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Computational Approaches to Color Constancy: Adaptive and
Ontogenetic Considerations

James L. Dannemiller
University of Wisconsin

Recent computational approaches to color constancy can be realized using a two-stage model of
color vision. Adaptation at both the sensor stage and the second or reflectance channel stage is neces-

sary to compute illuminant-invariant reflectance estimates, von Kries adaptation is shown to con-
tribute significantly toward reducing, but not completely eliminating, the need for adaptation at the

second stage. Examples of computations from the model using daylight illummants, simulated natu-
ral reflectance functions, and putative human spectral sensitivity functions are shown. The ontoge-
netic plausibility of these models is also discussed. The role of the second-stage transformation in
estimating surface reflectance is compared with the role of opponent color transformations in decor-

relating primary receptor outputs.

Part of the adaptive value of trichromatic color vision derives

from its ability to deliver information about differences in the

material characteristics of objects and surfaces. Differences in

the spectral reflectance characteristics of regions within an im-

age can be indicative of material differences in those regions of

the scene. These chromatic differences within an image may be

useful for segregating or aggregating different image regions as

a preliminary step toward representing surfaces and objects

within the scene. It would also be useful if the representation of

the reflectance properties of a given object remained invariant

across changes in the illumination on the scene. This invariance

would simplify the task of recognizing the same object or class

of objects in different contexts or under different illuminants.

However, the physical laws of surface illumination complicate

this extraction of invariant reflectance information. The spec-

trum of the light that reaches the eye from a region in a scene

is the product of the reflectance spectrum of the object and the

spectral power distribution (SPD) of the illuminant. Changes

in the illuminant SPD cause changes in the spectrum of light

reaching the eye from the same surface in a scene. This incon-

stancy must somehow be overcome in order to realize the adap-

tive value of trichromatic color vision.

Several recent computational approaches to this problem

have met with success (Brill, 1978;Buchsbaum, 1980;Maloney

& Wandell, 1986). The success of these models depends on sev-

eral important constraints on possible object spectral reflec-

tance functions and illuminant spectral power distributions. It

is assumed that object spectral reflectance functions and illumi-

nant spectral power distributions can be modeled with a small

amount of residual error using linear combinations of a small

number of weighted basis functions. Maloney (1986) showed
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that a large sample of naturally occurring spectral reflectance

functions can be described using weighted combinations of ap-

proximately two to four basis functions. Judd, MacAdam, and

Wyszecki (1964) showed that different phases of daylight can be

composed using weighted combinations of two to three basis

functions. With these constraints on possible object reflectance

functions and illuminant spectral power distributions, and with

the additional assumption that the illuminant SPD is spatially

uniform or only slowly varying across the scene, these models

deliver potentially useful, illuminant-invariant representations

of surface reflectance.

Of course, if the human visual system were to operate with

the algorithms contained in these models, then one should ex-

pect errors (inconstancy) when surfaces and illuminants in the

world violate the constraints detailed earlier. For example, an

object with a spectral reflectance function that is not well-ap-

proximated by a linear model with only two or three parameters

may not appear to have the same surface color under different

illuminants. Alternatively, illuminants that require a large

number of basis functions for their precise description may not

be estimated accurately by these algorithms, with the result that

errors are introduced into the computed spectral reflectance

function for an object. Worthey (1985) and McCann, McK.ee,

and Taylor (1976) have shown that there is a lack of constancy

in the case of human color vision when three narrowband pri-

maries are used for the illuminant. Such an illuminant clearly

violates the constraint on possible illuminant spectral power

distributions in the aforementioned computational models. It

remains to be determined whether the human visual system ex-

hibits color constancy for naturally reflecting objects illumi-

nated by phases of daylight as these models imply and as Judd

(1940) hypothesized.

Classical approaches to the problem of color constancy often

relied on some type of adaptation within the visual system to

remove the contribution of the illuminant. Worthey (1985) and

Worthey and Brill (1986) argued that the type of receptor adap-

tation proposed by von Kries (Helson, Judd, & Warren, 1952)

could contribute to constancy in the face of illuminant SPD
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changes. D'Zmura and Lennie (1986) argued that receptor ad-

aptation plays a role in achieving color constancy. They also

argued that adaptation at a second, chromatically opponent site

within the visual pathway may be necessary to achieve color

constancy.

The goal of this article is to show that the computational

model of color constancy proposed by Buchsbaum (1980) may

be realized using a two-stage model of color vision. Adaptation

at both of these stages is necessary to achieve color constancy.

In particular, second-site adaptation is necessary to remove the

residual effects of the illuminant SPD that remain following a

first-site, von Kries-type receptor adaptation. Second-site oppo-

nent transformations are instrumental in estimating object

spectral characteristics independently of the illuminant SPD.

The models are discussed in terms of their ontogenetic plausi-

bility and susceptibility to developmental perturbations, and in

light of the function of opponent-color transformations as hy-

pothesized by Buchsbaum and Gottschalk (1983).

Formulation of the Problem

A mathematical model is useful for understanding the com-

putational problem involved in color constancy. I follow the

scheme used by Maloney (1986) in describing object spectral

reflectance functions and illuminant SPD's as linear models

with a small number of basis functions. Consider first an object

spectral reflectance function S(X). We may describe this func-

tion with a linear model having m basis functions using Equa-

tion 1.

S(X) = 2 (1)

The S,(X) are the basis functions, the a, are the weights on these

functions, and e,(\) is a residual error function. The a, weights

are chosen to minimize the root mean square (RMS) error be-

tween S(X), which is the true function, and the closest approxi-

mation to S(X) achievable with m basis functions. Maloney

(1986) showed that the residual error can be very small for a

large collection of naturally reflecting surfaces when m = 3.

Similarly, we may describe the illuminant SPD using a basis set

of M functions.

L(X) = 2 vv,L,(X) + «L(X). (2)

Again, Judd et al. (1964) showed that two to three basis func-

tions are sufficient to capture most of the variance of daylight

SPDs.

Next, consider the receptor spectral sensitivity functions that

are used by a hypothetical visual system to sample the input

to the eye. These receptor spectral sensitivity functions may be

designated R(X), G(X), and B(X), corresponding, respectively, to

the long-, middle-, and short-wavelength-sensitive photorecep-

tor mechanisms in trichromatic human vision.

The response of one of the receptor types (e.g., the R recep-

tors) to an input is then given by the integral

Similarly, the responses for the G and B receptors are obtained

by substituting the appropriate G(X) and B(X) spectral sensitiv-

ity functions in Equation 3. Thus, at each location on the retina,

the visual system has available to it a triplet of measurements

that may be represented as a vector (r g b)T, in which T rep-

resents the transpose of a vector. These three measurements

serve as the primary information that is to be used to compute

the spectral reflectance characteristics of the region of the scene

from which the measurements were taken. The problem of

color constancy may be stated with reference to Equations 1,2,

and 3: Using the vector (r g b)T estimate the m-dimensional

vector of weights in Equation 1, (a ^ <F2 <r3 • • • <rm)T, that pro-

duced this triplet of receptor stimulations. Obviously, the error

inherent in this estimate is determined in part by the 3 djs avail-

able in the measurement. I assume in the following, that the

hypothetical visual system estimates all object spectral reflec-

tance functions using three basis functions (TO = 3). Again, to

the extent that specific surfaces presented to such a visual sys-

tem deviate significantly from such a three-dimensional model,

one could expect errors in these estimates of surface reflectance

functions. I will also assume that the hypothetical visual system

models the illuminant SPD with n = 3 basis functions such as

those used by Judd et al. (1964) to capture the phases of day-

light.

Equation 3 may now be changed to reflect the fact that S(X)

and L(X) are assumed to be completely described each by the

three-dimensional vectors (a, a2 <r3)
Tand(w1 w2 w3)

T, re-

spectively.

(•700 3

R(X)[2
J«x> j-i

3 3 p70

25>,<r/
- - J«>o

R(X)L/X)S,(X)dX.

№

(5)

(6)

In Equation 6, the angle bracket expression is used as a conve-

nient symbol for the definite integral in Equation 5. Equation

6 may be extended to include the responses of the G and B re-

ceptors.

j-1 /-I

/•700

R(X)L(X)S(X)dX.
•J400

(3)

(7)

(8)

Equations 6, 7, and 8 may be written in matrix notation as

B 3 [<RL,S,) <RLjS2> <RL,.S3>-|r<r,-|

= 2>J<GL,S,> <GL,S2> <GL,S3> U . (9)

j-> L<BL,S,> <BL,S2> <BL,S3>JUJ

Notice in Equation 9 that the terms in the 3 X 3 matrix are

constants that the hypothetical visual system uses to model illu-

minant SPDs and object spectral reflectance functions. We may

express Equation 9 in symbolic form as

P = E<7, (10)

where p is a 3 X 1 vector of receptor responses, E is a 3 x 3
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illuminant matrix and a is a 3 X 1 vector of reflectance weights.

This formulation is identical to the one used by Maloney and

Wandell (1986). The goal of the hypothetical visual system is to

estimate a from p. As is evident in Equation 10, the solution to

this problem is to find the inverse of the illuminant matrix E.

Then

Table 2

Inverse Matrices for Each Illuminant

• = E-'p. (11)

The problem should now be clear from a computational

point of view. Because the illuminant vector (w, w2 w3)
T is

unknown, E is unknown, hence, E"1 is unknown. As Buchs-

baum (1980) and Maloney (1985) have shown, some estimate

of (W! w2 w3)
T must be obtained in order to solve this prob-

lem. In the following sections, I use Buchsbaum's method of

estimating (w, w2 w3)
T by assuming that the average spectral

reflectance function in the scene is equivalent to some fixed,

standard reflectance function. I also show that such a process is

connected to an adaptive reweighting of linear combinations of

the outputs of the adapted primary receptor responses. Thus,

second-site adaptation is necessary in this model to achieve

color constancy because von Kries-type adaptation at the first

stage in the system still leaves some error in the estimation of a.

Examples of the Estimation of a

In this section I give examples of how this problem may be

solved using specific basis functions and receptor primaries. For

convenience, Cohen's (1964) basis functions are used for de-

scribing object spectral reflectance functions and Judd et al.'s

(1964) basis functions are used for describing phases of day-

light. The Vos-Walraven (1971)' primaries are used for the spec-

tral sensitivity functions of the R, G, and B sensors. Three

different phases of daylight illumination with correlated color

temperatures of 4,800 °K, 6,500 °K, and 10,000 °K were used.

The w vectors corresponding to these phases of daylight are

given in Table 3 of Judd et al. (1964) and are shown here in

Table 1. These three vectors were used to compose the E matri-

Table 1

Illuminant Basis Weights and E Matrices

Illuminant and matrices

4,800°K wT = (1.00 -1.14 .677)

[294.53 -3.31 55.961

139.38 -15.62 29.74

1.50 -0.50 -0.21

6,500 °K wT = (1.00 -0.293 -0.689)

T288.24 -8.39 55.591

E= 144.49 -18.26 30.05 .

L 2.14 -0.71 -0.32 J

10,000'K wT = (1.00 1.005 -0.378)

T 288.43 -13.30 55.69~|

E= 152.32 -21.43 30.54 .

L 3.01 -0.99 -0.47J

Illuminant and matrices

4,800'K.

0.00723 -0.0114 0.3081

-' = I 0.0294 -0.0580 -0.382

L-0.0185 0.0568 -1.64 J

6,500 °K

0.0081 -0.0125 0.226

0.0327 -0.0626 -0.1864

-0.0188 0.0553 -1.20

1-0.1

0,

L-o.i

r °-'E-' = o.i
L-o.i

10,000 'K

0.0087 -0.0132 0.169 1

0.0352 -0.0652 -0.0702

0.0185 0.0527 -0.892 J

ces in Equation 10 corresponding to the three phases of daylight

illumination. These matrices are also shown in Table 1. The

constants in Equation 9 were determined using numerical inte-

gration at 10-nm intervals of the appropriate products of basis

functions and receptor primaries.

For illustrative purposes only, assume next that these three

illuminant matrices were known. Their inverses are shown in

Table 2. These E~' matrices could be used in Equation 11 to

solve for the reflectance vector a given the three-dimensional

receptor quantum catch vector p. Examination of Table 2

shows the major problem confronting any model of color con-

stancy: namely, the correct mapping between the receptor re-

sponses and the spectral reflectance vector a clearly changes as

a function of the illuminant. For example, assume that the E~'

matrix corresponding to the 4,800 "K illuminant were used to

estimate a when the receptor stimulations were actually pro-

duced by the 10,000 "K illuminant. In other words, assume that

our hypothetical visual system always used the same E"1 matrix

to estimate a. Figure 1 shows an example of just how inaccurate

such an approach would be. The true reflectance function is

shown by the triangles, whereas the estimated function is shown

by the squares. The vector used to compose the true function

and the deliberately incorrect estimate of that vector are shown

in the legend to Figure 1. The value of the RMS error from

Equation 1 is .24. In other words, the reflectance estimate is off

by an average of approximately 24% across wavelength. This

error will be more meaningful when we compare it with another

error later. It is clear that the assumption of a fixed illuminant,

an obviously erroneous assumption, can lead to gross misesti-

mates of the true reflectance function. Surely, by any color

difference metric, these two surfaces would appear different,

implying a clear lack of constancy.

' Vos and Walraven's (1971) primaries extend to 680 nm. Smith and
Pokornv's primaries (as cited in Ingling & Tsou, 1977) were used
through appropriate extrapolation to extend the Vos-Walraven pri-
maries to 700 nm.
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Figure 1. True reflectance function (triangles) and estimated reflectance

function (squares). (The estimated function was obtained by using the

reflectance-channel weights appropriate for a 4,800 °K illuminant with
the receptor stimulations produced by a 10,000 -K illuminant. The

weights in the legend for the true and estimated functions correspond

to the weights on Cohen's (1964) first three basis functions. The purpose

of this deliberately erroneous example is to illustrate the error in com-

puted reflectance that results from a failure to adapt second-site gain

factors to the illuminant when no von Kries scaling of receptor outputs
occurs.)

A more systematic illustration of this problem is shown in
Figure 2. In this figure, 25 different surfaces are represented by
the solid symbols. These symbols correspond to the a2 and a}

values in various a vectors all having a, = . 10. Also shown by
the open symbols are the estimated values of <r2 and a3 obtained
by using the receptor stimulations appropriate to the 10,000
°K illuminant and the E~' matrix appropriate to the 4,800 °K
illuminant. It is obvious that the strategy of using a fixed set of
weights to estimate <r would result in large, but systematic errors
in estimating surface reflectance functions. This exercise illus-
trates the necessity of having a process in the hypothetical visual
system that adjusts E~' in order to estimate the reflectance vec-
tor correctly.

Table 2 also illustrates another characteristic of this type of
model. The matrix E~' produces three linear transformations
on the receptor stimulation vector p; in other words, in the ser-
vice of estimating a with 3 djs, three postreceptoral channels
are created by selectively weighting the outputs of the primary
receptors. I call these reflectance channels to denote their role
in estimating object spectral reflectance characteristics. All
three of these reflectance channels are chromatically opponent
for the illumination conditions shown in Table 2. In particular,
the R and G outputs are always of opposite sign in all three
channels. This contrasts with the current notion in human
color vision that there are three postreceptor channels, one of
which adds the outputs of the R and G primaries in a nonoppo-
nent channel and two of which combine the outputs in a chro-
matically opponent manner, that is, R - G and B - (R + G)
(e.g., Guth, Massof, & Benzschawel, 1980). Nonetheless, the in-
teresting aspect of this general approach is that three postrecep-
tor channels are necessary in using the receptor stimulations to

estimate object reflectance characteristics—a task of obvious
adaptive significance.

Given the variation exhibited by the E~' matrices across
illumination conditions, it is natural to inquire next about oper-
ations that might render the reflectance channel weights em-
bodied in these E"1 matrices more nearly constant across illu-
minants. Such an operation would reduce the amount of sec-
ond-site adaptation necessary to achieve color constancy. One
such transformation that has often been proposed in connec-
tion with the problem of color constancy is a von Kries-type
adaptation. One way to realize von Kries adaptation is to scale
all local receptor outputs of a given class independently against
the mean response of that class of receptors across the scene.
This adaptation adjusts the sensitivity of a photoreceptor in or-
der to make efficient use of its finite response range and to en-
sure that the inputs to the next stage fall within some expected
range.

Scalingof local receptor responses by their respective means
;; g, and b may be effected by premultiplying the receptor re-
sponse vector p in Equation 11 by a diagonal matrix containing
the inverses of the mean receptor responses in their appropriate
positions. This is shown in Equation 12. The V matrix,

-l/f
r = V| 0

.0

0

0_

1/6.

(12)

now symbolically reflects the fact that the inputs to the reflec-
tance channels are now receptor responses scaled by their re-
spective means rather than by the original, unsealed receptor
responses. The weights in these channels must change to accom-

0,=.IO

Figure 2. True (solid symbols) and estimated (open symbols) reflectance
weights (<TJ and <TJ) using reflectance-channel gain factors appropriate

for a 4,800 °K illuminant and receptor stimulations produced by a

10,000 °K illuminant. (No von Kries adaptation was used. The a, value

for all surfaces is shown in the legend. Rank ordering by rows and col-
umns of the estimated points is identical to the rank ordering by rows

and columns of the true points: The upper left open point is an estimate

of the upper left solid point. Failure to allow von Kries adaptation of

receptor outputs and failure to adapt second-site gain factors to the illu-
minant result in gross misestimates of surface reflectance. True and esti-

mated functions shown in Figure 1 correspond to the upper left solid
and open symbols, respectively.)
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0.8.

V =

v =

4,800 TC

T 0.213 -0.159

0.865 -0.807

L-0.544 0.791

6,500 'K

T 0.233 -0.181

0.942 -0.904

L-0.542 0.799

0.0463-1 |°-6-

-0.0575 *

-0.247 J Sai)

0.0481 °-2-

-0.040

-0.257 J a o _

a =(.10 -.11 .n)T

S =(.ll ..ii .ni)T

r °-2
,.0

L-0.5
1

0.250 -0.201 0.0509-]

1.01 -0.994 -0.0212

-0.534 0.803 -0.269 J

500 950
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Figure 3. True reflectance function (triangles) and estimated reflectance
function (squares) with von Kries scaling of receptor outputs. (This ad-

aptation at the first site reduces the error in computed reflectance con-
siderably even when no second-site adaptation is permitted.)

modate this reseating. The new V matrix is formally denned as

E"1 multiplied by the inverse of the diagonal matrix containing

the inverses of the mean receptor responses. This multiplication

by the inverse of the von Kries scaling matrix is necessary to

preserve the equality shown originally in Equation 11. The new

matrix V is then defined as

-' o g o
Lo o

(13)

Now, for illustrative purposes only, assume that the mean re-

ceptor responses for each illuminant corresponded to those ob-

tained by illuminating some standard reflectance surface. This

could obtain, under the present circumstances, for example, if

the space average spectral reflectance function in the scene cor-

responded to some scaled version of Cohen's (1964) first basis

vector. Table 3 shows the V matrices that would be obtained if

the mean receptor responses corresponded to those obtained by

illuminating Cohen's first basis function, this function having a

weight of .10. This gives a relatively flat reflectance function

with an average reflectance across wavelength of approximately

.40. The particular scalar used is not critical. The fact that there

is still residual variation in the three V matrices after von Kries

adaptation means that there must also be adaptation at the sec-

ond sites in order to estimate the vector with no error. D'Zmura

and Lennie (1986) explicitly recognized this fact in their pro-

posed model. The magnitude of this effect is illustrated in Ta-

ble 3.

Although some second-site adaptation is necessary, as shown

in Table 3, the contribution of von Kries-type adaptation

should not be overlooked (e.g., Breneman, 1987; Hallett, Jen-

son, & Gershon, 1988; Worthey, 1985). To illustrate this, we

may use the previous deliberately erroneous strategy of holding

the V weights fixed and appropriate for one illuminant while

introducing the receptor stimulations appropriate for another

illuminant. In this example, V4i8oo-K was used while the recep-

tor stimulations and mean receptor responses appropriate for

the 10,000 "K illuminant served as the input to these inappro-

priately weighted reflectance channels. Figure 3 shows the re-

sults of this exercise. The true vector was the same as that used

in Figure 1. The RMS error is now .024. In other words, reflec-

tance is estimated with an average error of only 2.4% across

wavelength, von Kries adaptation alone has reduced the error

by a factor of 100. It is obvious in comparing Figures 1 and 3

that von Kries adaptation significantly reduces the error be-

tween the estimated and true reflectance functions even when

no second-site adaptation is allowed.

This is clearly illustrated in Figure 4. The true and estimated

values of (T2 and <r3 are illustrated by the closed and open sym-

bols, respectively. Comparing Figure 4 with Figure 2, we now

• * •* «A

Figure 4. True (solid symbols) and estimated (open symbols) reflectance
weights (<rj and a,) using reflectance-channel gain factors appropriate
for a 4,800 °K. illuminant and receptor stimulations produced by a
10,000 °K illuminant and using von Kries scaling of receptor outputs.
(The true and estimated functions shown in Figure 3 correspond to the
upper left solid and open symbols, respectively.)



260 JAMES L. DANNEMILLER

see that as long as von Kries scaling is allowed at the first stage

in the system, a fixed set of second stage, V, weights produces

estimates of reflectance that are only slightly erroneous. The

estimated reflectance function shown in Figure 3 actually cor-

responds to the largest error from the 25 surfaces illustrated in

Figure 4. von Kries scaling reduces the amount of second-site

adaptation necessary to achieve color constancy.

It is important to realize exactly what von Kries scaling ac-

complishes in terms of color constancy. To illustrate this, the

receptor responses to a scene with 765 surfaces composed from

Cohen's (1964) basis functions were scaled against the mean

response for each class of receptor using the 4,800 °K and

10,000 'K phases of daylight. The average percentage difference

in these scaled (adapted) responses across the 765 surfaces un-

der the two illuminants was .03% for the long-wavelength mech-

anism, .03% for the medium-wavelength mechanism, and .02%

for the short-wavelength mechanism. For 95% of these surfaces,

the scaled response under one illuminant was within approxi-

mately ±3.4% of the scaled response under the other illuminant.

Thus, for a given surface in the world, the scaled output of the

first stage in the system is approximately constant given only

the variation available from different phases of daylight as the

illuminant and 3 djs in the surface reflectance function.

This property of the scaled receptor responses is predictable

from an examination of the response matrices in Table 1 in

conjunction with Equation 10. For any illuminant and for any

receptor class, the receptor response is given as a linear sum of

three components corresponding to the three reflectance basis

functions. This response (sum) is dominated by the component

that corresponds to the first reflectance basis function S,. The

contribution of this component of the response is always a mini-

mum of three times as great as the contribution from any other

component. Therefore, as the response to a particular surface

increases or decreases by some factor due to an illuminant

change, the mean response for that class of receptors will change

by approximately the same factor. Scaling by the mean will can-

cel the effects of the illuminant change.

Hallett et al. (1988) recently argued that the outputs of the

cones are essentially color constant given only natural surfaces

and high-intensity daylight illuminants. They argued that the

residual variation in von Kries scaled receptor responses after

an illumination change is within the noise level of individual

cones, implying that another stage of adaptation is unnecessary

to achieve color constancy. The earlier analysis supports this

conjecture.

It is also important to realize, however, that several conditions

must be true before a single stage of adaptation becomes suffi-

cient for color constancy. First, the scene must be sufficiently

rich in spectrally different surfaces. Sufficiently rich in this con-

text means that the space average reflectance in a scene must be

approximately constant across scenes. This is clearly a statisti-

cal constraint on the number and diversity of surfaces within a

scene. Violations of this constraint will lead to the necessity of

a second stage of adaptation for achieving color constancy. The

second condition that must be true in order for von Kries scal-

ing to yield color constancy to within the noise level of the pho-

toreceptors is that some process must scale the responses of lo-

cal photoreceptors of a given class according to the global aver-

age response of that class of photoreceptors. This requires one

of two types of processes within the visual system. Either there

must be large scale integration of information across space (ex-

tensive, within receptor-type lateral interactions), there must be

extensive eye movements across the scene coupled with a long

time-constant of integration in the photoreceptors or both pro-

cesses must be operative. Land (1986) has argued that large-

scale spatial interactions are involved in color vision. Most

quantitative tests of color constancy (e.g., McCann et al., 1976)

have allowed eye movements so it is difficult to determine the

extent of color constancy in the absence of such eye movements.

Nonetheless, deviations from either of the conditions imposed

earlier would necessitate the operation of a second stage of ad-

aptation to achieve color constancy.

To summarize the results to this point, we may observe that

1. Three reflectance channels are created that use the recep-

tor stimulations to estimate the three-dimensional reflectance

vector (7.

2. von Kries-type rescaling of the receptor responses can

contribute significantly to eliminating or minimizing the

changes in second-stage, reflectance channel weights dependent

on illumination changes.

3. Some second-site adaptation (i.e., readjustment of reflec-

tance channel weights) may still be necessary under some condi-

tions to estimate the reflectance vector a accurately.

Second-Site Reflectance Channel Adaptation

In this section, I draw a connection between the process of

estimating the illuminant and adjusting the reflectance channel

weights. Recall that the E matrix depends only on the illumi-

nant vector (w, vv2 w3)
T for a fixed set of basis functions and

receptor primaries. This, in turn, implies that the matrix E"1

depends only on this same vector. The V matrix in Equation 13,

thus, depends only on the illuminant vector (Wj w2 w3)
Tand

the mean values used to scale the responses of the receptors. If

the average reflectance function is assumed to be constant

across scenes, then the vector of mean receptor responses de-

pends only on the illuminant. In other words, the correct sec-

ond-site weights embodied in the V matrix should adjust to the

illuminant by adjusting to the mean receptor responses.

Because the V matrix depends on the illuminant through the

vector of mean receptor responses, the process of estimating the

illuminant is functionally equivalent to adapting the reflectance

channels so that their outputs serve as accurate estimates of the

reflectance vector a. How can the V matrix be estimated when

the only information available to the hypothetical visual system

consists of a set of three-dimensional response vectors corre-

sponding to various regions in the scene? As several previous

researchers have indicated, there is information in this set of

receptor stimulation vectors (Buchsbaum, 1980; D'Zmura &

Lennie, 1986; Maloney & Wandell, 1986). Namely, assuming a

spatially uniform illuminant and a sufficiently spectrally rich

scene, the mean receptor stimulation across the scene contains

information about the illuminant. In particular, if the space av-

erage reflectance function in a scene always corresponded to

some standard reflectance function, then the vector p =

(r g b)T would contain enough information to reconstruct

the illuminant with 3 dft,.

This property of the mean response vector can be demon-
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strated by examining Equation 9. Consider the first column of

the 3 X 3 matrix on the right side of this equation. We may re-
express this equation following the summation operation in the

following form:

E-'K-'KP, (16)

[w,<RL,S,> + w^RLiS,) + w3<RL3S,>] kR2 kR3-|
[w,<GL,S,> + i*j<GL2S1> + Wj<GL3S1>] kc2 kc3

[H-,<BL,S,> + №2<BL2S1) + w3(BL3S,>] kB2 kMJ

•a- (14)

The remaining six numbers in this matrix have been repre-
sented in unexpanded form as various constants (k), inasmuch
as they are not necessary for the present argument. Examining

the left-most column of this E matrix reveals the fact that these
three numbers (sums) represent the responses of the three pri-

maries to the Si(X) basis function alone illuminated by the
phase of daylight described by the illuminanl vector

(w, w2

 WJ)T' Now assume that the average reflectance func-
tion in the scene corresponds to S|Si(X); that is, the average re-

flectance function in the scene is simply a scaled version of the
basis function S,(X). The average reflectance function may be
represented by_the vector (at 0 0)T. There is thus some p

vector (r g b)T that corresponds to the average reflectance
function in the scene. When the average reflectance vector is

substituted on the right in Equation 14, we are left with the
following:

+ tv3<RL3s,>]-i
w,<GL3S,>] . (15)g l = 1 •r,(w,<GL1S,> H

bJ L5i[wi<BL,S,>- H-2<BL2S,>

Now, Equation 1 5 shows that the average receptor response vec-

tor p in the scene contains unambiguous information about the
illuminant if the average reflectance function in the scene is as-
sumed to be equivalent to a seated version of a standard reflec-

tance function. In this case, the argument is simplified by as-
suming that the average reflectance vector contains zeroes in the

positions corresponding to the second and third basis functions,
although this is not necessary because there will always be only

three unknowns on the right in Equation 15. This same argu-
ment was advanced by Buchsbaum (1980) in his formulation

of the problem. This assumption allows us to substitute a value
for at in Equation 15. Given an empirical estimate of the aver-
age receptor response vector (f g b), then Equation 15 re-
duces to a set of 3 linear equations in three unknowns. The first
column of the matrix E must then be (!/»,)• P- The solution to
this set of equations results in an estimate of (w, w2 w,) '.

Once this illuminant vector is estimated, the matrix E can be
completely constituted and inverted to obtain an estimate of
E"'. This matrix, in turn, may be multiplied by the inverse of
the diagonal von Kries scaling matrix. This yields the desired
V matrix as shown in Equation 1 3a. Thus, given any arbitrary
quantum catch vector (r g b)T, the reflectance vector
(u, <r2 <r3)

T, may be computed as

with K representing the diagonal von Kries scaling matrix and

K~' its inverse. Mathematically, it is obvious that the two mid-
dle matrices K ' and K are unnecessary because K~'K = I and
E~'Ip = E~'p, where I is a 3 X 3 identity matrix. However, from
the perspective of a two-stage model of color vision, we may

rewrite Equation 16 as

(17)a = (E-'K-'XKp).

Now it is apparent that the first stage of processing corresponds
to the capture of quanta by the receptors and von Kries adapta-
tion (Kp), whereas the second stage corresponds to an adaptive

reweighting of three linear combinations of the outputs of the
first stage (E~'K~'). This adaptive reweighting of the second site

depends on the adaptive state of the first stage. The aforemen-

tioned analysis suggests that under certain conditions, the out-

put of the first stage (Kp) may be approximately color constant
implying, in turn, that changes in the second stage (E" 'K~') may

be unnecessary given the limitations imposed by noise at the
first level in the system (Hallet et al., 1988).

The critical step that allows the computation to proceed is
the assumption noted by Buchsbaum (1980) that the mean re-
ceptor response across the entire scene was produced by some

fixed, standard reflectance function. This assumption implies
that a hypothetical visual system using this scheme would as-

sign the vector of mean receptor responses to an external sur-

face with invariant reflectance characteristics. Indeed, the set-
ting of the gain factors in the reflectance channels may be con-
ceived of as an adaptation of the von Kries-scaled receptor

responses (output of Stage 1) to this fixed, reference surface.
This implies that there is an additional constraint on the accu-

racy of the reflectance computations in Buchsbaum's model.
Namely, the average reflectance function in the scene is inde-

pendent of the illuminant and is, in fact, constant across scenes.
It is important to make this constraint explicit. Laboratory ex-

periments might reasonably test this model by introducing an
artificial correlation between the space-average reflectance
function in the scene and the spectral power distribution of the

illuminant. Such a correlation would clearly violate this con-

straint, and we should expect errors (inconstancy) from such a
model.

As Buchsbaum (1980) has noted, this method of estimating
a is sensitive to discrepancies between the actual average reflec-

tance function in a scene and the assumed reference reflectance
function. Buchsbaum (1980) has quantified errors resulting

from such discrepancies (see Figures 2 and 3 from Buchsbaum,
1980). The scheme is fairly robust in the sense that relatively
small errors are introduced even when the average reflectance

function deviates significantly from the system's reference re-
flectance function. If one were willing to tolerate an iterative
algorithm, these errors could be reduced. How could this be

accomplished? Consider the vector of estimated reflectance
weights for a region in the scene (J, cr2 a3)

T. This vector at

each location could be used in conjunction with Equation 10 to
produce a vector of predicted quantum catches at each loca-
tion, (f g b)T. The diflerence between this predicted vector
and the actual quantum catch vector at each location could be
minimized by iterating the estimate of the illuminant vector
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(w, w2 w3)
T (see Maloney, 1985, p. 104). In this sense, the

assumption of a standard average reflectance function serves

only to guide the initial estimate of w. However, because iterative

algorithms are costly in terms of time, in a real-time system

there may be a tradeoff between the accuracy of the final a esti-

mate and the time involved to compute this vector.

Ontogenetic Considerations

The models of color constancy proposed by Buchsbaum

(1980) and Maloney (1985) were clearly meant to apply to hu-

man color vision because explicit comparisons are made be-

tween various aspects of the models and psychophysical evi-

dence. In this section, these models are examined in regard to

their ontogenetic plausibility. A related issue concerns the sus-

ceptibility of these computational models to developmental per-

turbations—changes induced in the computation of surface re-

flectance because of age differences in various factors related to

color vision. The purpose of this section is not to confront these

computational models with current data on the development of

color vision because such data are insufficiently precise at pres-

ent to allow this. Rather, the purpose of this section is to deduce

various ontogenetic consequences from these models in order

to understand their properties more fully.

First, consider the question of ontogenetic plausibility: Could

the process of ontogenetic development plausibly lead to the

end point of mature color vision represented by these computa-

tional models of color constancy? An answer to this question

requires an examination of the processes involved in comput-

ing color-constant reflectance descriptors. As interpreted ear-

lier, there are two major processes involved. First, quanta are

captured by the photoreceptors and some type of von Kries

scaling or first-stage adaptation must take place. Second, reflec-

tance channels must be created by adjusting second-site weights

on the basis of the mean receptor responses. Considering the

first process, there is evidence of first-stage adaptation in the

young visual system (Dannemiller, 1985; Dannemiller &

Banks, 1983; Hansen & Fulton, 1981, 1985; Pulos, Teller, &

Buck, 1980). Furthermore, the young visual system is probably

trichromatic by at least 3 months of age (Teller & Bornstein,

1987). So the neural substrate for the first stage is probably pres-

ent from very early in life. Much less is known about second-

stage processes in the visual system, although Brown, Liman.

and Teller (1986) reported evidence of red/green chromatic op-

ponency in 3-month-olds. Even lacking this evidence, however,

there is no reason, in principle, that second-stage, adaptable

channels could not be programmed innately or develop postna-

tally in the pathway from ganglion cells to lateral geniculate nu-

cleus (LGN) to visual cortex.

A far more difficult problem arises, however, when we con-

sider the fact that there are fully 27 constants that are necessary

for the computations in this class of models as outlined earlier.

These constants represent the integrals of the products of illu-

minant basis function (3), with surface reflectance basis func-

tions (3), with spectral sensitivity functions (3). Because these

constants all involve the spectral sensitivities of the receptor

mechanisms, any change in spectral sensitivity would require a

corresponding change in these constants. Now, there are at least

two specific problems that would arise ontogenetically regard-

ing these constants. First, one might argue that these constants

are programmed innately into the visual system. We will set

aside the question of where in the structure of the mature sys-

tem these constants reside. They must, nevertheless, reside

somewhere if the computations are to proceed (D'Zmura &

Lennie, 1986; Maloney, personal communication, early in

1988). It is not enough simply to solve for the illuminant vector

w in these models. Knowledge of this vector must be used in

conjunction with these constants to transform the receptor re-

sponses into illuminant-invariant reflectance estimates. Thus,

simply knowing the illuminant vector w is of little use if it is not

used to construct the E"1 matrix that allows reflectance esti-

mates to be computed. Suppose that the constants associated

with the mature state were innately programmed into the struc-

ture of the color vision system. This preprogramming, in effect,

assumes that the spectral sensitivity functions do not change

from birth. For if they were to change postnatally, then errors

would be introduced into the computation of surface reflec-

tance. I will give examples of these errors later.

Second, a more adaptive developmental strategy would be to

allow the 27 constants to be recalibrated as spectral sensitivity

changed throughout the course of development. However, this

would require the visual system to estimate its own spectral sen-

sitivity functions and to use these estimates to adjust its own

constants. Could the visual system discover its own spectral sen-

sitivity functions? Or perhaps a less demanding question would

be, How could a visual system even know that its constants were

in need of recalibration because of some developmental change

in spectral sensitivity? All of these questions would seem to re-

quire some way of knowing that the organism's current spectral

reflectance computations were in error. But this would require

independent knowledge of the surface reflectance in order to

determine the error, and this is completely implausible. Allow-

ing recalibration by exposing the visual system to a constant

scene with the only changes occurring across the course of a day

as the phase of daylight changes, might at first seem plausible.

However, this strategy would require that the system be credited

with knowledge that the reflectance properties of the scene were

constant despite changing receptor stimulations. This is pre-

cisely the problem of color constancy. Such a recalibration

strategy begs the question. Building in a recalibration process,

whereas attractive from an ontogenetic perspective, can proba-

bly be ruled out on logical grounds.

Thus, if we wish to adhere to this class of models as explana-

tions of human color constancy, we must consider the conse-

quences of innately programming into the visual system the

constants characterizing the mature state. As stated earlier, this

leaves the organism susceptible to errors in the computation of

surface reflectance when its own spectral sensitivity differs from

that implied by the constants. I consider two such cases here.

First, the young infant's spectral sensitivity functions for any or

all of the photoreceptor classes might differ by a scalar multiple

from the corresponding adult spectral sensitivity functions.

Second, a difference in ocular transmissivity across the visible

spectrum might exist between young and mature human be-

ings. The problem in both of these cases is that these differences

are unknown to the organism. Its computations therefore pro-

ceed as if its spectral sensitivity were mature. But, both of these

potential differences alter receptor responses from the values
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-0.3 -0.2

Figure S. True (solid symbols) and estimated (open symbols) reflectance

weights (ff2 and <?3). (Estimated points [open symbols] were derived by

scaling the B[X] spectral sensitivity function to .25 times its adult value

and failing to take this reduction in sensitivity into account in estimat-

ing the illuminant. If such a developmental perturbation were to occur,

the result would be a systematic misestimation of surface color.)

that would obtain for an adult viewing the same scene. We will

evaluate the effects of these differences next.

First, consider the consequences of a scalar difference in spec-

tral sensitivity. For illustrative purposes, suppose that the short-

wavelength spectral sensitivity function of the young infant was

0.25 times that of the adult. The effect of this alteration on

quantum catches is easy to assess. The r and g quantum catches

are unaffected, whereas the b quantum catch becomes .25 its

adult value. This means that the vector of mean receptor re-

sponses that is ultimately used to determine the illuminant

weights (»! w2 w3)
T is the same as the adult vector with the

exception of the mean blue response. The mean blue response

is now 0.25 b. This altered mean response vector is used in con-

junction with the adult constants to determine the illuminant

weights. Here is where the error arises in this problem. The

adult constants are used to determine the illuminant weights,

but these constants do not reflect the scaled alteration of the

B(X) function. The illuminant is estimated incorrectly, leading

inevitably to incorrect estimates of surface reflectance func-

tions.

For this example, I assumed the aforementioned scalar devia-

tion (.25) in B(X) and used the 4,800 °K illuminant. von Kries

adaptation was allowed to operate. The effects of erroneously

estimating the illuminant are shown in Figure 5. The same 25

reflectance functions used in the previous Figures 2 and 4 are

repeated here. The <rt value was .10. The true reflectance

weights for a^ and a3 are shown by the solid symbols, whereas

the estimated weights are shown by the open symbols. There are

clearly errors, as there must be when the illuminant is estimated

incorrectly. This means that a young human who was viewing

these 25 surfaces would systematically misperceive their true

colors. Of course, this assumes that the color differences repre-

sented by these errors are above threshold. Current data on

chromatic discrimination early in life do not permit an empiri-

cal assessment of this assumption.

Next, consider the effects of developmental changes in ocular

spectral transmissivity (Werner, 1982; Werner, Donnelly, &

KJiegl, 1987). This change would be equivalent to imposing

different preretinal filters on the visual input. In this case, the

spectral sensitivities of all of the photoreceptor classes are al-

tered to some extent, unlike the independent perturbation of

the B(X) function in the previous example. In this example, I

used Werner's (1982) equation for age changes in optical density

of the ocular media at 400 nm. The two ages that I considered

were 3 months and 40 years. Norren and Vos's (1974) ocular

transmission function was scaled appropriately at the two ages.

Because the question of interest here concerns differences in oc-

ular spectral transmissivity, the ratio of the 3-month-old func-

tion to the 40-year-old function was used to perturb the input

to the 3-month-old's visual system in the model. The resulting

function may be expressed as F(X) = 10'MD|X). D(X) is the optical

density spectrum given in Norren and Vos (1974).

Again, I used a 4,800 °K illuminant and simply perturbed the

3-month-old's quantum catches by including F(X) in all of the

integrals like the one shown in Equation 3. von Kries adapta-

tion was allowed to occur. The mean receptor quantum catches

were then used in conjunction with the adult constants to solve

for the illuminant weights (w, w2 w3)
T. Here again is where

the error is introduced. The illuminant is not estimated prop-

erly because the adult constants do not reflect the differences in

ocular transmissivity. The results are shown in Figure 6. The

conventions are the same as in Figure 5. Now we see that such

a developmental difference results in negligible errors in the es-

timates of surface reflectance. This perturbation apparently is>

one that would not seriously affect the accurate perception of

surface reflectance. It may also be concluded that individual

differences in ocular transmissivity ataconstant age do not have

much of an effect on the estimation of a.

What may we conclude about these errors that result from

innately programming adult constants into the visual system?

Clearly, the independent perturbation of spectral sensitivity

functions results in larger errors than those produced by devel-

-0.3 -0.2 -0.1 Q. 0 0. 1 0.2

Figure 6. True (solid symbols) and estimated (open symbols) reflectance

weights (<r2 and <r3). (Estimated points [open symbols] were derived by

assuming a different ocular spectral transmission function than the one

characterizing the adult state. Failure to take such a developmental per-

turbation into account produces only minor errors in the computation

of surface color.)
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opmental differences in ocular transmissivity. To some extent

this is an unfair comparison because the simulation of the

effects of ocular transmissivity was constrained by data,

whereas the simulation of the effects of a scalar difference in

spectral sensitivity was not. Nonetheless, we may inquire about

the implications of these errors. To answer this question, one

must have an understanding of the consequences of deficient or

anomalous color vision. Consider dichromatic color vision that

may be modeled in the present context as a scalar of zero ap-

plied to one of the spectral sensitivity functions. Clearly dichro-

matic individuals are at a disadvantage as far as the accurate

perception of surface color, yet these individuals manage to sur-

vive and to reproduce. The consequences of less extreme per-

turbations in spectral sensitivity such as the ones illustrated ear-

lier may thus be slight enough to allow equivalent])' successful

adaptations to the environment given the minor errors in the

perception of surface color across development and individuals

that would result from innately specifying these reflectance

channel weights. Alternatively, if one assumes that von Kries

adaptation plays the major role in color constancy, then individ-

ual differences or ontogenetic perturbations in spectral sensitiv-

ity would have little effect on the perception of surface reflec-

tance and its constancy across illuminants. Minor perturba-

tions in spectral sensitivity will affect the mean response of a

given class of photoreceptors in a manner similar to the way

in which responses in local regions of the image are affected.

Because the mean response is used to scale outputs in local re-

gions, these minor differences in spectral sensitivity across indi-

viduals and within an individual at different points in develop-

ment will tend to be removed at the first level in the system.

Discussion

This analysis shows that a model proposed originally by

Buchsbaum (1980) for extracting illuminant-independent re-

flectance information is compatible with a two-stage adaptation

model of color vision. The first stage consists of a von Kries-

type rescaling of the independent receptor responses. The sec-

ond stage consists of an adjustment of the gain factors in reflec-

tance channels to the mean illumination in the scene that de-

pends on the illuminant and the average spectral reflectance

function in the scene. This second stage of adaptation is for-

mally equivalent to estimating the illuminant and is necessary

because von Kries-type adaptation alone is only sufficient under

some conditions to render the second-stage gain factors com-

pletely independent of the illuminant.

It is interesting to note that Worthey (1985) has analyzed the

color constancy data of McCann et al. (1976) using a two-stage

adaptation approach similar to the one explicated here. Wor-

they showed that the predictions of such a model with von

Kries-type adaptation approximately describe the results of

McCann et al. (1976) when the illuminant was shifted along a

blue-yellow locus (i.e., a tritanopic confusion line). There were

still, however, some discrepancies between the predictions and

the actual data, and the present analysis offers one possible ex-

planation for these discrepancies. Worthey assumed that the

second-stage, opponent-channel gain factors were constant

across illuminants. This is equivalent in the present context to

assuming no second-site adaptation to the illuminant. Because

second-site adaptation is known to occur in the human visual

system (Pugh & Mollon, 1979) and because it is seen to be nec-

essary to estimate reflectance accurately, the discrepancy be-

tween the predicted and observed results noted by Worthey may

be attributable to the operation of second-site adaptation.

It is interesting to compare the function of reflectance chan-

nels as elaborated in the aforementioned model and the role of

opponent color coding as described by Buchsbaum and Gott-

schalk (1983). Recall that the function of the second-stage re-

flectance channels as described earlier was to effect a three-di-

mensional estimate of an object's reflectance function given the

receptor stimulation vector (r g b)T. I noted that for the par-

ticular basis functions and receptor primaries used earlier, all

three of the second-stage channels were chromatically opponent

in the sense that they always involved a subtractive combination

between the R and G primaries. Buchsbaum and Gottschalk

(1983) showed that three postreceptor channels, two of which

are chromatically opponent and one of which is nonopponent,

would be predicted on the grounds that the visual system is at-

tempting to make the most efficient use of its available channel

capacity. Because of the significant degree of overlap between

the R(X) and G(X) spectral sensitivity functions, the signals

from these two receptor types are highly correlated. Indeed,

simulations in the current work showed that the R and G re-

sponses were correlated at approximately the .975 level across

a large sample (n = 765) of representative, simulated object re-

flectance functions illuminated by simulated daylight. Thus, on

purely information theoretic grounds, as Buchsbaum and Gott-

schalk noted, it does not make sense to pass these signals un-

transformed to higher levels in the visual system. The linear

transformation proposed by Buchsbaum and Gottschalk decor-

relates the R, G, and B signals to use available channel capacity

efficiently.

The reflectance channels as described and the second-stage

channels as proposed by Buchsbaum and Gottschalk are sim-

ilar in several respects. First, in both cases, the optimal weights

for the second-stage channels must vary with the adaptive states

of the first-stage photoreceptors. This must occur in the reflec-

tance channel model because the accurate estimation of object

reflectance functions depends on an estimation of the illumi-

nant. The reason for the adjustment in the model proposed by

Buchsbaum and Gottschalk (1983) is that the efficient use of

channel capacity depends on the covariance matrix between the

three classes of photoreceptor spectral sensitivity functions.

These covariances, in turn, depend on the von Kries scale fac-

tors used to adjust the photoreceptor sensitivities.

A second important function of the second-stage channels

in both models is to decorrelate the outputs of the first stage

photoreceptors. The reason for this is obvious in the case of

Buchsbaum and Gottschalk's (1983) model. The most efficient

use of three postreceptor channels occurs when the signals in

those channels are uncorrelated. The reason for the goal of de-

correlating the outputs in the reflectance channel model is not

as obvious. Consider what it is that the reflectance channels are

doing. Given as input a triplet of scaled receptor stimulations,

two of which are highly correlated (r and g), the reflectance

channels use these three measurements to obtain an estimate

of the object reflectance function that gave rise to those mea-

surements in conjunction with a particular illuminant. Sup-
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pose that our hypothetical visual system were to use the un-

transformed, unsealed receptor stimulations to estimate reflec-

tance. Such a strategy would only be accurate to the extent that

two of the n, weights were also highly correlated for objects in

the world. To the extent that the three at weights vary indepen-

dently of one another for objects in the world, then the use of the

untransformed receptor stimulations is an inaccurate strategy.

What transformation of the receptor stimulations would allow

the most accurate predictions of a from />? This transformation

must take a triplet of correlated measurements and use them to

predict a triplet of uncorrelated values. In other words, at the

output of this transformation the signals in the three reflectance

channels must vary orthogonally. By definition, the basis re-

flectance functions were chosen to be orthogonal, so the ulti-

mate goal of the reflectance channel transformation is to use

the receptor stimulations to span this orthogonal, three-dimen-

sional basis space. Thus, both Buchsbaum and Gottschalk's

model of second-stage channels and the current reflectance

channel model share the important function of decorrelating

the outputs of the receptor stimulations.

There is one difference between the two models, however.

One additional criterion that the opponent transformation

must satisfy in Buchsbaum and Gottschalk's (1983) model is

that of distributing the signal energy among the three channels

so as to minimize the error in the received signal. No such crite-

rion was imposed on the second-stage weights in the reflectance

channel model. This partitioning of signal energy depends on

the statistical distribution of color signals. A color signal in this

context is the function that results from multiplying an illumi-

nant SPD with an object spectral reflectance function. In other

words, a signal in this context contains information about a re-

flectance spectrum confounded with an illuminant SPD. Be-

cause empirical evidence (Guth et al., 1980; Ingling & Tsou,

1977) shows that the opponent-channel weights in human vi-

sion optimally distribute the signal energy according to Buchs-

baum and Gottschalk's a priori prediction, an additional stage

may actually intervene between the first-stage photoreceptor

outputs and the reflectance channel transformation as de-

scribed earlier. The goal of this intermediate transformation is

not directly involved in estimating reflectance. Rather, its pur-

pose is to maximize the reliable transfer of signal information

between the photoreceptors and the reflectance channels. It is

only necessary to invert this linear transformation at the output

end of this intermediate stage in order to allow the reflectance

channels to operate as described. The reflectance channels

would then operate on these illuminant-dependent signals to

extract illuminant-independent reflectance information. A ten-

tative identification of these stages with levels in the visual sys-

tem might then take the following form: The first stage encom-

passes the signal transformations at the photoreceptors; the sec-

ond, chromatically opponent stage as delineated by Buchsbaum

and Gottschalk may occur just prior to or at the level of the

ganglion cells (DeMonasterio, Gouras, & Tolhurst, 1975); and

the final reflectance-channel stage may occur in the visual corti-

cal areas (Land, 1983; Livingstone &Hubel, !984;Zeki, 1980).

Such a scheme would allow cortically based reflectance chan-

nels to integrate information over a large spatial scale. The gan-

glion cell-LGN-cortex part of the pathway obeys the con-

straints on signal decorrelation, reliable signal transmission,

and chromatically opponent processing outlined by Buchs-

baum and Gottschalk, whereas the reflectance-channel trans-

formation uses this information to compute illuminant-invari-

ant estimates of surface reflectance.
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