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nclusion

A RC fiber beam-column clement is presented based on the flexibility
method. Coupling between axial force and bending moments is iInroduced by the
element subdivision into longitudinal fibers. The nonlinear nature of the element ~
depends entirely on the constitutive behavior of the concrete and steel fibers. A new
element state determination algorithm is proposed that also permits the straightfor-
ward application of element loads. Parameter studies of the effect of the number of

fibers in a section and the number of sections in an element conclude the paper.
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Applicability of Pseudo-force method to Highly Nonlinear Dynamic Problems

Satish Nagarajaiah', Associate Member, AS CE,
and Andrei Reinhorn®, Member, ASCE

ABSTRACT

This paper deals with solution of nonlinear dynamic problems using Pseudo-force

method. A solution algorithm involving Pseudo-force method is presented. The

objective is to investigate the possibility of application of the method to highly non-
linear dynamic problems to which the method has not been applied to by previous
Investigators, such as problems with combined material and geometric nonlinearities,
and problems with frictional nonlinearities. It is shown that Pseudo-force method is
applicable in the above mentioned dynamic problems, by comparing the results with
analytical and experimental results.

INTRODUCTION

In most nonlinear dynamic problems the Newton-Raphson method ( Belytschkao
and Hughes 1986; Clough and Wilson 1979; Modkar and Powell 1989: Stricklin and
Haisler 1977) of solution is used. The alternative method of solution for nonlinear
dynamic problems is the Pseudo-force method which involves representation of 2
nonlinear system by a linear one in which the nonlinear effects are represented by
Pseudo-forces. The Pseudo-forces compensate for the difference in internal forces as
obtained from the Pseudo-linear system and from the truly nonlinear system. The
method corresponds to the initial stress method used in static nonlinear analyses. The
method has been applied: (i) to dynamic analysis of shallow shells with geometric
nonlinearities by stricklin and Haisler (1977); (ii) to hybrid frequency-time domain
(HFTD) analysis of soil-structure interaction problems by Kawamote (1983) and
Darbre and Wolf (1988: 1990) in which uplift-contact nonlinearity due to rocking and
elasto-plastic material nonlinearities were considered, separately; and (iii) to linear
fluid - nonlinear dam structure systems by Fenves and Chavez (1990). However, the
Pseudo-force method has not been applied to problems with combined material and
geometric nonlinearities,and in problems with frictional nonlinearities.
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I this paper a solution algorithm involving Pseudo-force methad is presenged,
The solution alorithm is applied to two highly nonlinear dynamic problems: (i) the first
problem involving dynamic response of a single degree-of-lreedom (SDOI) with
combined material and geometric nonlincarities under harmonic excitation: and (ii)
the second probleminvolving transient response of a base isolated structure with sliding
bearings 1.€., frictional nonlinearities.

The first problem i.e., SDOF with material and geometric nonlinearities is con-
stdered because it has the necessary features for a good test problem like softening,
negative stiffness and hardening. The solution to this problem is obtained using accurate
multi-step predictor-corrector methods and Duffings method and compared with the
solution of the Pseudo-force method for verification, The second problemi.e., frictional
problem 1s chosen because it is highly nonlinear and the severity of the nonlinearity
is compunded due to velocity dependence of the coefficient of friction, and due to
biaxial interaction effects observed in experiments. Furthermore, experimental results
exist for the base isolated structure with sliding bearings analyzed herein, thus facil-
itating verification of solution by the Pseudo-force method. It is shown that the
Pseudo-force method is applicable to these highly nonlinear problems.

PSEUDOFORCE SOLUTION ALGORITHM

Consider the matrix equation of motion at time t:

Mu, + Ci, + K, +f =P, (1)
ff}t time t -+ At ) )

Ml‘jrhﬁr +Cﬁr+m+I{ﬁr+m +f:+ﬂ|.r e Pr+m [ZJ
In in_ FIE]’I‘IEI‘I}E’LI .ff:rrm i ) S )

MAuq, , ,, +CAu,, ,, + KAQ, ot =P, ~(Mu, +Cu, + Kua, +f) (3)

in which, M, C, Kand P represent the mass, damping, pseudo-linear stiffness and
load matrices. Furthermore, i1, = displacement vector; and f, = Pseudo-force vector.

The incremental Pseudo-force vector Af, , ,, in Eq. 3 is unknown. This vector is

brought on to the right hand side of Eq. 3. The solution algorithm developed involves
the solution of equations of motion using Newmark's constant-average-acceleration
method. Furthermore, a iterative procedure consisting of corrective Pseudo-forces is

employed within each time step until equilibrium is achieved. The developed solution
algorithmis as follows:

A. Initial Conditions:

-

1. Form the pseudo-stiffness matrix K, mass matrix M , and damping matrix C.
Initialize u,, 4, and u,.

2. Select time step Af, set parameters 8 = (.25 and 6 = 0.5, and calculate the integration
constants:

v 1t _t 8 6 .0
“ESAn 2T BT %Taa %7 de=AlggTD) #)

3. Form the effective stiffness matrix

- e T o
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K aM+a,C+ K (5)

4. Triangularize I using Gaussian climination,
B. Ilteration at each time step:

. Assume the Pseudo-force vector  Af; .4 =0 in iteration 1 = 1.
2. Calculate the effective load vector at time ¢ + Af:

P, =AP,  —Af,, + Mg, +a,u,) + éast, + au,) (6)
AP, . =P, . —(Mi,+Ci,+Kii, + ) (7)

F 4 A

3. Solve for displacements at time ¢ + Af:

i
K &ui"f‘ﬂil'

=P, s (&)

4, Update the state of motion at timne ¢ + Af:

L i i fos : = b 5! . = - o -
U, n =1 +Hlﬁu:+ﬁr — U, —dii; U, . =1, +ﬂ45“r+m —dgll, —dglh,y U4 = U, +‘£1ur+.-j.r

(9)

5. Compute the state of motion at each element, compute the nonlinear forces from the
force-displacement relationships, and compute the Pseudo-forces.

T+ 1

6. Compute the resultant Pseudo-force vector Af; | 4,.
7. Compute
A .-;-Hr — A rl t
o AL~ Afu -

Ref.Max .Farce

Where ||.] 1sthe euclidean norm o

8. If Error > tolerance, further iteration is needed, ilerate starting from step IS-il ancl
use Af ), as the Pseudo-force vector and the state of motion at time t, 0, u, and
u,. |

9. If Error < tolerance, no further iteration is needed, update the Pseudo-force vee-
torf, , ., =, + Af| L },,g0 to step B-1.

SDOF SYSTEM WITH MATERIAL AND GEOMETRIC NONLINEARITY

The applicability of the described solution algorithm to a SDOF system with
material and geometric nonlinearities is investigated. The SDOF system considered is
shown in Fig.1(a). The elasto-plastic nonlinear springs represent material nonlinearity
and the precompressed vertical bar yields the geometric nonlinearity. The SDOF
system is governed by the following equation of motion (for no damping):

mii + fu) = P sin Q (11)

where: m = mass of the oscillator; u=displacement; P = peak value of forcing function;
Q = frequency of the forcing function; and the restoring force f(u) of the system (sec
Fig. 1(b)) can be represented by the following equations:
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Fig. 1. Nonlinear SDOF System and its Restoring Force Characteristic.
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where: /, Aare the length and the precompressed deformation of the vertical bar,

respectively; K., = mitial stiffness of the nonlinear elasto-plastic spring; K, = axial

linear stiffness of the vertical bar.

Ju)=2%K *u + [{mhn — AJFK ¥

' A continuous restoring function approximation, shown in Fig, 1(b) in dashed line,
s chosen for solution by Gear's predictor-corrector method (Gear 1971) and Duffing's

mﬁthmj (Stoker 1950). The continuous restoring function can be represented by the
following equation:

flu)=K,(u — o’ + Pu’) (14)

where: K, = initial linear stiffness; and ¢, p = constants. The solution of the SDOF

system with above continuous restoring force by Duffing’s method, with u = U sin Qr,
1n consistent units, is as follows:

Q P 3 x5
=] ————ZaU +=pU*
N wil 4 SBU L)

where: U = peak amplitude; and o =K /m.
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The response curves, for various levels of forcing function, obtained using
Duffing’s method, Gear’s method, and Pseudoforce method are shown i g, 2,
Since transient response stays in the system forever without damping a small
amount of damping € = 0.005 was used for numerical simulation. The results from
Duffing’s method and Gear's method shown in Fig. 2(a) and 2(b) match very well
in all regions excepting the region of superharmonics, as expected. The results from
Pseudoforce method, shown in Fig. 2(c) and 2(d): (i) converge over all regions; (i1)
match well with the Duffing’s solution, excepting for deformations close to U = 2.2
where the restoring force characteristics differ (see Fig. 1(b)); and (iii) reproduce the
superharmonic oscillatons observed in solution by Gear’s method. However the
Pseudoforce method failed to converge for near static application of the forcing
function, since snap through occurs, which is consistent with the conclusions of the
previous investigators (Stricklin et al. 1977).

BASE ISOLATED STRUCTURE WITH SLIDING BEARINGS

The applicability of the described solution algorithm to a frictional problem 1s
investigated herein by analyzing a single story base isolated stucture with a sliding
isolation system tested by Hisano et al. (1988). The analytical models necessary for
analyzing the base isolated structure being considered i.e., the analytical models
for the sliding bearings, springs and the superstructure, have been described in detail
by Nagarajaiah et al. (1991a; 1991B). The analytical model represents the
superstructure with three degrees of freedom per floor, two lateral and one torsional
degree of freedom, and the isolation system is modeled by representing the
force-displacement characteristics of each sliding bearing and spring explicitly.
Furthermore, the model for the sliding bearing accounts for the variaton of
coefficient of friction with velocity and for the biaxial interaction effects. The
analytical models described by Nagarajaiah et al. (1991a; 1991b) and the solution
algorithm, 1nvolving pseudoforce method, presented in this paper have been
implemented in a computer program 3D-BASIS. The computer program 3D-BASIS
is used for analysis of the base isolated structure.

The results of the analysis are compared with experimental results from
bidirectional shake table tests on the same sliding isolated model by Hisano et al.
(1988). The tested model was a 1/8 scale single story steel structure, 120 in (3048
mm) long and 90 in (2286 mm) wide, on a sliding isolation system consisting of 9
shiding bearings with 4 rubber springs. The model weighed 10.1 tons (101 kN), with
8.05 tons (80.5 kN) of superstructure weight and 2.05 tons (20.5 kN) of base weight.
The radius of gyration was r = 0.29 L. The model had symmelric stiffness and mass
properties. For the scaled superstructure the lateral period was 0.11 sec
(corresponding to 0.3 sec in prototype) and the torsional period was 0.07 sec (0.2
sec in prototype). The damping ratio measured in the superstructure was 1%. For the
1solation system the lateral period was 0.35 sec (1.0 sec in prototype) and the
torsional period was 0.208 sec (0.588 sec in prototype). The diameter of the sliding
bearings were between 2.75 in (69.85 mm) and 1.4 in (35.56 mm). The measured

coelficient of friction varied with velocity between f,., = 0.1 and (.2.

The model structure was excited by time scaled accelerations of 1940 El
Centro NS and EW components. The peak table acceleration in both the directions
was scaled up by a factor of 1.5. Fig. 3 shows the measured and simulated frame
acceleration and the base displacement in the NS direction, the displacement orbit of
the center of mass of the base, and the force displacement loops of one of the sliding
bearings (the experimental force-displacement loops were not available).
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The historical accelerogram of 1940 El Centro motion scaled appropriately was used
as the excitation for the analytical simulation, as the achieved shake table acceleration
time history was not available. Despite this a comparison between the measured and
simulated results show good agreement, including major features of the displacement
orbit. The high degree of nonlinearity, due (o velocity dependence of the coeff icient

of friction and the biaxial interaction effects, is evident in the Y direction force dis-
placement loops shown in Fig. 4.

CONCLUSIONS

From the test problems presented it is evident that the Pseudo-force method is
capable of handling highly nonlinear problems and yields satisfactory results. Hence

the Pseudo-force method may be applicable to a larger class of nonlinear dynamic
problems than the existing applications.
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S

NONLINEAR EARTHQUAKE ANALYSIS OF CONCRETE
GRAVITY DAMS INCLUDING SLIDING

Juan W. Chéavez' and Gregory L. Fenves®, M. ASCE

Abstract

The sliding stability of a concrete gravity dam during a design earthquake
must be investigated to asses the seismic salety of the dam. A new numerical pro-
cedure for solving the equations of motion, the Hybrid Frequency Time Domain
procedure, is used to compute the earthquake response of concrete gravity dams
including the nonlinear sliding behavior and the {requency-dependent response
of the impounded water and the flexible foundation rock. As an example, the
earthquake-induced sliding response of a typical concrete gravity dam i1s com-
puted to illustrate the nonlinear behavior.

Introduction

The earthquake response of concrete gravity dams, including sliding at the
base, depends on the dynamic charactenistics of the dam, the impounded water,
the foundation rock, and the ground motion. The effects of dam-water interac-
tion as well as dam-foundation rock interaction are dependent on the excitation
frequency. For assumed linear behavior of the system, a frequency domain solu-
tion of the equations of motion is most convenient (Fenves and Chopra, 1984).
However, during a design-level earthquake the base shear force for the dam will
exceed the shear strength of the interface between the dam and the foundation
rock, causing sliding of the dam along this interface (Chopra and Zhang, 1991).
Frequency domain solution procedures cannot be directly applied to comput-
ing the response of the dam including the nonlinear shiding behavior because
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