Astr 451 - Astrophysics I: Sun and Stars Fall 2019 Course Information & Syllabus

Course Description: This lecture course covers the physics of stellar atmospheres and interiors as well as concepts of stellar evolution. The Sun will be used repeatedly as an example since it is the best studied star; however, this course will not specifically address the subject of solar physics. Those interested in studying solar physics in detail should consider also taking Astr 554. As it is, there is a large amount of material to cover in this course. As a result, we will not cover the entirety of the two required texts below, but we will cover the essential material from both fields.

Course Objectives and Learning Outcomes: This is primarily a content driven course – the student is expected to learn the content covered in the lectures listed on following page. By then end of the course, the student should understand how the spectrum of a star forms and how observations of the spectrum can be used to infer physical properties of the star. The student will also understand the general internal physical structure of a star from the time it first forms until the end of its life. The student will understand how this structure is computed and what causes it to change throughout the life of a star.

Meeting time and place:

MWF 11:00 am – 11:50 pm Herman Brown 423

Instructor:

Prof. Christopher M. Johns-Krull Department of Physics and Astronomy Office: 352 Herman Brown Phone: (713) 348-3531 E-mail: cmj@rice.edu

Office Hours:

Mondays: 1:00 pm - 2:00 pm Tuesdays: 11:00 am - 12:00 pm Thursdays: 4:00 pm – 5:00 pm Or by appointment

Required Texts:

Title: "The Observation and Analysis of Stellar Photospheres" (Third Edition), hardback or paperback Author: David F. Gray

Publisher: Cambridge Univ. Press

Title: "Principles of Stellar Evolution and Nucleosynthesis" (Second Edition), paperback Author: Donald Clayton Publisher: Univ. of Chicago Press

Additional Texts:

"Stellar Atmospheres" by Mihalas, Freeman Press "An Introduction to the Study of Stellar Structure" by Chandrasekhar, Dover "Structure and Evolution of the Stars" by Schwarzschild, Dover "Introduction to Stellar Astrophysics, Vol. 1-3" by Bohm-Vitense, Cambridge (BV)

Grading:

Homework (approx. 6 - 8 assignments)	66%
Final Exam	34% (take home, inclusive)

Absence & Late Policy:

If a class is missed, the student is expected to get notes from someone else in the class and may copy the instructor's notes. Homework assignments must be turned into the professor by the end of class on the due date, which will be given on each homework set. Late homework can be turned in for partial credit. If the assignment is turned in by the end of the next class, the penalty is 25%; by the end of the next class, 50%; and so on. The late penalty will be excused with a doctor's note if class is missed due to illness.

Students with Disabilities:

If you have a documented disability that will impact your work in this class, please contact the professor to discuss your needs. Additionally, you will need to register with the Disability Support Services Office in the Ley Student Center.

Honor Code:

The final exam is pledged. Homework assignments are meant to help you understand the material, so you are free to discuss the general nature of the concepts with anyone. However, the actual description of the answer and any specific calculations should be done individually. If you are in doubt about how much to ask/divulge about a specific problem, you might work through a problem that is conceptually similar to the one assigned. Copying down someone else's answer (or allowing someone to copy yours) is an honor code violation.

Fall 2019

Topics to be Covered

м	7 u c	26	Introduction to Stars and Observing Moole	C1 2 1
M	Aug		Introduction to Stars and Observing Tools	G1,3-4
W	-	28		G5 G5-6
F	Aug	30	Radiation: Terms and Definitions II; Black Bodies Labor Day	62-0
W	Sep	4	Radiative and Convective Energy Transport I	G7
F	Sep		Radiative and Convective Energy Transport II	G7
М	Sep	9	The Continuous Absorption Coefficient I	G8
W	_	11	The Continuous Absorption Coefficient II	G8
F	Sep		The Model Photosphere I	G9
М		16	The Model Photosphere II	G9
W	Sep	18	Stellar Continua	G10
F		20	The Line Absorption Coefficient I	G11
М		23		G11
W	Sep	25	Spectral Lines I	G12-13
F	Sep	27	Spectral Lines II	G13
М	Sep	30	Radii and Temperatures	G14
W	Oct	2	Stellar Temperatures	G14
F	Oct	4	Pressure in the Atmosphere	G15
М	Oct	7	Chemical Analysis I	G16
W	Oct	9	Chemical Analysis II	G 16
F	Oct	11	Turbulence in the Atmosphere	G17
М	Oct	14	Midterm Recess	
W	Oct	16	Rotation and Advanced Topics	G17 & handouts
F	Oct	18	Intro to Stellar Structure & Pressure of Perfect Gas	C2.1
М	Oct	21	Mechanical Pressure of a Perfect Gas II	C2.1
W	Oct	23	Homologous Stellar Models	C2.4
F	Oct	25	Polytropes I	C2.4
М	Oct	28	Polytropes II	C2.4
W	Oct	30	Quasistatic Changes of State I	C2.2
F	Nov	1	Quasistatic Changes of State II	C2.2
М	Nov	4	The Ionized Real Gas	C2.3
W	Nov	6	Energy Transport: Radiative Diffusion	C3
F	Nov	8	Energy Transport: Convection	C3
М	Nov	11	Nuclear Reaction Rates I	C4.1-4.2
W	Nov	13	Nuclear Reaction Rates II	C4.8
F	Nov	15	Proton-proton Chains	C5.1-5.3
М	Nov	18	CNO Cycle	C5.4
M	Nov	20	He Burning	C5.5
F	Nov	22	He Burning and Beyond	C5.5-5.7
М	Nov		Calculations of Stellar Structure	C6.1-6.3
M	Nov	27	-	C6.5 & handouts
F	Nov		Thanksgiving Break	
М	Dec		1	C6.6 & handouts
M	Dec			C6.7 & handouts
F	Dec	6	Compact Objects & Stellar Pulsation	C6.7 & handouts