap, excluding the possibility of electron transmission, and there is no

potential barrier which would absorb the momentum di�erence necessary for normal

re�ection. In practice, due to native oxides or Schottky barriers, a potential step

always exists at the S-N interface, allowing for normal re�ection, and hence reducing

the probability for Andreev re�ection. The interface barrier is characterized by the

scattering parameter Z, which is related to the normal transmission of the barrier as

T = 1
1+Z2 . For Z < 1, Andreev re�ection dominates over normal re�ection, resulting

in zero bias dips in di�erential resistance dV/dI. In this case, current enhancement

due to Andreev re�ection also manifests itself as an excess current Iexcess, which is

obtained by extrapolating the linear I − V curve at high biases, i.e. for V � ∆S

e
, to

zero bias.

In the case of a S-QSH single edge interface, the absence of backscattering channels
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in the helical edge requires normal re�ection probability B (E) = 0 [97]. Within the

superconducting gap (E < ∆S), electron transmission is excluded, requiring a perfect

Andreev re�ection with probability A (E) = 1. Evaluating equation (5.1) in the zero

temperature limit for this case gives a contact resistance for a single helical edge

channel of h
4e2

for biases within the superconducting gap, i.e. V < ∆S

e
. In the two-

terminal geometry used in our experiments, this gives a resistance of each helical edge

mode to be h
4e2

+ h
4e2

= h
2e2
, assuming independence of two S-QSH interfaces, which gives

a total two-terminal resistance of h
2e2
|| h

2e2
= h

4e2
. On the other hand, for V � ∆S

e
,

electron transmission into the superconducting lead becomes possible and Andreev

re�ection probability scales to zero as A (E) v
(

∆S

E

)2 → 0, reducing equation (5.1) to

the familiar case of N-QSH interface with a contact resistance of h
2e2

. Simple resistance

combination now gives a total two-terminal resistance of h
2e2

.

As a result, this analysis suggests that replacing the normal electrodes with super-

conducting electrodes results in a doubling of the conductance across the device, which

would be a clear indication of the dissipationless character of helical edge modes. We

note that this analysis breaks down when the two S-QSH interfaces are not indepen-

dent, which is the case when the two superconducting electrodes are close enough so

that electrons can travel coherently from one electrode to another and back. In this

case, Andreev bound states form, which are discrete levels within the superconduct-

ing gap and can carry the supercurrent [100]. In this case, S-QSH-S junctions show a

unique current phase relationship, indicative of the presence of the Majorana bound
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states [101]. This was the ultimate goal of the experiments presented here, but due

to fabrication/measurement limitations it has remained elusive as of the writing of

this thesis.

5.2 Device fabrication and measurement setup

The experiments were performed on 125Å InAs/50Å GaSb quantum wells in the

inverted regime, whose characterization data has been thoroughly discussed in the

previous chapter. In order to probe the helical character of the edge modes, super-

conducting niobium electrodes with a critical temperature of Tc = 8.27 K (BCS gap

of ∆S = 1.24 meV) are deposited directly on the InAs layers, while the electrostatic

front gate is used to tune the Fermi energy EF into the hybridization regime. Devices

are patterned in a superconductor-normal metal-superconductor (S-N-S) junction ge-

ometry. Fig. 5.1 shows a device cross-section and top view obtained via scanning

electron microscopy. Contact regions are patterned via e-beam lithogaphy and etched

down to the InAs layer, after which niobium electrodes are deposited via magnetron

sputtering. Prior to niobium deposition, the devices are plasma-cleaned in argon at-

mosphere. The front gate is fabricated by depositing Si3N4 using a plasma enhanced

chemical vapor deposition system, and evaporating a Ti/Au metal gate, similar to

what was reported in previous parts of the thesis. Our devices are current biased via

a Keithley 6221 current source, while the corresponding source to drain voltage drop

is measured via a Keithley 2182 Nanovoltmeter in quasi-four terminal geometry. Gate
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Figure 5.1 : Left panel shows device cross-section while the right panel shows top
view of the S-N-S device obtained via scanning electron microscopy.

bias is applied via a Keithley 2400 source/measure unit, and controlled in LabView,

via the GPIB interface. Measurements are performed in a 3He refrigerator (300 mK)

combined with a 3 T/2 T superconducting vector magnet.

5.3 Andreev re�ection in the hybridization regime of InAs/GaSb

QWs

In this experiment we tune the Fermi energy into the hybridization regime and vary

the source to drain current across the device, while measuring the corresponding

voltage drop. Fig. 5.2 shows the experimentally obtained 3D plot of dV/dI vs bias

voltage V across the S-InAs/GaSb-S junction (S to D leads in Fig. 5.1, left panel)

and front gate bias Vfront (G lead in Fig. 5.1, left panel). We �rst note strong

zero bias dips in di�erential resistance for all values of Vfront. This indicates that

conduction is enhanced irrespective of the position of the Fermi level and that Andreev

re�ection processes clearly dominate over normal re�ecton processes. Furthermore,
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Figure 5.2 : Figure shows di�erential resistance dV/dI vs bias voltage V across
the S-InAs/GaSb-S junction and vs front gate bias Vfront. Top inset shows energy
spectrum of inverted InAs/GaSb QWs with linearly dispersing helical edge modes in
the mini-gap. As the Fermi level EF is tuned across the mini-gap via Vfront, dV/dI
exhibits a strong peak at larger V . On the other hand, for V close to zero, dV/dI
exhibits strong dips, suggesting transport dominated by Andreev re�ection processes.
Bottom inset shows two-terminal structure with superconducting and normal leads.
Due to the perfect Andreev re�ection at S-QSH interfaces, the voltage drop at each
contact is halfed, leading to a doubling of the di�erential conductance compared to
the N-QSH case [47].

the di�erential resistance at higher biases, i.e. dV/dI for V � ∆S

e
, also dubbed

normal resistance RN , shows a clear peak as the Fermi level EF is tuned into the

mini-gap via Vfront, indicating that the hybridization gap is clearly accessible in our

measurements.

Besides the normal resistance, another characteristic parameter which can be ex-

tracted from I − V measurements is the excess current, Iexcess, which is obtained by

extrapolating the linear portion of the I − V curve at high biases to zero bias as

explained earlier. In this case, the parameter e·Iexcess·RN
∆S

is a dimensionless quantity,
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indicative of the transmissivity of the S-N interface [99, 102, 103]. Fig. 5.3 a) shows

normal resistance RN vs Vfront (in blue) and Iexcess vs. Vfront (in red). As EF is

tuned towards the mini-gap, RN increases towards the peak value of ∼ 2 kΩ, signal-

ing mini-gap entry, while concurrently Iexcess decreases from the maximal value of

∼ 2.6µA to the mini-gap value of Iexcess ∼ 150 nA. Furthermore, in Fig. 5.3 b) and

c) we plot I−V and dV/dI−V curves for these two cases, i.e. for Vfront = 5 V where

Iexcess ∼ 2.6µA and EF above the hybridization gap, and for Vfront = −2.1 V where

Iexcess ∼ 150 nA and EF is in the hybridization gap, respectively. Strong zero-bias

dips in the dV/dI−V curve are observed, while I−V shows evident non-linear char-

acter. For EF above the hybridization gap, the scattering parameter of the barrier

can be estimated from the ratio e·Iexcess·RN
∆S

∼ 0.76, to give Z = 0.65 and normal

transmissivity of T = 0.7 [103, 102]. This transmissivity is only slightly lower than

the largest reported value of 0.86 for the InAs material system, indicating a very good

quality of our devices.

On the other hand, the mini-gap case requires more thorough discussion. Accord-

ing to BTK theory, the maximal value of e·Iexcess·RN
∆S

= 8
3
for perfectly transmissive

interfaces, i.e. when A = 1 [103]. In the case of S-QSH-S structures normal resistance

is h
2e2

so the maximal excess current that can be obtained for perfectly transmissive

helical edge modes with zero backscattering is Iexcess = 16
3
e∆S

h
∼ 250 nA. However, in

our devices we also have a conductive bulk, with bulk normal resistance of approxi-

mately ∼ 2.4 kΩ and carrier density of n ∼ 5 · 1010cm−2. These bulk states can also
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Figure 5.3 : Panel a) shows normal resistance RN (in blue) and excess curent due
to Andreev re�ection Iexcess (in red) vs Vfront. As Vfront is decreased, EF is tuned
towards the mini-gap and RN increases towards the peak value of ∼ 2 kΩ, while
concurrently Iexcess decreases from the maximal value of ∼ 2.6µA (Vfront = 5 V) to
the mini-gap value Iexcess ∼ 150 nA (Vfront = −2.1 V). Panel b) and c) show dV/dI
and I vs V for Vfront = 5 V and Vfront = −2.1 V respectively. Excess current is
determined as an intercept of the linear �t to the I − V curve for large V . Panel d)
shows the conductance di�erence ∆G ≡ G (V = 0) − G (V � ∆S/e) vs Vfront on a
log scale. For EF in the mini-gap ∆G plateaus at 2e2/h, indicating perfect Andreev
re�ection of helical edge channels [47].
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contribute to Andreev re�ection, thus increasing the excess current; however, at such

low carrier densities, disorder generally dominates and a possible bulk contribution

to Andreev processes and excess current is expected to be small. On the other hand,

a su�ciently conductive bulk can also reduce the total edge conductance as shown in

the previous chapter, leading to an increased normal resistance of the edge and hence

reduction of the edge excess current. This may explain the slightly smaller measured

value of 150 nA in Fig. 5.3 a) and c).

Furthermore, as explained earlier and illustrated in the inset of Fig. 5.2, due

to the absence of backscattering channels in helical edges, edge conductance will be

doubled from 2e2/h, when there is no Andreev re�ection such as in normal electrodes

or superconducting electrodes at high biases, to 4e2/h for superconducting electrodes

at zero bias. As a result, the di�erence between two-terminal conductances at zero and

high biases will be: ∆G ≡ G (V = 0)−G (V � ∆S/e) = 2e2

h
. Note that in Fig. 5.3 c),

where EF is in the hybridization gap, dV
dI

(V = 0) ∼ 1.7 kΩ, while dV
dI

(V � ∆S/e) ∼

2 kΩ. Inverting these two values gives ∆G ∼ 2.2 e
2

h
, which is suprisingly close to the

expected value of 2e2

h
. This is better illustrated in Fig. 5.2 d), which shows plateauing

of ∆G to a conductance value of 2e2

h
, as EF is pushed into the hybridization gap,

validating the picture of perfect Andreev re�ection of helical edge channels.

Nevertheless, we note that this may not be the only explanation of our data. In

fact, instead of two ideally transmitted edge channels, the data may also be potentially

understood in terms of a larger number of channels with non-ideal Andreev re�ection,
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i.e. A < 1. Because resistance dips are present for all values, then it follows that the

Andreev probability is larger than the normal re�ection probability, i.e. A > B at

zero bias. Also, because at zero bias transmission is excluded, we have that A+B = 1,

so it follows that A > 0.5 . Also, from Eq. (5.1) ∆G ∼ e2

h
N · A ∼ 2 e

2

h
, so it follows

that N . 4. This is in clear contradiction with the number of bulk channels estimated

from the bulk carrier density. In this case, the Fermi-wavelength which corresponds

to a bulk carrier density of n ∼ 5 · 1010cm−2 is ∼ 100 nm, which for a device width

of ∼ 1µm gives the number of bulk channels as N & 20. As a result, the edge

picture certainly explains our data better, although bulk contribution cannot be fully

excluded. Next, we look into temperature and magnetic �eld dependence for potential

clues regarding the origin of the excess current in our devices.

5.4 Temperature dependence

The temperature dependence of excess current Iexcess in Fig. 5.4 a) shows only a

weak dependence for temperatures up to 6.5 K and it is quickly suppressed as the

temperature is further increased towards the critical temperature of niobium leads.

Furthermore, a color map of temperature evolution of dV/dI is shown in Fig. 5.4

b), with dips in dV/dI closely following the BCS temperature dependence [104] of

superconducting gap ∆S. We note here that Iexcess for EF , both inside and outside

of the mini-gap, shows comparative suppression when ∆S is reduced with increased

temperature. This is most easily seen when Iexcess is normalized by the corresponding
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Figure 5.4 : Panel a) shows RN and Iexcess vs Vfront for temperature T=0.5 K, and T
from 5 K to 8 K varied in 0.5 K increments. Dependence is exceptionally weak except
when T approaches Tc = 8.27 K. Panel b) shows a color map of dV/dI vs V and
T (Vfront = 0 V). Full and dashed lines show BCS dependence of the superconduct-
ing gap ∆S/e and 2∆S/e respectively. Dips in dV/dI follow closely the BCS gap
∆S. Panel c) shows normalized Iexcess, i.e. Iexcess (T ) /Iexcess (300 mK), vs ∆S (T ) for
EF above the mini-gap (in red) and EF in the mini-gap (in blue). In both cases,
normalized Iexcess shows equal decrease as the ∆S is reduced with T [47].

low temperature values, i.e. Iexcess (T ) /Iexcess (300 mK) and plotted in Fig. 5.4 c) for

these two cases.

5.5 Magnetic �eld dependence

On the other hand, the equal suppression of excess current with reduced temperature

for the two cases when the Fermi level is inside and above the hybridization gap is in

sharp contrast to the magnetic �eld dependence of excess current shown in Fig. 5.5.

In this case, for a Fermi level in the mini-gap, excess current is suppressed much faster

than in the case when the Fermi level is outside of the mini-gap. In fact, perpendicular

magnetic �elds of less than 50 mT are su�cient to fully supress Andreev re�ection
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Figure 5.5 : Panels show RN and Iexcess vs Vfront for perpendicular magnetic �elds
of B⊥ = 0 T, 0.05 T, 0.1 T, 0.2 T, and 0.5 T in a) and in b) for in-plane magnetic
�elds B|| with the same increments. Although for EF above the hybridization gap,
Iexcess survives up to 0.5 T, for EF in the mini-gap Iexcess is completely supressed with
B⊥ = 0.05 T and B|| = 0.1 T. This is in contrast to the equal supression of Iexcess in
temperature dependence (Fig. 3c), suggesting a di�erent nature of excess current in
and outside of the hybridization gap [47].

processes in the mini-gap, while above the mini-gap Andreev re�ection processes

survive in �elds up to at least 500 mT.

Similar disproportionality is also observed for the in-plane magnetic �elds, albeit in

this case the mini-gap excess current survives for �elds up to 100 mT while above the

mini-gap, curret enhancement due to Andreev re�ection is still observable at 500 mT.

Such sensitivity to time-reversal breaking indeed suggests that the observed mini-

gap excess current may very well be due to the perfect Andreev re�ection of helical

edge modes. Applying small magnetic �elds opens the backscattering channels in our

structures, and perfect Andreev re�ection is no longer guaranteed. In this case, the

probability of Andreev re�ection decreases, and excess current vanishes.
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5.6 Discussion and implications

In this chapter we have studied InAs/GaSb QWs contacted via superconducting nio-

bium electrodes, observing strong zero-bias dips in the di�erential resistance as the

Fermi level is tuned across the mini-gap. This is indicative of dominant Andreev

re�ection processes at the superconducting interfaces irrespective of the position of

the Fermi level, including within the mini-gap. The relative size of the dips and cor-

responding gap excess current are in good agreement with the prediction of perfect

Andreev re�ection of the helical edge modes, necessitated by the absence of backscat-

tering channels. The perfect Andreev re�ection occurs in spite of a �nite barrier at

the interface and shows strong sensitivity to time-reversal breaking - hallmarks of

the helical nature of the QSH edges. However, the analysis is complicated by the

presence of bulk states, whose contribution in this case, although expectedly small,

could not be fully excluded. Back-gate dependence in this case would be immensely

helpful because in this case bulk contribution can be signi�cantly reduced; however,

due to high back gate leakage currents, back-gates could not have been employed in

these experiments. At this point, it is clear that until a more reliable back-gating

technique is achieved no clear distinction between edge and bulk contributions in

S-QSH-S structures can be made with great certainty. Instead, here we emphasize

high interface transmissivity of approximately seventy percent in our devices, which

is quite promising for future experiments on hybrid TI/superconducting structures.

We also note here that in spite of high barrier transmissivity, the absence of super-
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current in our device suggests that coherence is not preserved across the junction,

presumably due to the surface degradation caused during plasma processing, as well

as potential noise problems in our experimental setup. As of writing this thesis, much

work has been done to re-wire our measurement probe for low noise measurements,

and with further optimization in fabrication InAs/GaSb readily arises as a viable plat-

form where theoretical predictions of Majorana fermion modes can be experimentally

explored.



Chapter 6

Conclusion

In this thesis we have conducted comprehensive low temperature transport mea-

surements on dual-gated broken gap InAs/GaSb quantum wells in both topologically

trivial and non-trivial regimes. We have found that InAs/GaSb quantum wells exhibit

transport properties characteristic of quantum spin Hall systems, with band structure

whose inverted character is signaled by re-entrant quantum Hall behavior, and with

apparent edge conduction channels which, to a degree, may persist despite conductive

bulk. We have established that the origin of this residual bulk conductivity is level

broadening due to disorder; however, in the clean limit, i.e. for vanishing disorder,

bulk conductivity depends exclusively on band parameters, decreasing as the over-

lap between electron and hole bands is reduced and the critical point is approached,

where band topology changes. More importantly, we have demonstrated that bulk

mini-gap conductivity in this system can be tuned over two orders of magnitude, and

for low values, the bulk conducitvity is comparable to the one reported for the model

QSH system of HgTe/CdTe. The edge resistance in this case is about an order of

magnitude smaller than that of the bulk, and the majority of transport is thus carried

along the sample edges.

Edge transport is apparent even at higher values of bulk conductivity, due to

Fermi velocity mismatch and edge-bulk decoupling, where four-terminal mesoscopic
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samples show additional conductance of approximately 4e2/h as compared to macro-

scopic samples, while gap conductance shows a length dependence trend which is

in close agreement with the expectation for helical edge modes. In addition, the

width dependence of gap conductance in the mesoscopic regime indicates clear edge

conduction, in support of helical edge transport. On the other hand, topologically

trivial structures do not show such additional conduction contributions at mesoscopic

length scales, validating the helical edge picture in inverted or topologically non-trivial

structures. Separate evidence for topological band structure is found at high mag-

netic �elds, where band hybridization results in non-monotonic Landau levels and

non-trivial magnetic properties with characteristic re-entrant quantum Hall behav-

ior.

Furthermore, we have shown that this quantum spin Hall system shows an un-

precedented degree of tunability via electrical �elds, allowing us to continuously tune

the system from inverted towards normal, and allowing us to probe this topologi-

cal phase transition in a continuous fashion, which has not been possible in any TI

system prior to this work. In fact, exactly at the critical point where the band struc-

ture changes from inverted to normal, quasiparticles are massive Dirac fermions or

chiral fermions, in analogy to bilayer graphene, albeit less degenerate, with charac-

teristic zero energy Landau levels due to a 2π Berry phase, as evidenced from our

magnetotransport measurements. In consequence, besides one-dimensional massless

Dirac fermions at sample edges in the inverted regime, this system also holds massive
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Dirac fermions in the topologically critical regime. However, unlike bilayer graphene,

InAs/GaSb in the critical regime does not have valley degeneracy, and spin degeneracy

is lifted due to inversion asymmetries, allowing for the possibility of non-degenerate

zero-energy modes, which when contacted with superconducting electrodes may lead

to coveted topological superconductivity and exotic Majorana bound states.

In fact, a particular appeal for this system comes from its low Schottky interface

and transparent interfaces to superconductors, opening a possibility for realization of

Majorana bound states and topological qubits in both inverted and critical regimes.

This research direction has also been the subject of this thesis in studies involving

gated superconductor-InAs/GaSb-superconductor junctions. Although at this point

the data is not conclusive, and supercurrent has evaded our devices, the low trans-

parency of our junctions is very promising for future experiments, of course, with

necessary improvements in fabrication. Furthermore, back-gate action in our devices

can be signi�cantly improved via backside processing, allowing even better tunability

of our system. This will enable probing of 2D topological insulators via scanning

probe techniques, which at this point have been very much limited. An improvement

may also come by growing our structures on lattice matched GaSb substrates, re-

sulting in a reduced number of dislocations and improved sample mobilities. Finally,

InAs/GaSb is a robust and exceptionally tunable quantum spin Hall system, where

interplay between Dirac physics and superconductivity can be studied and possibly

utilized for realization of topological qubits. Ultimately, this may very well enable a



122

quantum leap towards scalable quantum computing systems.
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Appendix A

Recipes for Device Fabrication

Much of the experimental work presented in this thesis relies on a successful

fabrication of micro and nano structures. While general processing steps are described

in the main body of the thesis, the purpose of this appendix is to give more speci�c

instructions in the form of �recipes�. Nevertheless, we warn the reader that device

fabrication, at least in a university setting, is more of an art than an exact science,

and even subsequent processing runs under what can be nominally considered �the

same� conditions can produce markedly di�erent outcomes. As a result, no recipe

can substitue common sense and persistence in sample processing, which are indeed

essential for successful device fabrication.

A.1 Mask making

1. Upload mask designs to Linux conversion machine; convert and transfer the Lic

�les to the OS9 machine.

2. Load the mask into Heidelberg DWL mask maker.

3. Turn on the laser, center, focus, and expose the mask.

4. After mask exposure, develop the mask in a 1:5 soluion of MF-351 and DI water

for approximately 60 seconds or as needed. Observe the progress/outcome under



134

an optical microscope.

5. Etch the chromium �lm in CEP-200 for approximately 60 seconds or until the

metal �lm has been fully etched away. Monitor the progress/outcome of the

etch under an optical microscope.

6. Finally, clean the photo-resist by using either photo-resist stripper PRS-100 or

acetone for 2-5 minutes, or until the photo-resist is washed away.

7. Wash the mask in DI water and blow dry with nitrogen gas. Inspect under an

optical microscope.

A.2 Device patterning

Device patterning is typically performed by a combination of optical and e-beam

lithography. Optical lithography is used for larger structures while smaller micron

sized structures are de�ned via e-beam lithography. In the case of optical lithography

the following steps are used:

1. Spin S1813 positive photoresist at 6000 rpm for 50 seconds using a ramp rate

of 1000 rpm/s.

2. Soft bake at 90 C for 50 seconds.

3. Expose the devices through the previously made mask and using SUSS mask

aligner.
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4. Develop structures in MF-321 for approximately 60 seconds or as needed. In-

spect under an optical microscope.

In the case of e-beam lithography the following steps are used:

1. Spin A4 PMMA positive e-beam resist at 5000 rpm for 40 seconds using a ramp

rate of 1000 rpm/s.

2. Bake at 180 C for 90 seconds.

3. Expose the samples in JEOL6500 scanning electron microscope at 30 kV and

7 mm working distance.

4. Develop chips in a 3:1 solution of isopropyl alcohol and MIBKA for 60 seconds,

followed by a 20 second rinse in isopropyl alcohol. Inspect under an optical

microscope.

A.3 Mesa etch

Mesa etch is normally performed with wet etching. While various wet etching ap-

proaches have been developed in the literature, in this thesis we have predominantly

used a �cocktail� III-V etchant, which uniformly etches all antimonide materials, and

with approximately the same rate. It goes without saying that for successful etching,

the sample surface needs to be clean and without any residues or �lms, such as photo

and ebeam- resists, which would prevent and/or interfere with sample etching. The

follwing steps are used:
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1. Hard bake samples at 100 C for 45 seconds.

2. Etch samples using the solution of H3PO4: H2O2 : C6H8O7:H2O (3:5:55:220),

with a nominal rate of 150− 250 Å/min.

3. Inspect under an optical microscope.

A.4 Metallization

Metallization pads are de�ned via optical lithography and deposited in an e-beam

evaporator system. The following steps are employed:

1. De�ne metallization pads as described earlier.

2. Deposit germanium, palladium and gold layers in an e-beam evaporator system.

Layer thicknesses are 430 Å, 300 Å, and 870 Å, respectively. Nominal deposition

rates are 1.5 Å/s, 1.5 Å/s, and 2 Å/s. In order to ensure longevity of crucible

liners, the e-beam power should be ramped up and down slowly.

3. If no processing at higher temperatures will follow the metallization process,

then devices should be annealed at 300 C in a forming gas atmosphere for few

minutes. Typically this step is not necessary if silicon-nitride will be deposited

via plasma enhanced chemical vapor deposition, because in this case structures

are unintentionally annealed.

4. After deposition, lift-o� in aceton for approximately 5 minutes or until the metal

has been completely removed.
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A.5 Silicon-nitride deposition

Silicon nitride is deposited using a plasma enhanced chemical vapor deposition system,

manufactured by Trion. The following parameters have been used for a nominal

deposition rate of 300 Å/min:

1. Chamber pressure: 600 mTorr

2. Power: 50 W

3. Temperature: 350 C

4. 12 sccm SiH4

5. 10 sccm NH3

6. 200 sccm N2

A.6 Via etching

Vias in silicon nitride are etched using a reactive ion etching system also manufactured

by Trion. The following parameters have been used for a nominal etching rate of

2400 Å/min:

1. Chamber pressure: 100 mTorr

2. Power: 100 W

3. 50 sccm CF4
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4. 6 sccm O2
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