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ABSTRACT

The construction of prediction intervals and regions and their probability content for

nonlinear systems with nonparametric disturbances is considered. The semiparamet-

ric efficiency bound for estimating the probability content of a known interval (region)

and estimators that attain the bound are developed. Semiparametric efficient estimation

of optimal prediction intervals (regions) which either (i) maximize probability content

given interval length (region area) or (ii) maximize interval length (region area) given

probability content is studied. The estimated probability content of (i) is found to have

the same limiting behavior as if the interval (region) were known with certainty and

hence attains the semiparametric efficiency bound. Further, the estimated probability of

the estimated interval (region) approximates the true coverage probability to order
√
n

for (i) but order smaller than
√
n for (ii). A Monte Carlo experiment is conducted to

compare the new predictors to competitors.

KEYWORDS: Semiparametric efficiency bound, optimal prediction intervals,

prediction regions, nonlinear systems
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1. INTRODUCTION

The conditional prediction problem involves developing knowledge of the distribution of the pre-

dictand variable(s) outside the sample period given certain conditioning information. The attribute

of this distribution that has received the most attention is its center, as manifested by, say, the con-

ditional mean. This point prediction problem is well-studied for linear models, where the problem

reduces to finding the center of the distribution of the disturbances, typically zero, and substituting

parameter estimates into the conditional mean function. In nonlinear (in the variables) models,

this problem involves more complete knowledge of the distribution of the disturbances, and has

been addressed through the use of simulation techniques to estimate the conditional mean using

draws from an estimate of the distribution of the disturbances. This distribution could either be

parametric as in Howrey and Kelejian (1971) or nonparametric as in Brown and Mariano (1984).

Beyond point prediction, we are interested in determining a range of values of the predictand

variables and some measure of the probability of falling in the range. Fixing the probability at

a given value, the problem becomes one of developing an appropriate interval in the univariate

case and an appropriate region in the multivariate case. Again, for linear models, a great deal

is known if, in addition, the disturbances are assumed to be normal. In this case, the predictand

is conditionally normal and completely characterized by its mean and covariance matrix and the

construction of prediction intervals and regions is straightforward and well-studied. In particular,

the target intervals and regions can be represented as known functions of estimated parameters that

are appropriate, at least asymptotically and, for some cases, in finite samples. Similarly, if the

distribution of the disturbances is nonnormal but still parametrically specified, the intervals and

regions can generally be represented as known functions of estimated parameters that are, at least

asymptotically, appropriate.

Unfortunately, if the model is nonlinear in the variables or the distribution of the disturbances

is nonparametric then the construction of the intervals and regions is somewhat more complicated

and less well studied. Although the construction of prediction intervals and regions is an obviously

important topic and most predictive models are nonlinear in the variables, there has been very

little work concerning the behavior of prediction intervals and regions in nonlinear simultaneous

systems. Likewise there has been very little work on prediction intervals and regions in linear

models when the distribution is not specified. An exception is the unpublished paper by Brown and

Mariano (1991), which considers Monte Carlo simulation-based prediction intervals and regions

when the distribution of the disturbances is known and residual-based prediction intervals and

regions when the distribution in not specified.

The purpose of this paper is to develop techniques appropriate for construction of prediction in-

tervals and regions when the disturbances are nonparametric and the structural model is nonlinear.

The research presented in this paper builds on the residual-based techniques in Brown and Mari-

ano, which are appropriate for models where the disturbances are independent of the regressors.

The approach introduced in Brown and Newey (1998) for semiparametric efficient estimation of

1Partial support from NSF grant SES-9905816 is gratefully acknowledged. The author wishes to thank Mahmoud

El-Gamal and especially Roberto Mariano, my co-author on the related 1991 paper, for helpful discussions.
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expectations is applied to develop semiparametric efficient estimates of the probability content of

known intervals and regions for parametric models with nonparametric disturbance distribution.

Beyond known intervals and regions, intervals and regions that have asymptotic optimal properties

in the sense of minimal area for a given probability content or maximal probability content for

a given area are developed. Although explicitly developed for nonlinear systems, the techniques

should apply equally well to linear systems with nonparametric disturbance distribution.

The outline of the paper is as follows. In the second section, the basic model is introduced and

relevant previous results reviewed. The construction and properties of efficient prediction intervals

for semiparametric models, including optimal intervals, are presented in the third section. In the

fourth section, efficient semiparametric prediction regions, including optimal regions, are devel-

oped. The relative behavior of the proposed optimal predictors and their competitors are presented

and contrasted via a Monte Carlo study in the fifth section. The results are summarized and a

number of promising possible extensions are discussed in the final section. For the purposes of

this paper construction of a prediction interval or region is construed to include both the estimation

of the interval or region given a probability content and estimation of the probability content given

the interval or region.
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2. BASIC CONCEPTS

In this paper, we will consider prediction in a static nonlinear system with independent errors. The

data generating process for such a system can be represented

y = π(ε, x, β) (1)

where y is a g × 1 vector of endogenous variables, x is a k × 1 vector of exogenous variables, ε
is a g × 1 disturbance vector, π(·) is a g × 1 vector of known functions, and β is a p × 1 vector
of unknown parameters. The vector of driving variables (ε′, x′) are assumed to be jointly i.i.d.
with a joint distribution that satisfies independence of ε and x but is otherwise unspecified and
unrestricted, except for some smoothness restrictions. Note the distribution of the disturbances ε
are allowed to have a nonzero location parameter, say α = E[ε], so the parameter vector β does
not include an intercept.

We assume that the relationship between y and ε, given x, is one-to-one. Thus, we will restrict
our attention to models which have the unique inverse representation

ε = ρ(y, x, β). (2)

where ρ(·) is a known function. This inverse representation is usually interpreted as the structural
form of the model while the data generating process is the reduced form. A number of models

fall within this framework including the linear and nonlinear regression models and the linear

and nonlinear simultaneous equation models. In practice, the reduced form corresponding to a

particular structure may not be available in closed form but can be obtained through numerical

techniques.

We are interested in the conditional prediction of the endogenous variables for some outside

sample observation, denoted by subscript τ , given the values of the exogenous variables. The
prediction approaches introduced below will depend crucially on estimation of conditional expec-

tations of known functions of the endogenous variables yτ given the exogenous variables xτ . Due

to the independence assumption, such expectations have the canonical representation

µ(β, h) = Eβ,h[g(y)|x = xτ )] =

∫
g(π(ε, xτ ;β))fε(ε|h)dε (3)

=

∫
g(π(ρ(z;β), xτ ;β))fz(z|β, h)dz

=

∫
m(z, β)fz(z|β, h)dz

where g(·) and hencem(·) = g(π(ρ(·;β), xτ ;β)) are known q × 1 functions, fε(·|h) is the density
of ε, fz(z|β, h) is the density of z, and h is an unknown function to reflect the distribution free
nature of the specification. The last line is the canonical expectation studied in Brown and Newey

(1998) with restrictions implied by the form in the second line.

The essential complications in the estimation of µ are the unavailability of β and the inability to
perform the indicated integration since the distribution is unspecified. The most natural response

to these complications is to estimate β with, say, β̂ and approximate the integral with an average,
which does not necessitate specifying the distribution. Specifically, we propose the method of
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moments estimator

µ̂ = n−1
∑n

t=1

g(π(ε̂t, xτ ; β̂)) (4)

= n−1
∑n

t=1

g(π(ρ(zt, β̂), xτ ; β̂)),

where ε̂t = ρ(zt, β̂). The functions g(·) and m(·, β) are unrestricted except for some smoothness
in the expectation of the latter, which will be imposed below. This is the residual-based estimator

of the target expectation proposed by Brown and Mariano (1984).

It is instructive to examine several examples of residual-based estimators considered by Brown

and Mariano. For point prediction we are interested in γ(xτ ) = E[yτ |xτ ], whereupon g(y) = y,
and the method of moments estimator is given by

γ̂(xτ ) = n−1
∑n

i=1

π(ρ(zi, β̂), xτ , β̂). (5)

In measuring predictive accuracy, the second conditional moment Ω(xτ ) = E[(yτ − γ(xτ ))(yτ −
γ(xτ ))|xτ ] is important and may be estimated by

Ω̂(xτ ) = n−1
∑n

i=1

(π(ρ(zi; β̂), xτ ; β̂)− γ̂(xτ ))(·)′. (6)

And the conditional distribution function F1(c;xτ ) = E[1(y1 ≤ c)|xτ ], which is of direct interest
below, has g(y) = 1(y1 ≤ c) with

F̂1(c;xτ ) = n−1
∑n

i=1

1(π1(ρ(zi; β̂), xτ ; β̂) ≤ c) (7)

as its method of moments estimator.

Suppose that the data are generated by a parametric model which satisfies the semiparametric

assumptions and contains the truth. Such a model is called a parametric submodel since it is a

subset of the model consisting of distributions satisfying the assumptions. Formally, we suppose

z ∼ f(z|β
0
, h(η

0
)) (8)

where η
0
is a finite-length vector of shape parameters for the true distribution f(·), and a zero

subscript indicates the true parameter value. The set of parametric submodels, then, is defined as

the set of distributions which satisfy the semiparametric assumptions and

f i(z|β, hi(ηi)) = f(z|β
0
, h(η

0
)) (9)

for some θi = (β′, ηi′)′ = (β
0

′, ηi
0

′)′ = θi′
0
and all z, where ηi is a shape parameter for parametric

submodel i. Note that the length of the shape parameter vector ηi and hence θi may differ for
different parametric submodels.

Projections onto the spaces spanned by the scores of the parametric submodels are important in

determining the semiparametric estimators and efficiency bounds. Let Si
θ(z) = (Si

β(z)
′, Si

η(z)
′)′

denote the scores of a parametric submodel. Define the nonparametric tangent set as the mean

square closure of the union of all possible q-dimensional linear combinations of Sη(z), i.e.

T = {t ∈ R
q : E[t′t] < ∞,∃Bj, Sηj(z) s.t. E[‖t−BjSηj(z)‖2] = o(1)}, (10)
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where Bj are constant matrices with q rows and E[·] denotes expectation at the truth. Newey
(1989) has previously studied the estimation of the parameter vector β for the present model under
the independence assumption and shown that the nonparametric tangent set is given by

T = {t1(ε) + t2(x) : E[t1(ε)] = E[t2(x)] = 0}, (11)

where t1(·) and t2(·) are unrestricted functions except for the mean zero property. Note that the
residual of the projection of the score Sβ(z), for any parametric submodel which includes the truth,
on the nonparametric tangent set,

S(z) = Sβ(z)− Proj(Sβ(z)|T ), (12)

is known as the efficient score for β, where Proj(g(z)|T ) denotes the projection of g(z) on T .
Similarly, define the tangent set S as the mean square closure of the union of all q-dimensional

linear combinations of Sθ(z) for all regular parametric submodels satisfying the semiparametric
assumptions, i.e.

S = {s ∈ R
q : E[s

′s] < ∞,∃Aj, Sθj(z) s.t. E[‖s−AjSθj(z)‖2] = o(1)}, (13)

where Aj are constant matrices with q rows. As might be expected there is a close relationship
between the two tangent sets. More compactly, we can write S = {Bsβ + τ : τ ∈ T and B
is a constant q × p matrix}. By definition, Bsβ = Bs + B Proj(sβ|T ) = Bs + τ for τ ∈ T ,
whereupon S = {Bs+ τ : τ ∈ T }. Note that the two components are orthogonal, which implies
that a projection onto S can be obtained as the sum of the projection onto the two components.
Since a distribution is not explicitly specified in obtaining µ̂, the estimator will be semiparamet-

ric if β̂ is semiparametric. Specifically, β̂ should remain consistent for any distribution satisfying
the semiparametric assumptions. Accordingly, we make the following assumptions and obtain the

accompanying Theorem. Proofs are given in the Appendix.

ASSUMPTION 1: β̂ is asymptotically linear with influence function ψβ(z), E[ψβ(z)] = 0, and

Vβ = E[ψβ(z) · ψβ(z)
′] finite.

ASSUMPTION 2: M(β) = ∂ E[m(z, β)]/∂β′ exists and continuous on a neighborhood of β
0
.

ASSUMPTION 3: n−1/2
∑n

t=1
[{m(zt, β)−E[m(z, β)]}−{m(zt, β0

)−µ
0
}] stochastically equicon-

tinuous at β = β
0
.

ASSUMPTION 4: Vm = E[(m(z, β
0
)− µ

0
) · (m(z, β

0
)− µ

0
)′] exists and finite.

THEOREM 1: Suppose Assumptions 1-4 are satisfied, then

n1/2(µ̂− µ
0
)

d−→ N(0, Vµ), (14)

where Vµ = Vm +MVβM
′ forM = M(β

0
).

This result demonstrates that the method of moments estimator is consistent and asymptotically

normal under fairly standard conditions. Since we are comparing the estimators on the basis of as-

ymptotic variance, Assumption 4, which assumes the existence of a variance is fairly innocuous. It
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will be satisfied for indicator functions such as used below. Assumption 3, the stochastic equicon-

tinuity assumption, will be met if, for example, (m(zt, β) − E[m(z, β)]) satisfies a central limit
theorem throughout a neighborhood of β

0
. In particular, ifm(·) is an indicator function, as below,

this condition will be met. And the continuous differentiability condition, Assumption 2, is the

standard approach for obtaining derivative terms in the asymptotic expansion when the underlying

functions are discontinuous.

Based on the limiting covariance matrix, alternative method of moments estimators based on

different estimators β̂ can be ranked in terms of the Vβ. This suggests that a lower bound of some

sort is attained if the estimator β̂ is itself semiparametric efficient. The theorem below verifies this
conjecture using additional notation and assumptions. For each parametric submodel, define the

target parametric function in terms of the underlying parameters

µ(θ) = µ(β, h(η)), (15)

where θ = (β′, η′)′ and we have dropped the superscript i indexing the various parametric families.

ASSUMPTION 5: For all parametric submodels, Eθ[‖ψβ(z)‖2] exists and continuous on a neigh-

borhood of θ0.

ASSUMPTION 6: For all regular parametric submodels, µ(θ) differentiable and Eθ[‖m(zt, β0
)−

µ
0
‖2] exists and continuous on a neighborhood of θ0.

THEOREM 2: Suppose Assumptions 1-6 are satisfied, regular β̂ exists, E[S · S′] exists and

nonsingular, and [Vm +MV ∗
β M

′] is nonsingular, then µ̂ is regular and attains the semiparametric

efficiency bound V ∗
µ = Vm +MV ∗

β M
′ for β̂ semiparametric efficient.

Thus we see that the method of moments estimator attains the semiparametric efficiency bound

when based on β̂ semiparametric efficient, as was conjectured above. The above theorems provides
a more direct alternative to related results in Brown and Newey (1998). The results there targeted

Eβ,h[m(z, β)] with more general forms of m(·) and reduced to the present results under the as-
sumption of independence and m(z, β) = g(ρ(z, β), β). The basic difference is that condition
(d) in Theorem 2 there, which guarantees asymptotic independence with respect to the nuisance

parameters is not needed in the present context. In addition several of the conditions there can be

combined into a single simpler condition. Finally, the direct approach taken here avoids the need

to consider the theory of V -statistics, although it may be needed to develop the semiparametric
efficient estimator of β.
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3. PREDICTION INTERVALS

In this section, the estimation of prediction intervals and their probability content is considered.

In the presentation of this section, we will not discuss the most usual approaches to constructing

intervals such as intervals symmetric around the conditional mean or intervals with equal tail prob-

abilities. Instead, the focus is on the construction and estimation of optimal intervals and regions,

which will generally differ from the usual approaches. The approach considered in the follow-

ing subsection can be easily adapted to handle the construction of intervals symmetric around the

mean. In any event, for the cases where the usual approaches make the most sense and turn out to

be optimal, such as the linear model with normal disturbances, the optimal approaches introduced

below will turn out to be asymptotically equivalent.

3.1 Known Interval, Estimated Probability

We start by investigating the estimation of the probability of a known interval for, without loss of

generality, the first endogenous variable. Consider the half-open interval (c1, c2], and define

P k(c1, c2;xτ ) = Pr[(c1 < y1 ≤ c2)|xτ ] (16)

= E[1(c1 < π1(ρ(z;β0
), xτ , β0

) ≤ c2)|xτ ]

=

∫
1(c1 < π1(ρ(z;β0

), xτ , β0
) ≤ c2)fz(z;β0

, h0)dz

as the probability of y falling in the interval given xτ . We use the half-open interval because

the probability can then be written as the difference in two c.d.f.’s. Of course if the density is

continuous, then the difference in the probability content between an open, closed, and half-open

interval is zero.

Following Brown and Newey (1998), the efficient estimate of this conditional expectation under

the independence assumption is given by the average

P̂ k = n−1
∑n

i=1

1(c1 < π1(̂εi, xτ , β̂) ≤ c2) (17)

where ε̂i = ρ(yi, xi; β̂) and β̂ is a semiparametrically efficient estimator. And the asymptotic

limiting behavior of the estimator is given by application of Theorem 1 is

n1/2(P̂ k − P k)
d−→ N(0, P k(1− P k) + P k

βVβP
k′
β ) (18)

where P k
β = ∂ Ez[1(c1 < π1(ρ(z;β), xτ , β) ≤ c2)]/∂β

′|β=β0
. By Theorem 2, the covariance

matrix of this limiting distribution represents the semiparametric efficiency bound for estimation

of the probability content of the known interval (c1, c2] for Vβ = V ∗
β and is attained when β̂ is

semiparametric efficient.

3.2 Optimal Probability Interval (Given Length)

If the interval (c1, c2] is arbitrarily chosen, then it can likely be improved upon. Specifically, we
can often find an interval of similar lengthA = c2−c1 that has higher probability content. Suppose
that the distribution of y given x is unimodal, then we can formalize this notion by choosing the
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interval of given length A that has highest probability content:

max
c1,c2

P k(c1, c2;xτ , β0
, h0), s.t. c2 − c1 = A. (19)

If the conditional density fy|xτ (·|xτ , β0
, h0) exits and is continuous, then the first order conditions

for this optimization are fy|xτ (c2|xτ , β0
, h0) = fy|xτ (c1|xτ , β0

, h0) together with the side condition
c2 − c1 = A, which implicitly defines the unique solutions c∗

1
= c1(A;xτ , β0

, h0) and c∗
2
=

c∗
1
+A. Substitution of the optimal interval into the probability function yields P ∗(A;xτ , β0

, h0) =
P k(c∗

1
, c∗

1
+A;xτ , β0

, h0) as the probability content of the optimal interval.
In order to apply the method of moments approach to estimate the probability content of the

optimal interval, we must first estimate the nuisance parameter c∗
1
. Let f̂y|xτ (·;xτ ) denote a con-

sistent estmator, such as the kernel, of fy|xτ
(·, β

0
, h0) and take ĉ∗1 = ĉ1(A;xτ ) as the solution to

the implicit function f̂y|xτ (ĉ
∗
1
+A;xτ ) = f̂y|xτ (ĉ

∗
1
;xτ ). Then a feasible estimator of the probability

content of the estimated optimal interval can be estimated by

P̂ ∗ = n−1
∑n

i=1

1(ĉ∗
1
< π(ρ(yi, xi; β̂), xτ , β̂) ≤ ĉ∗

1
+A). (20)

Interestingly, the limiting distribution of this estimator is the given by

n1/2(P̂ ∗ − P ∗)
d−→ N(0, P ∗(1− P ∗) + P ∗

βVβP
∗
β )

where P ∗
β = ∂ E[1(c∗1 < π1(ρ(z;β), xτ , β) ≤ c∗

1
+ A)|xτ ]/∂β

′|β=β0
, which is the same as if c∗

1

were known with certainty. Thus, for β̂ semiparametric efficient, P̂ ∗ is the semiparametric efficient

estimator of the probability content of the true optimal interval, which is unknown but consistently

estimated by (ĉ∗
1
, ĉ∗

1
+A]

Ultimately, of course, we are interested in the coverage probability of the estimated interval

relative to the estimated probability. For y outside the estimation sample, which is appropriate for
outside sample prediction, and hence independent of (ĉ∗

1
, ĉ∗

1
+A], we can show

Pr[ĉ∗
1

< y ≤ ĉ∗
1
+A|xτ ] = E[E[1(ĉ∗1 < π(ε, xτ , β0

) ≤ ĉ∗
1
+A) | ĉ∗

1
, xτ ]|xτ ] (21)

= P ∗ +E[op(n
−1/2)] = P ∗ + o(n−1/2)

provided f̂y|xτ (·;xτ ) = fy|xτ (·;xτ , β0
, h0) + op(n

−1/4) and hence ĉ∗
1
= c∗

1
+ op(n

−1/4). Combining
the two results, we find that

P̂ ∗ = Pr[ĉ∗
1
< y ≤ ĉ∗

1
+A | xτ ] + n−1/2N(0, P ∗(1− P ∗) + P ∗

βVβP
∗
β ) + op(n

−1/2) (22)

= Pr[ĉ∗
1
< y ≤ ĉ∗

1
+A | xτ ] +Op(n

−1/2)

with the discrepancy between the true and estimated probability of the estimated interval resulting

from estimating the true probability content of the true optimal interval.

Given interval length, the motivation for using the optimal interval for making a probability

statement is clear. The complication is that we must estimate the endpoints of the interval as well as

the probability content. Although the endpoint estimators converge to their targets at a rate slower

than
√
n, the estimated probability P̂ ∗ will converge to the probability content of the estimated

interval at a
√
n rate. Moreover, it is easy to see that

√
n(P̂ ∗−Pr[ĉ∗

1
< y ≤ ĉ∗

1
+A | xτ ])will attain

8



a lower bound when
√
n(P̂ ∗ − P ∗) attains a lower bound. Thus, P̂ ∗ provides a semiparametric

efficient estimator for the probability content of the true and estimated optimal intervals.

Attaining a faster than n1/4 rate of convergence for the kernel estimator f̂y|xτ (·;xτ ) may be
a problem if yτ and/or xτ are of high dimension. The dimensionality intoduced by the condi-

tioning variables can be eliminated, however, by using a restricted kernel estimator. Due to the

independence assumption, we have fy|x(y|x) = fε(ρ(y, x;β)) |det (∂ρ (y, x, β) /∂y)| and the cor-
responding estimator

f̂y|x(y|x) = f̂ε(ρ(y, x; β̂))
∣∣∣det(∂ρ(y, x, β̂) /∂y

)∣∣∣ , (23)

where f̂ε(·) is the kernel estimator of the density of ε and will not suffer from the dimensionality
of x. If ε is a long vector, with more than three elements, then we will need to utilize higher-
order kernels to attain the required rate of convergence. An added benefit of using the so-restricted

kernel is that the corresponding c.d.f. estimator has the properties of a smoothed unconditional

c.d.f.estimator and will have a
√
n rate of convergence.

3.3 Optimal Length Interval (Given Probability)

The dual to the above optimization with respect to the interval is probably of more interest. Specif-

ically, for a given probability content, we can choose the interval to be minimal length. Continuing

to assume unimodal behavior this problem can be formalized as

min
c1,c2

A = c2 − c1, s.t. P k(c1, c2;xτ , β0
, h0) = P (24)

which has as first order conditions fy|x(c2;xτ , β0
, h0) = fy|x(c1;xτ , β0

, h0) together with the side
condition P k(c1, c2;xτ , β0

, h0) = P . Let A∗ denote the value of A at the minimum, then c∗
2
=

c∗
1
+A∗ at the minimum and c∗

1
= c1(A

∗;xτ , β0
, h0), which is the same as before, by the first-order

conditions. Substitution into the side condition yields A∗ as the unique solution to the implicit

equation

P = P k(c1(A
∗;xτ , β0

, h0), c1(A
∗;xτ , β0

, h0) +A∗;xτ , β0
, h0) (25)

while c∗
1
= c1(A

∗;xτ , β0
, h0) and c∗

2
= c∗

1
+ A∗. This is easily seen as the inverse function to the

solution of the maximum probability given length problem, presented in the previous subsection,

and in a certain sense is a quantile.

The optimal endpoints can be estimated directly by ĉ∗
1
= ĉ1(Â∗;xτ ) and ĉ∗

2
= ĉ∗

1
+ Â∗ where

the corresponding estimated interval length Â∗ solves the implicit system

P = F̂y|xτ (ĉ1(Â
∗;xτ ) + Â∗;xτ )− F̂y|xτ

(ĉ1(Â∗;xτ );xτ ) (26)

and F̂y|xτ (·;xτ ) is the smoothed estimated c.d.f. corresponding to f̂y|xτ (·;xτ ). More directly, we

can use the difference in the empirical c.d.f.’s and take Â∗ as the solution to

Â∗ = sup
A

(
n−1

∑n

i=1

1(ĉ1(A;xτ ) < π(ρ(yi, xi; β̂), xτ , β̂) ≤ ĉ1(A;xτ ) +A) ≤ P
)

(27)

which is the inverse of P̂ ∗, the estimated probability function, given in the previous subsection.

The supremum is used since the empirical probability function is a step function and only asymp-
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totically one-to-one.

In either case, analogous to above, we can show that

n1/2(Â∗ −A∗)
d−→ N(0, fy|x(c

∗
1
;xτ ;β0

, h0)
−2{P (1− P ) + PβVβPβ}) (28)

where nowPβ = ∂ Ez[1(c
∗
1
< π1(ρ(z;β), xτ , β) ≤ c∗

1
+A∗)]/∂β′|β=β0

with the limiting covariance

matrix representing a semiparametric efficiency bound for estimation of the optimal length. And

for outside sample prediction, provided f̂y|xτ (·;xτ ) = fy|xτ
(·;xτ , β0

, h0)+ op(n
−1/4), we similarly

find that the probability content of the estimated optimal interval with given probability content is

given by

Pr[ĉ∗
1

< y ≤ ĉ∗
1
+ Â∗|xτ ] = E[E[1(ĉ∗1 < π(ε, xτ , β0

) ≤ ĉ∗
1
+ Â∗)|ĉ∗

1
, Â∗, xτ ]|xτ ] (29)

= P +E[fy|x(c
∗
1
;xτ , β0

, h0)(Â∗ −A∗) + op(n
−1/2)|xτ ]

= P +E[n−1/2N(0, P (1− P ) + PβVβPβ) + op(n
−1/2)|xτ ] = P + o(n−1/2).

Thus, although the endpoints of the estimated optimal interval (ĉ∗
1
, ĉ∗

2
] have a slower than

√
n

rate of convergence, the probability content of the estimated interval converges to the ostensible

probability at a faster than
√
n rate.

3.4 Multimodal Distributions

In the above discussion, we assumed that the conditional distribution of y1 was unimodal. If

the distribution is multimodal then the approach will need some modification. Specifically, we

must entertain the possibility that the interval will be discontiguous with one sub-interval for each

mode. The general optimality approach will still work with either the total length of the intervals

set and the probability content maximized or the probability content set and the total length of

the intervals minimized. The first-order conditions will be the same with the density the same

at all the endpoints of the subintervals. It turns out that there is a more direct approach that

works for both the unimodal and multimodal optimal prediction interval and also for choosing

the optimal prediction region for the multivariate case. Accordingly, I turn now to the prediction

region problem.
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4. EFFICIENT PREDICTION REGIONS

In this section, the estimation of prediction regions and their probability content is considered.

The objective, of course, is to make conditional probability statements regarding a vector of en-

dogenous variables rather than a scalar endogenous variable as in the previous section. As in the

previous section, we will only discuss the construction and estimation of optimal intervals. There

are both advantages and disadvantages for prediction regions for a complete vector compared to a

vector prediction intervals applied to each element of the vector. The advantage is that area of the

region implied by the union of the univariate intervals is almost ivariabley larger than an optimally

constructed region. The disadvantage is that prediction intervals are much easier to interpret and

more easily understood by the uninitiated.

4.1 Known Region

We first examine the estimation of the probability content of a known region. Suppose R de-

notes some region in the space of feasible values of y. Then, analogous to the interval case, the
probability content of the region is given by

P k(R;xτ , β0
, h0) = Pr[(y ∈ R)|xτ ] (30)

= E[1(π(ε, xτ , β0
) ∈ R)|xτ ]

= E[1(π(ρ(z;β0
), xτ , β0

) ∈ R)|xτ ].

The method of moments estimator of the probability content P k(R;xτ , β0
, h0) is the residual-

based estimator P̂ k = n−1
∑

i 1(π(̂εi, xτ , β̂) ∈ R) which, by Theorem 1, will have the limiting

behavior

n1/2(P̂ k − P k)
d−→ N(0, P k(1− P k) + P k

βVβP
k
β ), (31)

where P k
β = ∂ E[1(π(ρ(z;β), xτ , β) ∈ R)|xτ ]/∂β

′|β=β0
. With some regularity, as indicated by

Theorem 2, the covariance matrix of this estimator is the semiparametric efficiency bound for

estimation of the probability content of the known region when Vβ = V ∗
β . This efficiency bound

will be attained by the method of moments estimator if β̂ is semiparametric efficient.

4.2 Optimal Probability Region (Given Area)

Consider the choice of an optimal region given that the region has a given area or volume. First

we need to give some structure to the choice of the optimal set. Let A denote the set of Borel-

measurable sets with volume A, then our problem is choosing from among A the set R∗ with

maximal probability measure. That is,

R∗ = argmax
R∈A

P k(R;xτ , β0
, h0). (32)

where A = {B ∈ B(Rg) : V (B) = A}. Under sufficient smoothness, a necessary condition that
the maximizing set must satisfy is that it be a member of the level sets of the density, which are

defined by R(q) = {y : fy|x(y;xτ , β0
, h0) ≥ q} for any choice of the level q.

Note that V (R(q)), the volume of such regions, is monotonically decreasing in q. If the

monotonicity is strict then we can find q∗ as the solution to the implicit function A = V (R(q)) =

11



∫
1(fy|x(y;xτ , β0

, h0) ≥ q)dy. More generally, if the monotonicity is not strict, then we have

q∗ = q(A;β
0
, h0) = inf

q
{
∫
1(fy|x(y;xτ , β0

, h0) ≥ q)dy ≤ A} (33)

and the optimal region is given byR∗ = {y : fy|x(y;xτ , β0
, h0) ≥ q(A;β

0
, h0)}. Substitution from

the definitions of q∗ and correspondingly R∗ into (30) yields

P ∗(A;x, β
0
, h0) = Pr[(y ∈ R∗)|xτ ] (34)

= E[1(fy|x(π(ε, xτ , β0
);xτ , , β0

, h0) ≥ q(A;β
0
, h0))|xτ ]

= E[1(fy|x(π(ρ(z;β0
), xτ , β0

);xτ , , β0
, h0) ≥ q(A;β

0
, h0))|xτ ]

as the probability content of the optimal region.

Operationally, we need to estimate q∗and hence R∗, and the probability content of the latter.

The complication with the first is the need to perform a multidimensional intergral. This may be

avoided by transforming to expectations and using averages

q̂∗ = inf
q
{n−1

∑n
t=1

[1(f̂y|x(y;xτ ) ≥ q)/f̂y|x(y;xτ )] ≤ A} (35)

where f̂y|x(·) is a consistent estimators of the multivariate conditional density. The optimal region
with area A may be estimated by R̂∗ = {y : f̂y|x(y;xτ ) ≥ q̂∗} and the corresponding probability
by

P̂ ∗ = n−1
∑n

t=1
1(f̂y|x(π(ρ(zt, β̂), xτ , β̂);xτ ) ≥ q̂∗)). (36)

In practice, q̂∗ as given by (35) can be obtained by a binary search since the estimated volume is
also monotonic by definition.

Note that the nuisance parameters f̂y|x(·) and hence q̂∗ will both be consistent but have slower
than n−1/2 rates of convergence. Nonetheless, the limiting behavior of the probability content

estimator is given by

n1/2(P̂ ∗ − P ∗)
d−→ N(0, P ∗(1− P ∗) + P ∗

βVβP
∗
β ) (37)

where P ∗ is defined immediately above and P ∗
β = ∂ E[1(fy|x(π(ρ(z;β), xτ , β);xτ , , β0

, h0) >

q(A;β
0
, h0))|xτ ]/∂β

′|β=β0
, which is the same as if the optimal region were known with certainty.

Furthermore, for β̂ semiparametric efficient, the method of moments estimator will attain the semi-
parametric efficiency bound for the estimation of the probability content of the known optimal re-

gion. Analogous to the interval results, we find that P̂ ∗ converges to Pr[y ∈ R̂∗ |xτ ], the coverage

probability of the estimated region, at the rate n−1/2 and moreover that n1/2(P̂ ∗ −Pr[y ∈ R̂∗ |xτ ])

attains a semiparametric efficiency bound, provided that f̂y|x(·) and q̂∗ converge to their targets at

a rate faster than n1/4.

4.3 Optimal Area Region (Given Probability)

We are likely more interested in the dual problem of choosing a region with given probability so

as to minimize the area or volume of the region. Let P denote the set of Borel-measurable sets

with probability measure P , then the problem is choosing from among P the set R∗ with minimal

12



volume. Formally, we have

R∗ = argmin
R∈P

V (R), (38)

where P = {B ∈ B(Rg) : M(B) = A} and M(·) is probability measure. As above, under
sufficient smoothness conditions, the minimizing set must be a member of the level sets of the

density. Since the probability measureM(R(q)) is also monotonic increasing in q, we have

q∗ = q(P ;β
0
, h0) = inf

q
{
∫
1(fy|x(y;xτ , β0

, h0) ≥ q)fy|x(y;xτ , β0
, h0)dy ≤ P} (39)

and the optimal region is given by R∗ = {y : fy|x(y;xτ , β0
, h0) ≥ q(P ;β

0
, h0)}. Substi-

tution into the volume operator yields A∗(P ;β
0
, h0) = V (R(q∗)) =

∫
1(fy|x(y;xτ , β0

, h0) ≥
q(P ;β

0
, h0)))dy.

Operationally, we do not need to estimate A∗ since it will be given directly as a result of esti-

mating q∗. Substitution of a sample average for the expectation in (39) and solving for q in terms
of P yields the following estimator for q∗:

q̂∗ = inf
q
{n−1

∑n
t=1

1(f̂y|x(π(ρ(zt, β̂), xτ , β̂);xτ ) ≥ q) ≤ P}. (40)

But this estimator is just the approximate inverse function for the estimated probability given by

(27) in the previous subsection. Corresponding to the results for intervals, we find that

n1/2(q̂∗ − q∗)
d−→ N(0, fy|x(q

∗;xτ ;β0
, h0)

−2{P (1− P ) + PβVβPβ}) (41)

where nowPβ = ∂ E[1(fy|x(π(ρ(zt, β), xτ , β), β0
, h0) ≥ q∗)]/∂β′|β=β0

. Given our estimator of q∗,

the estimated region is given directly as R̂∗ = {y : f̂y|x(y;xτ ) > q̂∗}. Note that q plays much the
same role as a quantile in the univariate case.

In the end, we are interested inPr[f̂y|x(π(ρ(zt, β̂), xτ , β̂);xτ ) > q̂∗|xτ ], the coverage probability
of the estimated region, relative to the given probability P . Following the development in the

previous section for intervals, provided f̂y|xτ
(·;xτ ) = fy|xτ (·;xτ , β0

, h0) + op(n
−1/4), we have

Pr[f̂y|x(y;xτ ) > q̂∗|xτ ] = E[E[1(f̂y|x(π(ε, xτ ;β0
);xτ ) > q̂∗|q̂∗, xτ ]|xτ ] (42)

= P +E[fy|x(q
∗;xτ , β0

, h0)(q̂∗ − q∗) + op(n
−1/2)|xτ ]

= P +E[n−1/2N(0, P (1− P ) + PβVβPβ) + op(n
−1/2)|xτ ] = P + o(n−1/2).

Thus, although the boundries of the estimated prediction region have slower than
√
n rates of

convergence, the probability content of the estimated region may converge to its ostensible value

at a rate faster than
√
n, as was the case with intervals.
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5. SAMPLING EXPERIMENT

In the previous two sections, we have examined the asymptotic behavior of the various prediction

interval and regions. It is of obvious interest whether or not the asymptotic properties also obtain

in small samples. In this section we shall attempt to address this issue by conducting a sampling

experiment for a nonlinear simultaneous system. In order to keep the calculation problem man-

ageable, the model is extremely simplified and has some rather special properties. As a result,

the findings regarding the small sample performance of the various estimators are not necessarily

applicable to more realistic models. Nevertheless, the study should give some indication of the rel-

ative performance of the alternative procedures in small samples. In particular, we are interested

in how quickly the large sample relative efficiencies assert themselves in this model.

For the sampling experiment, we utilize the following two-equation nonlinear model

yt1 = β
1
+ β

2
xt + ut1

yt2 = β
3
+ β

4
y2t1 + β

5
xt + ut2

where (ut1, ut2)
′ ∼ i.i.d. N (0,Σ), Σ = (σij). A special feature of this model is the availability of

a closed-form solution:

yt1 = β
1
+ β

2
xt + ut1

yt2 = β
3
+ β

4
(β

1
+ β

2
xt + ut1)

2 + β
5
xt + ut2.

As a result, the moments of yτ are readily obtainable in closed form.
(To be completed)
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6. CONCLUDING REMARKS

In this paper we have studied alternative procedures for obtaining prediction intervals and/or re-
gions in nonlinear simultaneous systems with independent disturbances. The need for attaching

probability values to our predictions is of obvious importance and has received considerable at-

tention in both the linear regression model and linear simultaneous equation model. Although a

substantial fraction of the models used for prediction are nonlinear simultaneous systems, very

little attention has been given to what procedures might reasonably be used to generate probability

values. The work presented in this paper applies the results on semiparametric efficient estimation

of expectation functions by Brown and Newey (1998) to the prediction interval/region problem

and thereby extends the previous unpublished work of Brown and Mariano (1991) on prediction

intervals and regions. The latter was only partially semiparametric since the parameter estimator

was assumed to be equivalent to maximum likelihood.

The construction of prediction intervals is examined in Section 3. The approach of Brown and

Newey is applied to obtain the semiparametric efficiency bound for estimation of the probabil-

ity content of a known interval. The limiting distribution of the method of moments estimator

of the probability content is developed and shown to obtain the efficiency bound when based on

semiparametric efficient parameter estimates. Optimal prediction intervals that maximize the prob-

ability content of the interval given the interval length are studied and feasible estimators of the

interval and their probability content developed. The feasible estimators of the probability content

is shown to be asymptotically equivalent to an estimator based on the true optimal interval. The

estimated probability is shown to differ from the coverage probability of the estimated interval by

terms of order and, moreover, the difference attains a lower bound when the method of moments

probability estimator is based on a semiparametric efficient estimator of β. The dual problem of
minimizing the interval length given the probability content of the interval is also considered. A

feasible estimator of such an interval is developed its asymptotic behavior examined. The coverage

probability of the estimated interval is shown to differ from the ostensible probability by term of

order smaller than
√
n.

The construction of prediction regions is studied in Section 4. The limiting behavior of the

method of moments estimator of the probability content of a known region is developed and shown

to attain the semiparametric efficiency bound when based on semiparametric efficient estimates of

the parameters. The construction and estimation of optimal regions which maximize probability

content given region area or volume is examined. The optimal regions are shown to be level sets

of the conditional density of the endogenous variables given the exogenous variables. Feasible

estimators that are based on nonparametric estimators of the density and method of moments es-

timators of the probability content are devised and shown to attain the semiparametic efficiency

bound for estimating the probability content of a known optimal region when based on semipara-

metric efficient estimates of β. Regions which minimize the area or volume of the region given
the probability are also studied and feasible estimators devised. The asymptotic behavior of the

feasible estimators of the region is developed. As with the interval case, the coverage probability

of the estimated interval is shown to differ from the ostensible probability by term of order smaller

than
√
n.

The results of a sampling experiment are presented in Section 5. (To be completed)

There are a number of directions in which the research outlined in this section can be extended.

The formal model analyzed is i.i.d., while most predictive models are dynamic in nature. It appears

that the results can be applied pretty much directly to stationary models with i.i.d. and independent
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innovations, but a number of details need to be worked out to formalize the extension. Another

interesting extension is to fully nonparametric prediction intervals and regions. The approach out-

lined above can be utilized to calculate optimal unconditional prediction intervals for models with

no systematic component. That is, we have no model for y but seek to construct optimal prediction
intervals and regions using estimated distributions. It appears that such estimated intervals and re-

gions will also be asymptotically independent of the nuisance parameters of the density estimator.

This result should be of great interest and needs to be worked out in greater detail.
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