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ABSTRACT

The instrumental variables (IV) approach has been widely applied in situations where
the structural model is parameterized but the disturbance distribution is nonparametric.
In this semiparametric setting, a great deal of attention has been given to the selection
of an optimal set of instruments. By and large, however, the suggested instruments have
been asymptotically endogenous (or predetermined) in the sense that they are functions
only of the exogenous (predetermined) variables and not the disturbances. In this pa-
per, I extend previous work to study endogenous instrumental variables estimation of
nonlinear systems under semiparametric assumptions. For the cases of disturbances in-
dependent of the exogenous variables, conditional symmetry, and a combination of both,
a simple and feasible endogenous instrumental variables estimator is developed. The as-
ymptotic behavior of the estimators is investigated and compared to previous estimators
of the model. The new estimators can be combined with previously proposed exogenous
instrumental variables estimators to obtain estimators that globally dominate the latter,
in terms of asymptotic quadratic loss. A Sampling experiment conducted on a simple
nonlinear model suggests that the new estimators can perform exceedingly well when
the underlying stochastic assumption is satisfied.

KEYWORDS: Instrumental variables estimation, semiparametric estimation,
nonlinear simultaneous systems, semiparametric efficiency bounds.
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OPTIMAL ENDOGENOUS INSTRUMENTAL VARIABLES ESTIMATION IN
NONLINEAR SYSTEMS
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1. INTRODUCTION

The instrumental variables (IV) approach has, rightfully, enjoyed a prominent position in the
econometrics literature. In particular, IV has been widely applied in situations where the structural
model is parameterized but the disturbance distribution is nonparametric. In this semiparametric
setting, a great deal of attention has been given to the selection of an optimal set of instruments.
By and large, however, the suggested instruments have been asymptotically predetermined in the
sense that they are functions only of the exogenous or lagged endogenous variables and not the
current endogenous variables or disturbances. Under various stochastic assumptions, including the
disturbances being independent of the predetermined variables or having conditional mean zero
given the predetermined variables, such instruments will be assured of being uncorrelated with the
disturbances. Of course, beyond uncorrelatedness with the disturbances, we seek instruments that
will maximize the efficiency (minimize the variances) of the resulting estimators.

For several leading cases, the optimal instrumental variables estimator turns out to have prede-
termined instruments and, moreover, attains the semiparametric efficiency bound. In static linear
models, under an independence assumption, the three-stage least squares estimator, which uses a
linear transformation of the exogenous variables as instruments, is the efficient instrumental vari-
ables estimator and, at least locally, attains the semiparametric efficiency bound. In static nonlinear
models, with disturbances unrestricted except to have conditional mean zero, Chamberlain [1987]
has shown that the estimator which achieves the semiparametric efficiency bound is an IV esti-
mator with exogenous instruments. Similarly, for (possibly) dynamic models, with disturbances
only restricted to have mean zero, the optimal GMM estimator, which attains the semiparametric
efficiency bound, is an I'V estimator with nonstochastic and hence predetermined instruments (see
Hansen [1984]).

More specifically, for the nonlinear model under more restrictive stochastic assumptions, such
as independence or conditional symmetry, there is no reason why functions of endogenous vari-
ables cannot be uncorrelated with the disturbances and hence improved estimators obtained through
the use of endogenous instruments. In a parametric context, Amemiya [1977] has shown that the
maximum likelihood estimator for the nonlinear simultaneous equation model with normally dis-
tributed disturbances has an instrumental variables interpretation with instruments, as it turns out,
that are functions of endogenous variables. In a semiparametric context, Hausman, Newey, and
Taylor [1988] have demonstrated that the maximum likelihood estimator under normality for the
linear model with covariance restrictions, which is really a nonlinear model, is an endogenous in-
strumental variables estimator and remains consistent under nonnormality and is hence semipara-
metric. Similarly, Brown and Mariano [1989] have argued that the maximum likelihood estimator
for a specific triangular nonlinear simultaneous equations model is a simple endogenous instru-
mental variables estimator and is consistent under a variety of misspecifications of the disturbance
distribution.?

T am endebted to Bobby Mariano, Xing Ming, Whitney Newey, and Ingmar Prucha for helpful comments at
various stages of the development of this paper. I am, of course, solely responsible for any remaining shortcomings.
2Breusch, Mizon, and Schmidt [1989], in a panel data model where the individual effects may be correlated with a



The objective of this paper is to systematically examine the possibilities for obtaining improved
instrumental variables estimators for nonlinear systems through the use of endogenous instrumen-
tal variables. The basic approach taken is to purge the regressors that would be used in the absence
of simultaneity of their linear relationship with the disturbances but preserve the remaining nonlin-
ear relationship. The formal model is introduced under a variety of stochastic assumptions, in the
next section, together with some basic asymptotic properties of instrumental variables estimators,
including endogenous I'V estimators. In the third section, a simple class of endogenous IV estima-
tors is introduced and analyzed, for each stochastic assumption, based on efficient estimates of the
residual of the regressors projected onto the disturbances. The semiparametric efficient estimators
for each stochastic model are shown to have an endogenous IV interpretation, in the fourth section
and compared to the simple endogenous IV estimators. A sampling experiment is conducted on
a simple nonlinear model, in the fifth section, to verify the validity of the asymptotic results in
moderate sized samples.

The major findings of this paper are the following. For the cases of disturbances independent
of the exogenous variables, conditional symmetry, and combined conditional symmetry and inde-
pendence, simple and feasible endogenous instrumental variables estimators are developed. The
asymptotic behavior of these estimators is established and compared to previous estimators of the
model. The new estimators are found to be consistent and asymptotically normal when the stochas-
tic assumption which underlies their form is satisfied. The new estimators are generally indefinite
relative to the familiar best nonlinear three-stage least squares estimator but may be combined to
obtain an estimator that globally dominates either. For some special cases, the new estimators
are found to locally attain their respective semiparametric efficiency bound when the true distri-
bution of the disturbances is normal. In the sampling experiment, which was an example of the
special case, the performance of the new estimators, particularly the combined independence and
symmetry estimator, was particularly promising.

2. MODEL AND BASIC CONCEPTS

Consider, as a point of departure, a static nonlinear system, which can be formally represented

€ = p(z,0), 2.1

where z is a (g+ k) x 1 vector of the observable variables, € is a g x 1 disturbance vector, p(y, x, 3)
is a g x 1 vector of known functions, and 3 is a p x 1 vector of unknown parameters. If (2.1) are the
structural equations of a simultaneous equation system, it is useful to to utilize the more explicit
representation

€= p(y,z, ), (2.2)

where y is a g X 1 vector of endogenous variables and z is a k£ x 1 vector of exogenous variables.
Since (2.2) may be viewed as the underlying structure which generates the joint behavior of the

subset of the explanatory variables, propose instruments that are not strictly exogenous in the sense that they include
linear transformations of the correlated variables. However, the linear transformations, as proper instruments, are
uncorrelated with the individual effects so the correlated variables can be rewritten as the simple sum of a component
which is linear in the proposed instruments and in a real sense is exogenous and another that is correlated. In fact,
they point out that we can write formal reduced form equations with the uncorrelated (transformed) variables as
explanatory variables.



observable variables, in the latter case, we assume the existence of the unique inverse relationship

y =m(ez,0). (23)

In practice, the inverse form given by (2.3), may not be available in closed form but can be obtained
by numerical solution techniques.

In this paper, we only consider the case where the vector of driving variables (¢’, z")’ are jointly
i.i.d. and hence the combined vector of observable variables z = (y/,2’) is also jointly .i.d.
The joint distribution of (¢’,z’)" will remain unspecified and unrestricted other than additional
assumptions on the degree and nature of the dependence between e and x and some smoothness re-
strictions, which makes this a semiparametric problem. The alternative additional semiparametric
assumptions, in rough order of increasing restrictiveness, are F[e¢] = 0, Ele|z] = 0, ¢ symmetri-
cally distributed given z, € independent of z, and € symmetric and independent of x. The vector
(6 will include intercept parameters and € will have mean zero except for the case where € is only
assumed to be independent of . The existence of an inverse relationship, as given by (2.3), is
not required for the zero unconditional mean and zero conditional mean cases. In any case, € is
assumed to have finite unconditional and conditional covariance matrices.

The instrumental variables approach is a straightforward way to transform the semiparametric
restrictions into a simple m-estimator. In a nonlinear model, the g X p matrix of derivatives

R(z,8) = 0p(2, )08 24

is analogous to the regressor matrix in a linear model. Proper instruments would be any similarly
dimensioned matrix function of the observable data, say ()(z), such that the instruments are, under
the semiparametric restriction, uncorrelated with the disturbances

0= E[Q(2)'e] = ElQ(2)'p(z, By)]- (2.5)

Based on the uncorrelated condition, we obtain the instrumental variables (IV) estimator as the
solution to the (possibly) nonlinear set of p equations

0="> " Q(z)p(z, ). (2.6)
t=1

For the moment we treat ()(z) as known and ignore the possibility that it might require estimates
of unknown parameters including [.

Under fairly general conditions, the asymptotic behavior of the estimator defined in (2.6) is well
known. Specifically, we have

n'2(B — By) = N[0, P~'M - P~V 2.7)

where
P =E[Q(2)'R(z, ()] finite and nonsingular
(2.8)
M =E[Q(2)'p(z, o) - p(z, Bo)'@ (2)] finite.
Implicit in (2.8) is the notion that the instruments should be sufficiently well correlated with the
regressors. In fact, it is widely argued that instruments should be as highly correlated with the
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regressors as possible, subject to the condition of orthogonality relative to the disturbances. This
argument will be formalized below.

In the absence of simultaneity, the most highly correlated instrument matrix is obviously the
regression matrix suitably transformed. Suppose the unconditional covariance matrix

Yo = Elp(z, By) - p(z, 50)/] — Elp(z,8y)] - Elp(2, 50)]/ (2.9

is nonsingular, then the instruments

Q(2) = Zy ' R(z, B,) (2.10)
define the nonlinear seemingly unrelated regression (NLSUR) as the solution to the equations

A

0= R(z0B)S "z, B). 2.11)
t=1

where B and ¥ are preliminary estimators. The problem, in general, is that

E[R(z,85)' 55" p(2, By)] = d # 0, (2.12)

due to simultaneity, whereupon the NLSUR estimator will be inconsistent.

The first line of defense against simultaneity has typically been to utilize predetermined or, in
the current static model, exogenous instruments. By exogenous instruments, I mean that the instru-
ments are, at least asymptotically, not a function of the disturbances. Prominent examples of the
use of exogenous instruments are GMM for the zero unconditional mean case and Chamberlain’s
[1987] estimator for the zero conditional mean case. In addition, for the cases where Ee|x] = 0
and Elee’|z] = ¥y, Amemiya [1977] has proposed the best nonlinear three-stage least squares
instruments

Q(z) = 5y 'R(x,6,) (2.13)

where ¥ is given above and

R(x,0y) = E[R(z, f)|a]. (2.14)
In fact, these are the optimal instruments that are functions only of x. Various authors have shown
how asymptotically appropriate estimators of these instruments can be utilized to obtain a feasible
BNL3S estimator which is asymptotically equivalent to the estimator that uses the true values in
(2.13) as instruments.’

The basic idea behind the exogenous instruments is to purge the regressors completely of any
relationship with €, leaving only possible dependence on x. In fact, according to the criteria intro-
duced above, all we want to do is purge the regressors of their linear relationship with the distur-
bances. In a linear model, where we can decompose the solution of the model into the sum of an
exogenous component depending only on x and a endogenous component depending only on €, the
two approaches are equivalent. In nonlinear models, however, there is a real distinction between
purging the regressors of only the linear relationship, which would leave endogenous instruments,
and purging the regressors completely of any relationship, which would leave exogenous instru-
ments. It is conceivable that the endogenous instruments will be more highly correlated with the

3See Brown [1990], Robinson [1991], Newey [1990a], and Rilstone [1989] for various approaches to feasible
BNL3S.



regressors and hence yield improved precision relative to a exogenous approach. Consequently, in
the sequel, we consider the possibility that ()(z) is a nontrivial function of e.

If the instruments involve unknown parameters, the usual procedure has been to use preliminary
estimates and proceed as when the instruments are known. Formally, we have

0=n""2>"Q(z,0) p(z, B) (2.15)
t=1
where 0 is a preliminary estimator of § = (3',7’)" and 7 is a vector of nuisance parameters.

Unfortunately, this approach is (potentially) problematical when the instruments are endogenous.
This is best seen through the following asymptotic expansion, which is valid under fairly general
conditions that rule out complications from 7,

0 = n/2 Z?:l Q(z1,00) p(21, By) + n! Z?:l Q(2t,00)' R(z, By) - nl/Q(B — Bo)
+ 30 YT {0Q (2, 00)/08: Y p(24, By) - n1/2<Bi — Bio) + 0p(1).

(2.16)

Solving for n'/ Q(B — f,) we find the asymptotic distribution of 3 depends, in general, on the

distribution of n!/2(3 — f3,) unless E[{8Q(z,6,)/08,}p(z,3,)] = 0. Consequently, we must
iterate on the preliminary estimator of 3 as well, which means we are effectively solving

A

0=n"""3"Q(z, 8,1 p(z, B)- (2.17)
t=1

The appeal of the exogenous instruments is now evident, since E|e|x] = 0 implies the condition
will likely be met if Q)(z, 6) is a function only of .
The asymptotic behavior of the estimator yielded by (2.17) is somewhat different when E[{0Q(z, 00)/00,}
0. Assuming that estimation of 7 introduces no additional problems, the asymptotic behavior of
the estimator is still given by

n'2(B — B,) = N[0, P'M - PV, (2.18)
as in (2.6), but now
P = E[0{Q(z, By, n,) p(z, B3)}/ 3] finite and nonsingular

M = E[Q(z,00)'p(2, By) - p(2;8y)' Q(2, 0o)] finite.

Under fairly general conditions, these components can be consistently estimated for inference
purposes by

(2.19)

P =01 [0Q4 (2, 8,7) p(z, 8)}/ 5]
M =0t S0 Q120 8,71) (21, B) - plat, BYQUz4, B.70)].

Strictly speaking, we do not have to iterate to convergence to obtain this asymptotic behavior, but
may stop after one step of a Newton-Raphson procedure.

(2.20)
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3. A SIMPLE CLASS OF IV ESTIMATORS

In this section, we obtain a class of estimators by directly applying the criteria for instruments
laid out in the previous section. Specifically, we will attempt to utilize instruments that are un-
correlated with the disturbances but are as highly correlated with the regressors as possible. This
will be accomplished by purging the instruments only of the component that is correlated with the
disturbances. We will first introduce the general approach and point out some possible difficulties
and then apply the approach to each of the stochastic cases mentioned in the previous section.
In many of these cases, the new approach yields endogenous instruments with a rather natural
interpretation.
Consider the i™ column of the regressor matrix

ri(z,80) = R(z,B8o) - i 3.1

where e; is a p x 1 vector which is zero except for element ¢, which is unity. The corresponding
instrument which is uncorrelated with € = p(z, 3,) but most highly correlated with r;(z, 3,) is
given as the residual of the least squares projection

r;‘k<z>90) :Ti<z>ﬁ0) _Ci 'D_llo<z>ﬁ0) (32)

where C; = Elri(z,0,) - p(z,0,)] and D = E|p(z, B,) - p(z,5,)']. If we first transform as with
the SUR estimator, then the optimal instruments by the criteria set out above, are

Q(z) = S 'R (x, By, o) (3.3)

where rf(z, 5,) = R*(z,0,) - e; and 1 consists of D and the various C;. Note that D # X is
possible for cases, such as independence, where E[p(z, 3,)] = 0 is not guaranteed.

Now E[{0Q(z,60)/08,;} p(z, By)] # 0, in general, for this choice of Q)(z), so we will not use a
preliminary estimator of 3 in the instruments. Accordingly, a feasible IV estimator based on these
instruments is given by

0=">"R*(z,3,7)S " pla1, B) (3.4)
t=1

where 17 = (ZND, 5’,) and . are preliminary estimators. The problem is, of course, the appropriate

choice of estimators for D, C; and Yy. Unfortunately, if, based on a preliminary estimator (3, we
use the rather natural sample analogs as estimators of these expectations, namely

D =n" Y0z, B) - ol BY

gi :@_1 Z?:1 ri('ztaﬁ) : gztaﬁ)/ _ (35)
S=D—[nT 30 ez, B)] - [T 2o oz B

then the estimator proposed here becomes trivial, as will be seen below, since B = 3 will satisfy
(3.4). The solution proposed in this section is to utilize the efficient semiparametric (distribution
free) estimators of the expectation functions proposed in Brown and Newey [1992]. Of course, as
was shown in that work, the form of the estimators depends on the stochastic restriction employed.

Considerable insight can be gained into this approach by placing (3.4) in an alternative repre-
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sentation. Let7) = (D, C’,) and 3 be our estimators, then the i —th estimating equation becomes:

~

0 = Zt 17 (Ztaﬁ 77) (Ztaﬁ
= Zt l[rl<zt7 ) (ZbB) (ZbB)/D_lCA’z(i_lp(Zt)B)]
= Z?:l [tr{i_lp<zt> B) : ri('zta B)/} - tr{D_léz(i_lp<zt> B)p<zt> B)/}]

(3.6)

— r[S1C) — tr[S1D - D7ICY)

where the last line follows from division by n and a redifinition of the expressions in (3.6) using B.
Obviously, for D =D and C; = C;, the equation is satisfied tr1v1ally for whatever value of [ was
used in forming the estimators. More generally, for C; CibutD=DorD—D =o ,(n=12),
as turns out to be the case for the conditions of interest considered below, then

0= tr[2'CY — tr[S71CY 4 0,(n1?). (3.7)

The first term can be seen to be the NLSUR estimating equation while the second term introduces
a correction for the fact that the first term converges to a nonzero value, in general, when evaluated
at the true parameter point 3,,.

The general approach will now be applied to the case where the disturbances are unrestricted
except to have zero mean. This assumption results in a model for which GMM has been suggested
as the optimal approach. Define ¢; = vec(C;), d = vec(D), and

n

S=D=n"Y"[p(z0) - plz,B)). (3.8)

t=1

Applying the results of Brown and Newey for this case yields
=0 Yoz, 8) @ rilz1, B)) — {n 7" iy (024, B) @ 725, B)) - plze: B) YD (21, B)]

d=n""Y0 [(p(21, B) @ plze, B)) = {n7P Yoy (plz6, B) @ (25, B)) - p(2s, B) 3D pl(21, 3)]
(3.9)

as the efficient estimators of ¢; and d. Substituting these estimators into (3.6) or (3.8) and rearrang-
ing, we obtain

/\

n

"> oz, 8)] +0(D= D). (3.10)

t=1

0= ‘1Zth, VS (2, B) - plze, B) )5

Under the assumptions of local behavior introduced in the next section, D — D will be 0,(n=1/2),
so we define our estimator as the solution to the first term in (3.10).

This estimator has obvious similarities to the GMM estimator. Given the known optimality
of GMM under the current stochastic assumption, the new estimator is not proposed as a serious
alternative. Rather it is presented for completeness and also because it gives us additional insight
into where and why the new estimator falls short. Under fairly general conditions this estimator

7



will be consistent and have the following limiting behavior:
n'2(B — B,) % N[0, (R S5'R) 'R « SR * (R'Sy " Rx) Y] (3.11)

where R = E[R(z, 3,)] and Rx = E[p(z, By)-p(2, By) Eo ' R(2, B,)]'. Obviously, this estimator
will be equivalent to GMM if R = Rx. More will be said on the relationship between the two in the
next section. It is worth noting that, since the resultant instruments are asymptotically exogenous,
the same asymptotic behavior will result if we use any preliminary estimator of (3 in forming 5
and the first bracketed component in (3.10).

We next turn to the related case where the disturbances are only assumed to have zero mean
conditional on x. This form of the model allows for unspecified conditional heteroskedasticity and
has been analyzed extensively by Chamberlain [ 1987], who has established the lower bound and an
efficient semiparametric estimator for the problem. According to Brown and Newey, the efficient
estimators of ¢; and d would have the form

G =n"t 0 {(p(2, B) @ 1i(2, B) — El(pl(2, B) @142, B)) - p(2, B) |2 =7 p(21, B) }

d=n""S1 {(p(2, B) ® plz1, B)) = Ellp(2,5) © p(=, ) - pl=, B |l £, (22, B)
R (3.12)
where E|[-|x] indicates an appropriate conditional expectation estimator such as the kernel. If we
define

¥ = Dy = Elp(2,5) - p(z, B |x] (3.13)
as the corresponding estimator of the conditional covariance some algebra yields

n

0=n"> E[R(zB)S, p(z, B) - plar, BY |25 p(20, B) + Op(D — D). (3.14)

t=1

We again take the first term as our estimator since the last will be 0, (n~!/2) under the local behavior
of the next section.

Not too surprisingly, this estimator is closely related to an estimator based on the suggestions of
Chamberlain. As in the previous case, we do not propose the new estimator as a serious alternative
so much as proof that the basic approach advocated in this section generates reasonable estimators.
Under apprpriate conditions, we find the estimator is consistent and has the following asymptotic
behavior

n'2(3 — By) =% N[0, P7'M - PV (3.1)
where now

P = E[R,'S'R)]
(3.16)
M = B[RS 'R,]

and for convenience R, = R(z,3,) and R, = E[R(z,3,)'S: p(2, 8,) - p(2, B,)'|x:]. This esti-
mator will be asymptotically equivalent to that proposed by Chamberlain if R, = E[R(z, (,)|z.).
Since the resultant instruments are again exogenous we could use a preliminary estimator for 3 in
the instruments.



In each of the previous two cases, the approach advocated in this section yielded interesting
instruments but they were exogenous rather than endogenous. That is, purging the regressors of
that component which is correlated with the disturbances also purged them completely of any
stochastic relationship with the disturbances. Strengthening our stochastic assumption to require
that the disturbances be independent of x does, however, yield endogenous instruments. Following
Brown and Newey for this case we find

& =n"" Y n S {p(m(p(, B), 24, B) @ ri((p(2r, B), 34, B), 2, B)}
d=n"! > i to(z, )®,0<2t>5)}

are the efficient estimators of ¢; and d. Substituting into (3.8) and rearranging, we obtain

(3.17)

0=n" }j (2,8) —n~ §}R (P20, ), 24, B), 70, B)YE (24, ) (3.18)

as our feasible estimating equation. The instruments generated by the approach of this section are
clearly endogenous for this case, even in large samples.

This estimator has a close relationship, which will be revealed in the next section, to an estimator
proposed by Newey [1989]. In particular, the presence of the double summation means that the
estimator is an example of a v-statistic as studied by Serfling [1980]. Given regularity conditions
of the type utilized there, we find that the estimator generated by (3.18) is consistent with the
following asymptotic distribution:

n'2(3 = B,) = N[0, P"'M - P~ (3.19)
where
(2, 8) = {R(z,8) — E[R(n(p(z, 8), 2, B), 2, 8)|(p(z, B)]} 5" p(z, B)
P = E[0y(z,3,) /00 (3.20)
M = E[¥(z, B,) - ¥(z Bo)'].

This estimator bears an interesting relationship to the BNL3S estimator proposed by Amemiya
[1977]. There the target instruments are ¥; ' E[R(z, 3,)|x] whereas in the current estimator they
are X, "{R(z, B,) — E[R(z,3,)|€]}. Although it does not appear possible, in general, to rank these
alternatives according to asymptotic efficiency, we should be able to easily combine the two to
obtain an estimator that dominates both, in general.*

An alternative to independence, in strengthening the assumption of zero conditional mean, is to
impose conditional symmetry of the distribution of the disturbances about zero, given z. According

4We simply form a GMM est1mat10n problem by combining the moment condition underlying (3.19), namely
E{(R(z,By) — [ (z Bo)lel) =g tp(z, By)} = 0 with the moment condition underlying BNL3S, namely,
E{E[R(z, 3,)|z]' Sy ' p(z, B5)} = 0 to obtain an overidentified system of 2» momemt conditions in the p unknown
(. We estimate Xy and E[R(z, 3;)|€] as in the text above and proceed with GMM using an estimated optimal weight
matrix. This estimator should dominate both of the just-identified estimators except in the cases, given in Section 5,
where the endogenous IV approach is locally optimal.



to Brown and Newey, the estimator of D = 3}, is the same as the previous case, while

éi = n_l Z{p<zt> B) ®71i<zt73))+;0<ﬂ-<_10<zt7 B)? xtaB)? Tt, B) ®7’i<77'<—,0<2t, B)7 Lt B)7 L, B)}/Q
t=1

(3.21)
is the efficient estimator of ¢;. Substituting and rearranging as before yields

n

0 :n_l [R<Zt>B) +{R<_7T<10<Zt73)7xt>B)>xt>B)}]/§_lp<zt>B) (322)

t=1

as the estimating equation. The instruments are clearly endogenous in this case and have an in-
terpretation as the even component, in terms of the disturbances, of the regressors. Under general
conditions the resulting estimator is consistent with limiting distribution given by (3.19) and (3.20),
except now

U(z,B8) = [R(2,8) + R(=7(p(z,8), z, B), 2, B)] %5 p(2, B). (3.23)

The relationship of this estimator to an estimator proposed by Newey for this case will be explicated
in the next section.

Combining the previous two cases, we now entertain the case where the disturbances are sym-
metric about zero and independent of z. Following the general approach proposed by Brown and
Newey, the efficient estimator of ¢; is

A A

éi = n! 2?11{,0<Zt>5) ® ri('zt)ﬁ))
_n_l 22:1[10<7T<,0<2t73)7 xsaB)> xsaB) ® 7’i<7T<,0<Zt>B)> xs>B)>xs>B) (324)
_10<7T<_10<Zt7/8)7xS?/B)?xS?B) ®7’i<77<_,0<2t73)>xsaB)axmB)]/Q}

while the efficient estimator of X is the same as the last two cases. Substituting and rearranging
yields the following estimation equation

0 = n 23" [R(z, ) — nt " {R(7(p(2s, B), 24, B), 24, B)
(3.25)

—R(=7(p(zs, B), 5, ), 2, )} /2 S p(z, ).

Under general conditions, this estimator will be consistent with asymptotic distribution also given
by (3.19) and (3.20) except now

¢(2>5) = {R(Z,ﬁ)—E[R(W(,O(Z,ﬂ),x,ﬂ),]},ﬂ)
—R(Tf(—p(Z,ﬁ),Z‘,ﬂ),l‘,ﬂ)|<p(2,ﬂ)]/Q}/Ealp<Z,ﬂ).

If the assumed stochastic conditions of conditional symmetry and independence hold, this esti-
mator should be efficient relative to both of the last two alternatives. Of course, this increased
efficiency comes at the cost of increased risk of misspecification of the distribution and the accom-
panying inconsistency.

(3.26)
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4. LocALLY EFFICIENT IV ESTIMATION

The semiparametric estimators proposed in the previous section were designed to be optimal in
terms of being as highly correlated with the regressors as possible. It is of interest to compare the
new estimators with existing estimators that are known to be globally or locally semiparametric
efficient. A globally semiparametric efficient estimator is a regular semiparametic estimator which
attains the semiparametric efficiency bound regardless of the true distribution, provided the sto-
chastic restriction is met. By locally efficient, I mean that the estimator is regular semiparametric
and hence consistent against misspecification of the distribution provided the stochastic restriction
is satisfied but will attain the semiparametric efficiency bound if the disturbances have a speci-
fied distribution such as the normal. In cases where globally efficient estimators are not feasible,
such estimators are desirable since they are the best estimator under the specified distribution that
remains consistent in the event the distribution is misspecified.

The semiparametric efficiency bound can be defined as the inverse covariance matrix of the
efficient score. For a particular choice of distribution, the unrestricted score can be defined as the
derivative of the log-likelihood with respect to the parameter vector 3. For the problem at hand it
has the form

sp(2) = Jp(2) + R(2, Bp) sc(2) (4.1)

where Jg(z) = 0|det(dp(z,B8,)/0y")|/0" and s.(z) = Oln(f(e, x))/Oe. The nonparametric
tangent set 7 is defined as the space of p-dimensioned linear combinations of the derivatives of the
loglikehood with respect to the nuisance parameters for all models satisfying the semiparametric
assumption. The efficient score is obtained as the residual from the projection of the unrestricted
score onto this space

s(2) = sp(2) = Proj(sp(2)|T) (4.2)

and the semiparametric efficiency bound is given by
Vi = (Els(z) - s(2))" (4.3)

See the survey by Newey [1990b] or Brown and Newey [1992] for details.
For the case where the disturbances are unrestricted except to have zero mean the efficient score
can be shown to be

s(z) = Elss(2) - plz,55)]- X" p(2, Bo),
(4.4)

= —R%5'(z, 6),

since

R = E[R(z,5y)] = —Elp(z, 8y) - 55(2)' (4.5)

by the generalized information matrix equality. Thus the semiparametric efficiency bound for the
problem is given by

vy = (RS'R) (4.6)

An IV estimator which globally attains this bound, under general conditions, regardless of the true
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distribution, is given by the solution to

n

0=1[n""Y Rz B)S' 0"y plz. B) 4.7)

where ( and 3 are preliminary consistent estimates. The solution to these estimating equations is,
of course, the GMM estimator and is the globally efficient IV estimator.

Under certain conditions, the IV estimator proposed in the previous section for this case is
locally efficient. Suppose

Elp(z,80) - J5(2)'1 = 0 (4.8)

for all distributions satisfying the semiparametric assumption. Due to the unrestricted nature of
these distributions, this condition will, in general, only be met if J3(z) is constant. Substituting
(4.1) into (4.5) and imposing (4.8) yields

R =—Elp(z,8,) - 5(2) R(z, B,)]. (4.9)
If e ~ N(0,%) independent of z is the true distribution, then we further have
E: —E[,O(Z,ﬁo) 'p<z>ﬁ0)lzalR<z>ﬁ0)] = _E* (410)

which, from (3.10), means that the simple IV estimator is asymptotically equivalent to GMM under
normality and the condition on the Jacobian derivative. But this means it is locally semiparamet-
ric efficient. Note that since € is symmetrically distributed under the normality assumption, the
condition D — D = 0,(n~"/?) will be met.

A similar analysis applies for the case where the disturbances are only restricted to have con-
ditional mean zero, given x. This problem has been well studied by Chamberlain and the efficient
score is known to be

s(2) = Elsp(2) - p(2,80) 2] p(z, Bo)
@.11)

= _E;Et_lp<z> 50)7

since

Ry = E[R(z, By)|x:] = —Elp(2, By) - sp(2)' ). (4.12)

by the generalized information matrix inequality. The semiparametric efficiency bound is therefore
given by

Vi = (B[R Ry|z,]) . (4.13)

An 1V estimator which globally attains this bound, under sufficiently restrictive conditions, is given
as the solution to

o—n-le (21, Bz S (2, B), (4.14)

where E[R(z, 8)|x;] and 5, are estimators of the target conditional expectations. An example of
such an estimator is Robinson’s [1987] estimator for the linear regression model with unspecified
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heteroskedasticity in which E[R(z, 3)|z,] is given directly by the regressors z; and &, is a scalar
and is estimated using nearest neighbor techniques.

Again, the simple IV estimator proposed for this case can be shown to attain the semiparametric
efficiency bound under certain conditions. Suppose

Elp(z,8y) - J, ( )|z =0, (4.15)

which for the distribution of p(z, ) unrestricted except to have mean zero implies Jg(2) is a
function only of x. Substituting (4.1) into (4.12) and imposing (4.15) yields

Ry = —FElp(2, o) - 5:(2) R(z, Bo) |1] (4.16)
which becomes

Ry = —Elp(2,8) - p(2, 8y) S R(2, By) 2] = =T, (4.17)

if €|z, ~ N(0, %) is the true distribution. But, according to (3.16) and (3.17), this means that the
simple IV estimator attains the lower bound and is hence locally efficient when the disturbances
are conditionally normal and the Jacobian condition (4.15) is satisfied.

The case where the disturbances are unrestricted except to be independent of x has been exten-
sively studied by Newey [1989], who has shown that the efficient score for the problem takes the
form

s(2) = sp(2) = Elsp(2)|p(2, 5o)]
= Js(2) = ElJs(2)|p(z, Bo)] + {R(z, By) — E[R(z, By)|p(2, Bo)]}'se(2).

The semiparametric efficiency bound is given as the inverse covariance of this score, but is not
particularly informative so is not reported here. If the true distribution of the disturbances is joint
normality, he shows that the estimator given by the solution to the following equation

0 = n ' 300 [s(2e )_n P sl (p (Zt>ﬁ)>x875)>x873)]

~

HR(2, B) —n 0 R(n(plz, B), s, B), 4, B)' " (22, B)

(4.18)

(4.19)

attains the bound. Using the definition of 3 and rearranging terms this estimation equation can be
rewritten

= n_l Z?:l[{R<Zt>B) - n_l 22:1 R<7T<:0<Zt> B)> T, B); Ts, B)}/

+n_1 ZZ:l{Jﬁ<ZT>A) _1 Zs 1 ( ( (Zﬂﬁ) l‘s,ﬁ) l‘s,ﬁ)} :0<Zt> )]E :0<Zt>ﬁ)
(4.20)

which is an IV estimator with endogenous instruments. This estimator differs from the simple IV
estimator proposed in the previous section by the presence of the Jacobian derivative terms. The
two will be the same and hence the simple estimator will be semiparametric efficient if Jz(2) =
E[Js(2)|p(%, By)], which will occur if Js(z) is a function only of € or z.

The case of disturbances with a conditionally symmetric distribution has also been examined
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by Newey, who has obtained the following efficient score for the problem
S(’Z) = Sﬁ(’z) - Sﬁ(ﬂ'(—ﬂ(,@ ﬁ0)> €, ﬁ0)> T, ﬁO)
= Js(2) + R(z,5,)'sc(2) (4.21)

—[Jg(ﬂ(—p(,z, ﬁ0)> Z, ﬁ0)> .T,') + R<7T<_:0<Z> ﬁ0)> Z, 50)/35<7T<_,0<Z> ﬁ0)> Z‘)]

Under general conditions, Newey has shown that the estimator given by the solution to

A A

0 = n'! Z?:l[Jﬁ<zt>B)_Jﬁ< (— (ZuB) 1, B8), w1, B)]
+[R (2, B) + R(—7(p(z, B)> Tty B)> Tty B)]/§_1:O<Zt> B)

is regular semiparametric and attains the efficiency bound when the true distribution is normal. As
in the previous case, we can exploit the definition of Y to rewrite this estimating equation in the
form

= _IZt ARz, )+R< ((Zt>B)>xt>B)>xt>B)]/
+n_1 ZZ:l[J5<ZT>ﬁ) Jﬁ( ( (ZT,ﬁ),Z'T,B),.TJT,B)]'ﬂ(Zt,B)/}i_l,0<Zt,B).

which is an IV estimator with endogenous instruments. If Js(2) = Js(7(—p(2, By), x, By), T, Bo)
or Jg(z) is symmetric in ¢, this estimator reduces to the simple IV estimator proposed in the
previous section. Thus under normality and the Jacobian restriction the estimator is locally semi-
parametric efficient.

The findings for the previous two cases can be combined for the case where the disturbances
are independent of x and symmetric around zero. The efficient score for this case is

s(2) = sp(2) — Elsg(m(p(z, Bo), 2, Bo), %, Bo) + ss(m(=p(2, Bo), %, Bo), 2, Bo)|p(z, B)] /2.
(4.24)

If the true distribution of the disturbances is normal, the estimator given by the solution to the
following equation

(4.22)

(4.23)

0 = n! Zt 1[Jﬁ<zt> )_n 125 1{‘]ﬁ< ( (ZbB) x8>B)>xS>B) _Jﬁ<ﬂ<_p<zt73)>x873)>ow)}]
+[R<Zt> )_n_l Zs 1{R< ( (Zt> ) xs;B)wrs;B) _R<7T<_:0<Zt>B)>xs;B)>xs>B)}]/§_lp<zt>B)
(4.25)

attains the lower bound defined by the inverse covariance of the efficient score. This estimator can
also be rearranged using the definition of X to obtain

O = n_l Z?:l[{R<Zt>B)_n_l ZZ:l R(”(,O(ng,B),Z'S,B),.TJS,B)—R(W(-,O(Zt,B),.’L'S,B),.’L'S,B)}/
0t 3 {a(er, B) =t 0 Ta(n(p(ar, B), 2, ), 24 )

_‘]ﬁ< ( (Zbﬁ) xwﬂ) xwﬁ)} :0<Zt> )]E :0<Zt>ﬁ)
(4.26)
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which is an IV estimator with endogenous instruments. This estimator will reduce to the simple
IV estimator of the previous section if

Jﬁ('z) = E[Jﬁ<7r<:0<z>ﬁ0)> x>ﬁ0)> Z, 50) + Jﬁ<ﬂ<_p<z>ﬁ0)> Z, ﬁ0)7 $,ﬁ0)|,0<2, 50)]/2 (427)

which will occur if the Jacobian derivative is a function only of = or € only and is symmetric. And,
once again, we find that the simple IV estimator is locally semiparametric efficient under normality
if a condition on the Jacobian is met.

The simple endogenous IV estimators proposed in the previous section were designed to obtain
the instruments which are most highly correlated with the regressors. This approach did not, how-
ever, result in estimators that achieve the semiparametric efficiency bound except under special
conditions on the Jacobian®. Nor were they the best endogenous IV estimators, since the optimal
estimator in each case had an IV interpretation. This nonoptimality resulted most obviously, from
studying the efficient scores for the various cases, because the impact of the Jacobian was ignored.
More to the point, though, it results because our criterion for choosing endogenous instruments
aimed for the wrong target. We were maximizing the correlation with the regressors, which guar-
anteed a reduction in the limiting covariance matrix by minimizing P!, which occurs twice, but
we ignored the remaining component M. An interesting finding is the rather close relationship
between IV estimation and normality. Even when the appropriate condition on the Jacobian was
met, the optimal IV estimator locally attained the semiparametric efficiency bound only under
normality.

5. A SAMPLING EXPERIMENT

The optimality claims for the estimators proposed in the previous sections are based on large-
sample asymptotic analysis. It is of interest to quantify the magnitude of the improvement in
precision resulting from utilizing the asymptotically efficient estimators rather than more standard
approaches. It is also useful to measure the magnitude of the deterioration of the various estimators
when the distribution is misspecified relative to the conditions for which it was designed. In addi-
tion, it is of interest to determine the extent to which the asymptotic results manifest themselves
in smaller samples. These issues are best addressed, if only partially, by conducting a sampling
experiment on specific models. Of course, the results of the experiment are subject to the usual
qualifications and can be generalized to other models only with great care.

The sampling experiment is conducted on a single-equation extended Box-Cox (EBC) model.
This model can be formally represented

(sgn(y)|y|® — 1)/Bs — B1 — By x =€ (5.1)

where E[¢?] = o2 In the independent case the parameter 3, will be subsumed into the distribution
of the disturbances. This model has several salient features. The first is the fact that it is nonlinear

50ne obvious case where the conditions on the Jacobian derivative are met for all the stochatic alternatives is,
following an appropriate normalization, a triangular model. The conditions, however, can be satisfied by much more
general models including the following two-equation nontriangular example

y1 =01 + Bay2 + Bz + €1
In(y2) = B4 + Bsy1 + Bex + €.

The determinate of the Jacobian for this model is 1/ys — 3,35, which has a constant derivative with respect to 3.
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in the variables and parameters. The second is that the solution form of the model can be written
in the closed form

y=sgn(l+B;- (B, + By - x+e€) [L+85- (8, + By 7+ 6)]1/% (5.2)

which greatly simplifies the generation of observations in the experiment. The third is that the
conditions on the Jacobian derivatives discussed in the previous section are all met so the simple
IV estimators are semiparametric efficient.

For each model of the distribution we conducted 1000 replications of a Monte Carlo experiment
using alternative sample sizes of (25,50,100,200). The alternative models of the distribution of the
disturbances used were:

Basic: € ~ N (0, 0?) independent of z,

Nonnormality: € ~ ¢(4) - (¢/4/2) independent of =

Asymmetry: € ~ (1/6/m) - (0.57721 4+ In(—In(U (0, 1)))) independent of z,
Nonindependence: € ~ N(0,02) - {y + (1 — ) - exp(x — E[z] — V[z]/2)}'/2.

The values of the parameters used to generate the replications of the experiment were chosen to
approximate the values obtained from estimating the model for the Engel curve data described in
Koenker and Bassett [1982]. The specific values used were

(By, By, Bs,02) = (—10.86,3.73,0.23, 0.359) (5.3)

the values of the exogenous variables were drawn from z ~ N(6.7,0.191). For each replica-
tion, the model was estimated by maximum likelihood based on a normality assumption (MLE
or QMLE), an IV estimator using (1, (3, - z)?) as instruments (BIV), the residual-based feasible
best nonlinear three-stage least squares (B3SR)®, the optimal endogenous IV estimator designed
for independence (BIND), the endogenous IV estimator that is optimal under symmetry (BSYM),
and the endogenous IV estimator designed for both independence and symmetry (BCOM).

The results for the estimates of 34 for the basic model are reported in Table 1. We report the
median bias, median absolute error (MAE), mean bias, and root mean squared error (RMSE). For
this stochastic model, all the estimators should be consistent and MLE should be efficient. The bias
(median and mean) results seem to be of order 1/n and are roughly consistent with what we expect.
The MAE and RMSE seem to be of order 1//n, which also is what we expect. Perhaps the most
striking feature in the table is the strength, in terms of MAE and RMSE, of the BCOM estimator
which seems to match the performance of the MLE on its home ground. There is evidence of
fat-tailed behavior which could lead to nonexistence of moments for the BIND estimator, which is
manifested in small samples by its relatively poor performance in terms of RMSE and mean bias
but its strong performance in terms of median bias and MAE. In large samples, BIND seems to
dominate both BIV and B3SR by all criteria.

The findings for the nonnormality case where the disturbances are drawn from a ¢ distribution
with 4 degrees of freedom are presented in Table 2. For this stochastic model, we would expect
all the models to be consistent with the possible exception of maximum likelihood. It appears,
however, the QMLE is consistent against this particular form of distributional misspecification.
This is most evident in the bias numbers which exhibit much the same behavior for QMLE as in the
normality case. The biggest change relative to the normality case is substantial improvement in the
performance of the BIV and B3SR relative to the other estimators. This is probably a manifestation

6See Brown [1990] and Robinson [1989] for the form of the residual-based BNL3S estimator.
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of the local nature of the optimality of the latter. They are designed to be efficient when the true
distribution is normal but remain consistent in the event of nonnormality. They certainly exhibit
this behavior, but this leaves room for the possibility that other estimators will do better under
nonnormality. Here also there is evidence of fat-tailed behavior by the BIND estimator.

The results for the stochastic model with asymmetric disturbances are given in Table 3. For this
stochastic model, the BIV, B3SR, and BIND estimators should be consistent, while the QMLE,
BSYM, and BCOM estimators could conceivably be inconsistent. This expectation is certainly
born out by the bias results, which clearly have the same sort of order as before for the former but
are converging to positive nonzero values for the latter. In terms of MAE and RMSE the results
are less clear-cut due to the usual mean-variance type trade-off. Specifically, in small samples
the variances are large enough relative to the biases that the estimators that performed best under
correct stochastic specification continue to do well. In large samples, however, the variances shrink
and we are left with the nonzero bias for the inconsistent estimators. It is worth noting that BIND
seems to exhibit better performance than B3SR and BIV for this case, particularly in large samples,
which is to be expected.

The findings for the stochastic model with nonindependent or heteroskedastic disturbances are
reported in Table 4. In this case we expect the BIV, B3SR, and BSYM estimators to be consistent
but the QMLE, BIND, and BCOM estimators to be inconsistent. As with the previous case, the
bias results clearly agree with this expectation with the bias advantage of the consistent estimators
becoming apparent in moderate sized samples. Again there is the biasdispersion trade-off with
QMLE and BCOM being preferred in small samples in terms of MAE and RMSE, due to their
smaller variance, but BSYM, BIV and B3SR preferable in large samples, due to their consistency.
The BSYM seems to enjoy an advantage over the other consistent estimators, as might be expected,
but the advantage is very small.
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Table 1.

EBC Model, 34
Normal Disturbances

n Estimator =~ Median Bias MAE Mean Bias RMSE
25 MLE -0.0193 0.1662 -0.0233 0.2791
BIV -0.0411 0.2211 -0.0523 0.3437

B3SR -0.0413 0.2170 -0.0832 0.3984

BIND -0.0631 0.1815 -0.1290 0.4627

BSYM -0.0473 0.2111 -0.0682 0.3572

BCOM -0.0191 0.1662 -0.0231 0.2798

50 MLE -0.0105 0.1088 -0.0122 0.1764
BIV -0.0076 0.1420 -0.0146 0.2305

B3SR -0.0076 0.1403 -0.0197 0.2366

BIND -0.0198 0.1116 -0.0438 0.2881

BSYM -0.0031 0.1387 -0.0143 0.2243

BCOM -0.0103 0.1088 -0.0121 0.1765

100 MLE 0.0029 0.0752 -0.0001 0.1150
BIV 0.0083 0.0970 0.0038 0.1516

B3SR 0.0075 0.0975 0.0025 0.1498

BIND 0.0000 0.0762 -0.0014 0.1209

BSYM 0.0059 0.0911 0.0035 0.1431

BCOM 0.0031 0.0747 0.0000 0.1150

200 MLE -0.0034 0.0526 -0.0025 0.0781
BIV -0.0032 0.0686 0.0014 0.1035

B3SR -0.0033 0.0684 0.0000 0.1026

BIND -0.0039 0.0529 -0.0033 0.0795

BSYM -0.0003 0.0655 0.0020 0.1006

BCOM -0.0032 0.0525 -0.0025 0.0781
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Table 2.

EBC Model, 34
t(4) Disturbances

n Estimator ~ Median Bias MAE Mean Bias RMSE
25 QMLE -0.0095 0.1787 -0.0086 0.3145
BIV -0.0241 0.2051 -0.0574 0.8336

B3SR -0.0277 0.2034 -0.1056 0.5597

BIND -0.0807 0.2101 -0.1725 0.4998

BSYM -0.0454 0.2085 -0.0860 0.3907

BCOM -0.0186 0.1774 -0.0356 0.3294

50 QMLE -0.0049 0.1177 -0.0101 0.2065
BIV -0.0069 0.1353 -0.0260 0.2252

B3SR -0.0081 0.1359 -0.0364 0.2553

BIND -0.0507 0.1373 -0.1512 0.4161

BSYM -0.0113 0.1399 -0.0382 0.2697

BCOM -0.0089 0.1159 -0.0269 0.2208

100 QMLE -0.0063 0.0922 -0.0047 0.1634
BIV -0.0036 0.0874 -0.0067 0.1624

B3SR -0.0039 0.0883 -0.0119 0.1856

BIND -0.0274 0.0995 -0.1212 0.3732

BSYM -0.0044 0.1058 -0.0155 0.2141

BCOM -0.0108 0.0915 -0.0190 0.2099

200 QMLE 0.0006 0.0689 0.0018 0.1208
BIV 0.0033 0.0650 0.0009 0.1043

B3SR 0.0030 0.0625 -0.0002 0.1064

BIND -0.0172 0.0699 -0.0972 0.3581

BSYM -0.0014 0.0871 -0.0092 0.1954

BCOM -0.0063 0.0691 -0.0163 0.1738
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Table 3.

EBC Model, 34

Asymmetric Disturbances
n Estimator ~ Median Bias MAE Mean Bias RMSE
25 QMLE 0.0577 0.1839 0.0735 0.3181
BIV -0.0593 0.2271 -0.0479 0.3496
B3SR -0.0622 0.2232 -0.0813 0.3982
BIND -0.0498 0.1882 -0.0511 0.3331
BSYM 0.0244 0.2445 0.0075 0.4390
BCOM 0.0435 0.1791 0.0376 0.3215
50 QMLE 0.0629 0.1240 0.0740 0.2053
BIV -0.0213 0.1460 -0.0179 0.2303
B3SR -0.0238 0.1438 -0.0296 0.2498
BIND -0.0226 0.1359 -0.0293 0.2138
BSYM 0.1014 0.1609 0.0954 0.3038
BCOM 0.0576 0.1226 0.0576 0.2140
100 QMLE 0.0832 0.1071 0.0883 0.1588
BIV -0.0092 0.0923 0.0019 0.1547
B3SR -0.0101 0.0911 -0.0036 0.1663
BIND -0.0004 0.0866 -0.0089 0.1396
BSYM 0.1261 0.1387 0.1360 0.2283
BCOM 0.0799 0.1061 0.0823 0.1614
200 QMLE 0.0867 0.0892 0.0900 0.1247
BIV 0.0006 0.0634 -0.0018 0.0965
B3SR -0.0007 0.0625 -0.0019 0.0983
BIND -0.0028 0.0603 -0.0042 0.0907
BSYM 0.1252 0.1263 0.1356 0.1716
BCOM 0.0835 0.0871 0.0860 0.1245
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Table 4.

EBC Model, 34
Heteroskedastic Disturbances

n Estimator =~ Median Bias MAE Mean Bias RMSE
25 QMLE -0.1015 0.1820 -0.1106 0.2983
BIV -0.0826 0.2331 -0.0843 0.3502

B3SR -0.0793 0.2286 -0.1217 0.4166

BIND -0.1324 0.1985 -0.1730 0.4084

BSYM -0.0644 0.2400 -0.0955 0.3833

BCOM -0.1016 0.1818 -0.1104 0.2993

50 QMLE -0.0935 0.1318 -0.0936 0.2020
BIV -0.0114 0.1580 -0.0228 0.2560

B3SR -0.0104 0.1562 -0.0383 0.2887

BIND -0.1037 0.1360 -0.1198 0.2631

BSYM -0.0089 0.1478 -0.0296 0.2671

BCOM -0.0937 0.1322 -0.0935 0.2020

100 QMLE -0.0950 0.1057 -0.0914 0.1529
BIV 0.0058 0.1060 0.0115 0.1692

B3SR 0.0055 0.1030 0.0063 0.1691

BIND -0.0986 0.1098 -0.0958 0.1592

BSYM 0.0009 0.1024 0.0067 0.1623

BCOM -0.0951 0.1058 -0.0913 0.1529

200 QMLE -0.0984 0.0996 -0.0949 0.1251
BIV -0.0092 0.0687 0.0034 0.1110

B3SR -0.0082 0.0684 0.0047 0.1084

BIND -0.0988 0.1006 -0.0990 0.1294

BSYM -0.0060 0.0666 0.0044 0.1049

BCOM -0.0984 0.0996 -0.0949 0.1251
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6. CONCLUDING REMARKS

The existing literature on instrumental variables (IV) estimators has concentrated, almost exclu-
sively, on the use of instruments that are functions only of exogenous (predetermined) variables.
Under a wide variety of assumptions, this approach yields instruments that satisfy the primary
objective of IV estimators, namely, that the instruments be uncorrelated with the disturbances. A
secondary objective, for efficiency reasons, is to choose instruments that are as highly correlated
with the regressors as possible. In linear models and certain nonlinear models, specific exogenous
instruments can also satisfy the second objective. In other nonlinear models, however, it is possi-
ble that nonlinear functions of the endogenous variables are uncorrelated with the disturbances and
hence improved instruments may be obtained by using instruments that are functions of both en-
dogenous and exogenous (predetermined) variables. The purpose of this paper is to systematically
examine this possibility within the context of the static nonlinear simultaneous equation model
under nonparametric distributional assumptions.

The basic approach used in this paper is to use an estimate of the residual from the linear projec-
tion of the regressors onto the disturbances as the instruments. A problem with this approach is that
using the obvious estimators of the components, which are expectation functions, in the projection
yields a trivial estimator. The solution is to use the semiparametric efficient estimators of the ex-
pectation functions proposed in Brown and Newey [1992] in forming the instruments. The form of
the estimates depends on the stochastic assumption regarding the degree of dependence between
the disturbances and the exogenous variables. For an assumption of either unconditional or con-
ditional mean zero the resulting estimator turns out to be a function only of exogenous variables.
For an assumption of independence the resulting instruments are the regressors less an estimate
of the expectation of the instruments conditioned on the disturbances. Under an assumption of
conditional symmetry, the resulting instruments are an estimate of the even component, in terms
of the disturbances, of the regressors. For combined independence and symmetry, the resulting in-
struments are the regressors less an estimate of the expectation of their odd component conditioned
on the disturbances.

The new estimators are compared, in terms of asymptotic behavior, to various semiparametric
estimators that are known to be either globally or locally semiparametric efficient. An estimator
is locally semiparametric efficient under a particular distribution if it is semiparametric and hence
consistent under the general stochastic assumption, which allows a variety of distributions, but
achieves the semiparametric efficiency bound for the problem when the true distribution has the
specified form. Obviously, an estimator that is globally semiparametric efficient is locally effi-
cient for any distribution that satisfies the stochastic assumptions. Under an assumption that the
true distribution of the disturbances is normal and a restriction on the derivative of the Jacobian
determinant with respect to the coefficients, each of the new estimators is found to be locally semi-
parametric efficient under the stochastic assumption for which it was designed. The restrictions on
the derivative of the Jacobian determinant range from being constant to being a function only of
the disturbances or exogenous variables.

The finite sample performance of the new estimators is examined in a sampling experiment on
a single-equation Box-Cox model. This model is chosen for its obvious simplicity and because
it satisfies the conditions on the Jacobian derivative and hence the new estimators will be locally
semiparametric efficient. The results of the experiment are consistent with our expectations with a
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couple of exceptions. First, the new estimator based on a combined assumption of independence
and symmetry performed at least as well as the maximum likelihood estimator (MLE) even when
the true distribution is normal, whereupon the MLE should be parametrically efficient. Second, the
maximum likelihood estimator based on normality seemed to be consistent against some forms of
nonnormality of the true distribution. The usual caveats regarding the generality of the findings of
the sampling experiment beyond the specific model used apply.

The approach and estimators advocated in this paper can be extended in several directions. If
the disturbances are assumed to be intertemporally independent, then the estimators of this paper
should apply pretty much as is with predetermined variables replacing exogenous variables. Under
more general assumptions regarding the degree of intertemporal dependence the general approach
of using endogenous instruments should still have value but the appropriate form will likely be
different. Likewise in the context of latent variables models the specific estimators proposed here
will not be appropriate but the general approach should prove valuable in developing IV estimators
with improved efficiency. Finally, the interpretation of the general approach as the SUR estimator
with a correction term for the fact that it has nonzero expectation at the truth can be utilize to
develop a general class of locally semiparametric efficient estimators. Specifically, the scores for
a particular choice of distribution can be corrected, in a similar fashion, for the fact that they have
nonzero expectation at the true parameters when the distribution is misspecified.
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