
Chapter 9

Multicollinearity

9.1 The Nature of Multicollinearity

9.1.1 Extreme Collinearity

The standard OLS assumption that (xi1, xi2, . . . , xik ) not be linearly related
means that for any ( c1, c2, . . . , ck )

xik 6= c1xi1 + c2xi2 + · · ·+ ck−1xi,k−1 (9.1)

for some i. If the assumption is violated, then we can find ( c1, c2, . . . , ck−1 )
such that

xik = c1xi1 + c2xi2 + · · ·+ ck−1xi,k−1 (9.2)

for all i. Define

X1 =

⎛⎜⎜⎜⎜⎝
x12 · · · x1k
x22 · · · x2k
...

...
xn2 · · · xnk

⎞⎟⎟⎟⎟⎠ , xk =

⎛⎜⎜⎜⎜⎝
xk1
xk2
...

xkn

⎞⎟⎟⎟⎟⎠ , and c =

⎛⎜⎜⎜⎜⎝
c1
c2
...

ck−1

⎞⎟⎟⎟⎟⎠ .

Then extreme collinearity can be represented as

xk = X1c. (9.3)

We have represented extreme collinearity in terms of the last explanatory
variable. Since we can always re-order the variables this choice is without
loss of generality and the analysis could be applied to any non-constant
variable by moving it to the last column.
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9.1.2 Near Extreme Collinearity

Of course, it is rare, in practice, that an exact linear relationship holds.
Instead, we have

xik = c1xi1 + c2xi2 + · · ·+ ck−1xi,k−1 + vi (9.4)

or, more compactly,

xk = X1c+ v, (9.5)

where the v’s are small relative to the x’s. If we think of the v’s as random
variables they will have small variance (and zero mean ifX includes a column
of ones).

A convenient way to algebraically express the degree of collinearity is
the sample correlation between xik and wi = c1xi1+c2xi2+ · · ·+ck−1xi,k−1,
namely

rx,w =
cov(xik, wi )q
var(xi,k) var(wi)

=
cov(wi + vi, wi )p
var(wi + vi) var(wi)

(9.6)

Clearly, as the variance of vi grows small, this value will go to unity. For
near extreme collinearity, we are talking about a high correlation between
at least one variable and some linear combination of the others.

We are interested not only in the possibility of high correlation between
xik and the linear combination wi = c1xi1 + c2xi2 + · · · + ck−1xi,k−1 for a
particular choice of c but for any choice of the coefficient. The choice which
will maximize the correlation is the choice which minimizes

Pn
i=1w

2
i or least

squares. Thus bc = (X01X1)−1X01xk and bw = X1bc and
(rx,bw)2 = R2k· (9.7)

is the R2 of this regression and hence the maximal correlation between xki
and the other x’s.

9.1.3 Absence of Collinearity

At the other extreme, suppose

R2k· = rx,bw = cov(xik, bwi ) = 0. (9.8)



88 CHAPTER 9. MULTICOLLINEARITY

That is, xik has zero correlation with all linear combinations of the other
variables for any ordering of the variables. In terms of the matrices, this
requires bc = 0 or

X01xk = 0. (9.9)

regardless of which variable is used as xk. This is called the case of
orthogonal regressors, since the various x’s are all orthogonal. This extreme
is also very rare, in practice. We usually find some degree of collinearity,
though not perfect, in any data set.

9.2 Consequences of Multicollinearity

9.2.1 For OLS Estimation

We will first examine the effect of xk1 being highly collinear upon the esti-
mate bβk. Now let

xk = X1c+ v (9.10)

The OLS estimates are given by the solution of

X0y = X0Xbβ
= X0(X1 : xk )bβ
= (X0X1 : X

0xk )bβ (9.11)

Applying Cramer’s rule to obtain bβk yields
bβk = |X0X1 : X0y|

|X0X| (9.12)

However, as the collinearity becomes more extreme, the columns of X (the
rows of X0) become more linearly dependent and

lim
v→0

bβ1 = 0

0
(9.13)

which is indeterminant.
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Now, the variance-covariance matrix is

σ2(X0X )−1 = σ2
1

|X0X| adj(X
0X )

= σ2
1

|X0X| adj
"Ã

X01
x0k

!
(X1 : xk )

#

= σ2
1

|X0X| adj
Ã
X01X1 X01xk
X01xk x0kxk

!
. (9.14)

The variance of bβk is given by the (k, k) element, so
var( bβk ) = σ2

1

|X0X| cof(k, k) = σ2
1

|X0X| |X
0
1X1|. (9.15)

Thus, for |X01X1| 6= 0, we have

lim
v→0

var( bβk ) = σ2|X01X1|
0

=∞. (9.16)

and the variance of the collinear terms becomes unbounded.

It is instructive to give more structure to the variance of the last coef-
ficient estimate in terms of the sample correlation R2k· given above. First
we obtain the covariance of the OLS estimators other than the intercept.
Denote X = (c : X∗) where c is an n × 1 vector of ones and X∗ are the
nonconstant columns of X, then

X0X =

"
c0c c0X∗

X∗0c X∗0X∗

#
. (9.17)

Using the results for the inverse of a partitioned matrix we find that the
lower right-hand k − 1× k − 1 submatrix of the inverse is given by

(X∗0X∗ −X∗0c(c0c)−1c0X∗)−1 = (X∗0X∗ − nx∗x∗0)−1

= [(X∗ − cx∗0)0(X∗ − cx∗0)]−1

= (X
0
X)−1

where x∗ = c0X∗/n is the mean vector for the nonconstant variables and
X = X∗− cx∗0 is the demeaned or deviation form of the data matrix for the
nonconstant variables.
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We now denote X = (X1 : xk) where xk is last column (k − 1)th, then

X
0
X =

"
X
0
1X1 X

0
xk

x0kX x0kxk

#
. (9.18)

Using the results for partitioned inverses again, the (k, k) element of the
inverse of (X

0
X)−1 is given by,

(x0kxk − x0kX1(X
0
1X1)

−1X
0
1xk)

−1 = 1/(x0kxk − x0kX1(X
0
1X1)

−1X
0
1xk)

= 1/e0kek

= 1/(x0kxk · e0kek/x0kxk)

= 1/(x0kxk(1−
SSEk

SSTk
))

= 1/(x0kxk(1−R2k·))

where ek = (In−X1(X
0
1X1)

−1X
0
1)xk are the OLS residuals from regressing

the demeaned xk’s on the other variables and SSEk, SSTk, and R
2
k· are the

corresponding statistics for this regression. Thus we find

var(bβk) = σ2[(X0X )−1]kk = σ2/(x0kxk(1−R2k·)) (9.19)

= σ2/(
Pn

i=1(xik − xk)
2(1−R2k·))

= σ2/(n · 1
n

Pn
i=1(xik − xk)

2(1−R2k·)).

and the variance of bβk increases with the noise σ2 and the correlation R2k·
of xk with the other variables, and decreases with the sample size n and the
signal 1n

Pn
i=1(xik − xk)

2.

Thus, as the collinearity becomes more and more extreme:

• The OLS estimates of the coefficients on the collinear terms become
indeterminant. This is just a manifestation of the difficulties in ob-
taining (X0X)−1.

• The OLS coefficients on the collinear terms become infinitely variable.
Their variances become very large as R2k· → 1.

• The OLS estimates are still BLUE and with normal disturbances BUE.
Thus, any unbiased estimator will be afflicted with the same problems.
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Collinearity does not effect our estimate s2 of σ2. This is easy to see,
since we have shown that

(n− k )
s2

σ2
∼ χ2n−k (9.20)

regardless of the values of X, provided X0X still nonsingular. This is to be
contrasted with the bβ where

bβ ∼ N(β, σ2(X0X )−1 ) (9.21)

clearly depends on X and more particularly the near non-invertibility of
X0X.

9.2.2 For Inferences

Provided collinearity does not become extreme, we still have the ratios (bβj−
βj)/
√
s2djj ∼ tn−k where djj = [(X0X )−1]jj . Although bβj becomes highly

variable as collinearity increases, djj grows correspondingly larger, thereby
compensating. Thus under H0 : βj = β0j , we find (

bβj − β0j )/
√
s2djj ∼

tn−k, as is the case in the absence of collinearity. This result that the
null distribution of the ratios is not impacted as collinearity becomes more
extreme seems not to be fully appreciated in most texts.

The inferential price extracted by collinearity is loss of power. Under
H0 : βj = β1j 6= β0j , we can write

(bβj − β0j )/
√
s2djj = (bβj − β1j )/

√
s2djj + (β1j − β0j )/

√
s2djj .

(9.22)

The first term will continue to follow a tn−k distribution, as argued in the
previous paragraph, as collinearity becomes more extreme. However, the
second term, which represents a “shift” term, will grow smaller as collinearity
becomes more extreme and djj becomes larger. Thus we are less likely to
shift the statistic into the tail of the ostensible null distribution and hence
less likely to reject the null hypothesis. Formally, (bβj−β0j )/√s2djj will have
a noncentral t distribution, but the noncentrality parameter will become
smaller and smaller as collinearity becomes more extreme.

Alternatively the inferential impact can be seen through the impact on
the confidence intervals. Using the standard approach discussed in the
previous chapter, we have [bβj−a√s2djj , bβj+a√s2djj) as the 95% confidence
interval, where a is the critical value for a .025 tail. Note that as collinearity
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becomes more extreme and djj becomes larger, the width of the interval
becomes larger as well. Thus we see that the estimates are consistent with
a larger and larger set of null hypothesis as the collinearity strengthens. In
the limit it is consistent with any null hypothesis and we have zero power.

We should emphasize that collinearity does not always cause problems.
The shift term in (9.xx) can be written

(β1j − β0j )/
√
s2djj =

√
n(β1j − β0j )/

r
σ2/(

1

n

Pn
i=1(xik − xk)2(1−R2k·))

which clearly depends on other factors than the degree of collinearity. The
size of the shift increases with the sample size

√
n, the difference between

the null and alternative hypotheses (β1j − β0j ), and the signal noise ratio

( 1n
Pn

i=1(xik − xk)
2/σ2. The important question is not whether collinearity

is present or extreme but whether is is extreme enought to eliminate the
power of our test. This is also a phenonmenon that does not seem to be
fully appreciated or well-enough advertised in most texts.

We can easily tell when collinearity is not a problem if the coefficients
are significant or we reject the null hypothesis under consideration. Only
if apparently important variables are insignificantly different from zero or
have the wrong sign should we consider the possibility that collinearity is
causing problems.

9.2.3 For Prediction

If all we are interested in is prediction of yp given xp1, xp2, . . . , xpk, then
we are not particularly interested in whether or not we have isolated the
individual effects of each xij . We are interested in predicting the total effect
or variation in y.

A good measure of how well the linear relationship captures the total
effect or variation is the R2 statistic. But the R2 value is related to s2 by

R2 = 1− e0e

(y − y)0(y − y)
= 1− (n− k)

s2

var(y)
, (9.23)

which does not depend upon the collinearity of X.
Thus, we can expect our regressions to predict well, despite collinear-

ity and insignificant coefficients, provided the R2 value is high. This de-
pends, of course, upon the collinearity continuing to persist in the future. If
the collinearity does not continue, then prediction will become increasingly
uncertain. Such uncertainty will be reflected, however, by the estimated
standard errors of the forcast and hence wider forecast intervals.
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9.2.4 An Illustrative Example

As an illustration of the problems introduced by collinearity, consider the
consumption equation

Ct = β0 + β1Yt + β2Wt + ut, (9.24)

where Ct is consumption expenditures at time t, Yt is income at time t and
Wt is wealth at time t. Economic theory suggests that the coefficient on
income should be slightly less than one and the coefficient on wealth should
be positive. The time-series data for this relationship are given in the
following table:

Ct Yt Wt

70 80 810
65 100 1009
90 120 1273
95 140 1425
110 160 1633
115 180 1876
120 200 2052
140 220 2201
155 240 2435
150 260 2686

Table 9.1: Consumption Data

Applying least squares to this equation and data yields

Ct = 24.775
(6.752)

+ 0.942
(0.823)

Yt − 0.042
(0.081)

Wt + et,

where estimated standard errors are given in parenthesis. Summary statis-
tics for the regression are: SSR = 324.446, s2 = 46.35, and R2 = 0.9635.
The coefficient estimate for the marginal propensity to consume seems to be
a reasonable value however it is not significantly different from either zero or
one. And the coefficient on wealth is negative, which is not consistent with
economic theory. Wrong signs and insignificant coefficient estimates on a
priori important variables are the classic symptoms of collinearity. As an
indicator of the possible collinearity the squared correlation between Yt and
Wt is .9979, which suggests near extreme collinearity among the explanatory
variables.



94 CHAPTER 9. MULTICOLLINEARITY

9.3 Detecting Multicollinearity

9.3.1 When Is Multicollinearity a Problem?

Suppose the regression yields significant coefficients, then collinearity is not a
problem–even if present. On the other hand, if a regression has insignificant
coefficients, then this may be due to collinearity or that the variables, in fact,
do not enter the relationship.

9.3.2 Zero-Order Correlations

If we have a trivariate relationship, say

yt = β1 + β2xt2 + β3xt3 + ut, (9.25)

we can look at the zero-order correlation between x2 and x3. As a rule of
thumb, if this (squared) value exceeds the R2 of the original regression, then
we have a problem of collinearity. If r23 is low, then the regression is likely
insignificant.

In the previous example, r2WY = 0.9979, which indicates that Yt is more
highly related to Wt than Ct and we have a problem. In effect, the vari-
ables are so closely related that the regression has difficulty untangling the
separate eefects of Yt and Wt.

In general (k > 3), when one of the zero-order correlations between xs
is large relative to R2 we have a problem.

9.3.3 Partial Regressions

In the general case (k > 3), even if all the zero-order correlations are small,
we may still have a problem. For while x1 my not be strongly linearly related
to any single xi (i 6= 1), it may be very highly correlated with some linear
combination of xs.

To test for this possibility, we should run regressions of each xi on all the
other xs. If collinearity is present, then one of these regressions will have a
high R2 (relative to R2 for the complete regression).

For example, when k = 4 and

yt = β1 + β2xt2 + β3xt3 + β4xt4 + ut (9.26)
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is the regression, then collinearity is indicated when one of the partial re-
gressions

xt2 = α1 + α3xt3 + α4xt4

xt3 = γ1 + γ2xt2 + γ4xt4 (9.27)

xt4 = δ1 + δ2xt2 + δ3xt3 (9.28)

yields a large R2 relative to the complete regression.

9.3.4 The F Test

The manifestation of collinearity is that estimators become insignificantly
different from zero, due to the inability to untangle the separate effects of
the collinear variables. If the insignificance is due to collinearity, the total
effect is not confused, as evidenced by the fact that s2 is unaffected.

A formal test, accordingly, is to examine whether the total effect of the
insignificant (possibly collinear) variables is significant. Thus, we perform an
F test to test the joint hypothesis that the individually insignificant variables
are all insignificant.

For example, if the regression

yt = β1 + β2xt2 + β3xt3 + β4xt4 + ut (9.29)

yields insignificant (from zero) estimates of β2, β3 and β4, we use an F test
of the joint hypothesis β2 = β3 = β4 = 0. If we reject this joint hypothesis,
then the total effect is strong, but the individual effects are confused. This is
evidence of collinearity. If we accept the null, then we are forced to conclude
that the variables are, in fact, insignificant.

For the consumption example considered above, a test of the null hy-
pothesis that the collinear terms (income and wealth) are jointly zero yields
an F -statistic value of 92.40 which is very extreme under the null when the
variable has an F2,7. Thus the variables are individually insignificant but
are jointly significant, which indicates that collinearity is, in fact, a problem.

9.3.5 The Condition Number

Belsley, Kuh, and Welsh (1980), suggest an approach that considers the
invertibility of X directly. First, we transform each column of X so that
they are of similar scale in terms of variability by dividing each column to
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unit length:

x∗j = xj/
q
x0jxj (9.30)

for j = 1, 2, ..., k. Next we find the eigenvalues of the moment matrix of the
so-transformed data matrix by finding the k roots of :

det(X∗0X∗ − λIk) = 0. (9.31)

Note that since X∗0X∗ is positive semi-difinite the eigenvalues will be be-
tween zero and one with values of zero in the event of singularity and close
to zero in the event of close to singularity. The condition number of the
matrix is taken as the ratio of the largest to smallest of the eigenvalues:

c =
λmax
λmin

. (9.32)

Using an analyis of a number of problems BKW suggest that collinearity
is a possible issue when c ≥ 20. For the example the condition number
is 166.245, which indicates a very poorly conditioned matrix. Although
this approach tells a great deal about the invertibility of X0X and hence the
signal, it tells us nothing about the noise level relative to the signal.

9.4 Correcting For Collinearity

9.4.1 Additional Observations

Professor Goldberger has quite aptly described multicollinearity as ”micron-
umerosity” or not enough observations. Recall that the shift term depends
on the difference between the null and alternative, the signal-noise ratio,
and the sample size. For a given signal-noise ratio, unless collinearity is ex-
treme, it can always be overcome by increasing the sample size sufficiently.
Moreover, we can sometimes gather more data that, hopefully, will not suf-
fer the collinearity problem. With designed experiments, and cross-sections,
this is particularly the case. With time series data this is not feasible and
in any event gathering more data is time-conusming and expensive.

9.4.2 Independent Estimation

Sometimes we can obtain outside estimates. For example, in the Ando-
Modigliani consumption equation

Ct = β0 + β1Yt + β2Wt + ut, (9.33)
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we might have a cross-sectional estimate of β1, say bβ1. Then,
(Ct − bβ1Yt) = β0 + β2Wt + ut (9.34)

becomes the new problem. Treating bβ1 as known allows estimation of β2
with increases precision. It would not reduce the precision of the estimate
of β1 which would simply be the cross-sectional estimate. The implied
error term, moreover, is more complicated since bβ1 may be correlated with
Wt. Mixed estimation approaches should be used to handle this approach
carefully. Note that this is another way to gather more data.

9.4.3 Prior Restrictions

Consider the consumption equation from Klein’s Model I:

Ct = β0 + β1Pt + β2Pt−1β3Wt + β4W
0
t + ut, (9.35)

where Ct is the consumption expenditure, Pt is profits, Wt is the private
wage bill and W 0

t is the governement wage bill.
Due to market forces, Wt and W 0

t will probably move together and
collinearity will be a problem for β3 and β4. However, there is no prior
reason to discriminate between Wt and W 0

t in their effect on Ct. Thus it
is reasonable to suppose Wt and W 0

t impact Ct in the same way. That is,
β3 = β4. The model is now

Ct = β0 + β1Pt + β2Pt−1β(Wt +W 0
t) + ut, (9.36)

which should avoid the collinearity problem.

9.4.4 Ridge Regression

One manifestation of collinearity is that the effected estimates, say bβ1, will
be extreme with a high probability. Thus,

kX
i=1

bβ2i = bβ21 + bβ22 + · · ·+ bβ2k = bβ0 bβ (9.37)

will be large with a high probability.
By way of treating the disease by treating its symptoms, we might re-

strict bβ0 bβ to be small. Thus, we might reasonably
minbβ (y−Xbβ )0(y −Xbβ ) subject to bβ0 bβ ≤ m. (9.38)
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Form the Lagrangian (since bβ0 bβ is large, we must impose teh restriction with
equality).

L = (y −Xeβ )0(y −Xeβ ) + λ(m− eβ0 eβ )
=

nX
t=1

Ã
yt −

kX
i=1

eβixti
!2
++λ(m−

kX
i=1

eβ2i ). (9.39)

The first-order conditions yield

∂L
∂βj

= −2
X
t

Ã
yt −

X
i

eβixti
!
xtj + 2λeβ2i = 0, (9.40)

or X
t

ytxtj =
X
t

X
i

xtixtj eβi + λeβj
=

X
i

eβiX
t

xtixtj + λeβj , (9.41)

for j = 1, 2, . . . , k. In matrix form, we have

X0y = (X0X+ λIn)eβ. (9.42)

So, we have eβ = (X0X+ λIn)
−1X0y. (9.43)

This is called ridge regression.
Substition yieldseβ = (X0X+ λIn)

−1X0y

= (X0X+ λIn)
−1X0(Xβ + u)

= (X0X+ λIn)
−1X0(Xβ + (X0X+ λIn)

−1u) (9.44)

and

E( eβ ) = (X0X+ λIn)
−1X0Xβ = Pβ, (9.45)

so ridge regression is biased. Rather obviously, as λ grows large, the expec-
tation ”shrinks” towards zero so the bias is towards zero. Next, we find
that

Cov( eβ ) = σ2(X0X+ λIn)
−1X0X(X0X+ λIn)

−1 = σ2Q < σ2(X0X)−1.
(9.46)
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If u ∼ N(0, σ2In), then

eβ ∼ N(Pβ, σ2Q) (9.47)

and inferences are possible only for Pβ and hence the complete vector.
The rather obvious question in using ridge regression is what is the best

choice for λ? We seek to trade off the increased bias against the reduction
in the variance. This may be done by considering the mean square error
(MSE) which is given by

MSE(eβ) = σ2Q+ (P− Ik)ββ0(P− Ik)
= (X0X+ λIn)

−1{σ2X0X+ λ2ββ0}(X0X+ λIn)
−1.

We might choose to minimize the determinant or trace of this function.
Note that either is an decreasing function of λ through the inverses and
an increasing function through the term in brackets. Note also that the
minimand depends on the true unkown β, which makes it infeasible.

In practice, it is useful to obtain what is called a ridge trace, which plots
out the estimates, estimated standard error, and estimated square root of
mean squared error (SMSE) as a function of λ. Problematic terms will
frequently display a change of sign and a dramatic reduction in the SMSE.
If this phenonmenon occurs at a sufficiently small value of λ, then the bias
will be small and inflation in SMSE relative to the standard error will be
small and we can conduct inference in something like the usual fashion. In
particular, if the estimate of a particular coefficient seems to be significantly
different from zero despite the bias toward zero, we can reject the null that
it is zero.



Chapter 10

Stochastic Explanatory
Variables

10.1 Nature of Stochastic X

In previous chapters, we made the assumption that the x’s are nonstochastic,
which means they are not random variables. This assumption was motivated
by the control variables in controlled experiments, where we can choose
the values of the independent variables. Such a restriction allows us to
focus on the role of the disturbances in the process and was most useful in
working out the stochastic properties of the estimators and other statistics.
Unfortunately, economic data do not usually come to us in this form. In fact,
the independent variables are random variables much like the dependent
variable whose values are beyond the control of the researcher.

Consequently we will restate our model and assumptions with an eye
toward stochastic x. The model is

yi = x
0
iβ + ui for i = 1, 2, ..., n. (10.1)

The assumptions with respect to unconditional moments of the disturbances
are the same as before:

(i) E[ui] = 0

(ii) E[u2i ] = σ2

(iii) E[uiuj ] = 0, j 6= i

100



10.1. NATURE OF STOCHASTIC X 101

The assumptions with respect to x must be modified. We replace the
assumption of x nonstochastic with an assumption regarding the joint sto-
chastic behavior of ui and xi. Several alternative assumptions will be intro-
duced regarding the degree of dependence between xi and ui. For stochastic
x, the assumption of linearly independent x’s implies that the covariance
matrix of the x’s has full column rank and is hence positive definite. Stated
formally, we have:

(iv) (ui,xi) jointly i.i.d. with {dependence assumption}

(v) E[xix
0
i] = Q p.d.

Notice that the assumption of normality, which was introduced in pre-
vious chapters to facilitate inference, was not reintroduced. Thus we are
effectively relaxing both the nonstochastic regressor and normality assump-
tions at the same time. The motivation for dispensing with the normality
assumption will become apparent presently.

We will now examine the various alternative assumptions that will be
entertained with respect to the degree of dependence between xi and ui.

10.1.1 Independent X

The strongest assumption we can make relative to this relationship is that
xi are stochastically independent of ui. This means that the distribution of
xi depends in no way on the value of ui and visa versa. Note that

cov ( g(xi), h(ui) ) = 0, (10.2)

for any functions g(·) and h(·) in this case.

10.1.2 Conditional Zero Mean

The next strongest assumption is E[ui|xi] = 0, which implies

cov ( g(xi), ui) ) = 0, (10.3)

for any funtion g(·). This assumption is motivated by the assumption that
our model is simply a statement of conditional expectation, E[yi|xi] = x0iβ,
and may or may not be accompanied by a conditional second moment as-
sumption such as E[u2i |xi] = σ2. Note that independence along with the
unconditional statements E[ui] = 0 and E[u

2
i ] = σ2 imply conditional zero

mean and constant conditional variance, but not the reverse.
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10.1.3 Uncorrelated X

A less strong assumption is that xij and ui are uncorrelated, that is,

cov (xij , ui ) = E(xij , ui ) = 0. (10.4)

The properties of bβ are less accessible in this case. Note that conditional
zero mean always implies uncorrelated, but not the reverse. It is possible
to have a random variables that are uncorrelated but neither has constant
conditional mean given the other. In general, the conditional second moment
will also be nonconstant.

10.1.4 Correlated X

A priori information sometimes suggests the possibility that xij is correlated
with ui. That is, that is,

E(xij , ui ) 6= 0. (10.5)

As we shall see below, this can have quite serious implications for the OLS
estimates.

An example is the case of simultaneous equations models that we will
examine later. A second example occurs when our right-hand side variables
are measured with error. Suppose

yi = α+ βxi + ui (10.6)

is the true model but

xi = xi + vi (10.7)

is the only available measurement of xi. If we use x
∗
i in our regression, then

we are estimating the model

yi = α+ β(x∗i − vi ) + ui

= α+ βx∗i + (ui − βvi ). (10.8)

Now, even if the measurement error vi were independent of the disturbance
ui, the right-hand side variable x

∗
t will be correlated with the effective dis-

turbance (ui − βvi).
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10.2 Consequences of Stochastic X

10.2.1 Consequences for OLS Estimation

Recall that bβ = (X0X )−1X0y (10.9)

= (X0X )−1XX 0(Xβ + u )

= β + (X0X )−1X0u

= β + (
1

n
X0X )−1

1

n
X0u

= β +

Ã
1

n

nP
j=1

xjx
0
j

!−1µ
1

n

nP
i=1

xiui

¶
We will now examine the bias and consistency properties of the estimators
under the alternative dependence assumptions.

Uncorrelated X

Suppose that xt is only assumed to be uncorrelated with ui. Rewrite the
second term in (10.9) asÃ

1

n

nP
j=1

xjx
0
j

!−1µ
1

n

nP
i=1
xiui

¶
=

1

n

nP
i=1

⎡⎣Ã 1
n

nP
j=1

xjx
0
j

!−1
xi

⎤⎦ui
=

1

n

nP
i=1

wiui.

Note that wi is a function of both xi and xj and is nonlinear in xi for j = i.
Now ui is uncorrelated with the xj for j 6= i by independence and the level of
xi by the assumption but is not necessarily uncorrelated with the nonlinear
function of xi. Thus,

E[{(X0X )−1X0}u] 6= 0, (10.10)

in general, whereupon

E[bβ] = β +E(X
0X )−1X0u 6= β. (10.11)

Similarly, we find E[s2] 6= σ2. Thus both bβ and s2 will be biased, although
the bias may disappear asymptotically as we will see below. Note that
sometimes these moments are not well defined.
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Now, each element of xix
0
i and xiui are i.i.d. random variables with ex-

pectations Q and 0, respectively. Thus, the law of large numbers guarantees
that

1

n

nP
i=1
xixi

p−→ Exixi = Q, (10.12)

and

1

n

nP
i=1
xiui

p−→ Exiui = 0. (10.13)

It follows that

plim
n→∞

bβ = β + plim
n→∞

µ
1

n
X0X

¶−1 1
n
X0u

= β + plim
n→∞

µ
1

n
X0X

¶−1
plim
n→∞

1

n
X0u

= β +Q−1 · 0 = β. (10.14)

Similarly, we can show that

plim
n→∞

s2 = σ2. (10.15)

Thus both bβ and s2 will be consistent.

Conditional Zero Mean

Suppose E[ui|xi] = 0. Then,

E[bβ] = β+E[(X
0X)−1X0u]

= β+E[(X
0X)−1X0 E(u|X)]

= β+E[(X
0X)−1X0 · 0] = β.

and OLS is unbiased. The Gauss-Markov theorem continues to hold in the
sense that least-squares is BLUE in the class of estimators that is linear in y
with the linear transformation matrix a function only of X. For the variance
estimator, we can show unbiasedness, in a similar fashion,

E s
2 = E e

0e/(n− k)

=
1

n− k
Eu

0( I−X(X0X)−1X0 )u

= σ2, (10.16)
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provided that E[u2i |xi] = σ2. Naturally, since conditional zero mean implies
uncorrelatedness, then we have the same consistency results, namely

plim
n→∞

bβ = β and plim
n→∞

s2 = σ2. (10.17)

Independent X

Suppose xi is independent of ui. Then, provided E[ui] = 0 and E[u
2
i ] = σ2,

we have conditional zero mean and the corresponding unbiasedness results

E bβ = β and E s
2 = σ2, (10.18)

together with the BLUE property and the consistency results

plim
n→∞

bβ = β and plim
n→∞

s2 = σ2. (10.19)

Correlated X

Suppose that xi is correlated with ui. That is,

Exiui = d 6= 0. (10.20)

Obviously, since xi is correlated with ui there is no reason to believe E[{(X 0X )−1X 0}u] =
0 so the OLS estimator will be biased. Turning to the possibility of consis-
tency, we see, by the law of large numbers that

1

n

nP
i=1
xiui

p−→ Exiui = d, (10.21)

whereupon

plim
n→∞

bβ = β +Q−1 · d 6= β (10.22)

since Q−1 is nonsingular and d is nonzero. Thus OLS is also inconsistent.

10.2.2 Consequences for Inferences

In previous chapters, the assumption of normal disturbances was introduced
to facilitate interences. Together with the nonstochastic regressor assump-
tion, it implied that the distribution of the least squares estimator,bβ = β + (X0X )−1X0u
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which is linear in the disturbances, has an unconditional normal distribution.
If the x’s are random variables, however, the unconditional distribution of
the estimator will not be normal, in general, since the estimator is a rather
complicated function of both X and u. For example, if the x’s are also
normal, the estimator will be non-normal. Fortunately, we can appeal to
the central limit theorem for help in large samples.

We shall develop the large-sample asymptotic distribution of bβ only for
the case of independence. The limiting behavior is identical for the condi-
tional zero mean case with constant conditional variance. Now,

plim
n→∞

( bβ − β ) = 0 (10.23)

in this case so in order to have a nondegenerate distribution we consider

√
n( bβ − β ) = µ 1

n
X0X

¶−1√
n
1

n
X0u. (10.24)

The typical element of

1

n
X 0u =

1

n

nP
i=1
xiui (10.25)

is

1

n

nP
i=1

xijui. (10.26)

Note the xijui are i.i.d. random variables with

Exijui = 0 (10.27)

and

E(xijui )
2 = Ex xij Eu ui = σ2qjj , (10.28)

where qjj is the jj-th element of Q. Thus, according to the central limit
theorem,

√
n
1

n

nP
i=1

xijui
d−→ N(0, σ2qii). (10.29)

In general,

√
n
1

n

nP
i=1
xiui =

1√
n
X0u

d−→ N(0, σ2Q). (10.30)
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Since 1
nX

0X converges in probability to the fixed matrix Q, we have

√
n( bβ − β ) d−→ Q−1

1√
n
X0u

d−→ N(0, σ2Q−1).
(10.31)

For inferences,

√
n(bβj − βj)

d−→ N(0, σ2qjj) (10.32)

and

√
n(bβj − βj)p

σ2qjj

d−→ N(0, 1). (10.33)

Unfortunately, neither σ2 nor Q−1 are available. We can use s2 as a
consistent estimate of σ2 and

bQ = µ 1
n
X0X

¶−1
= n(X0X)−1 (10.34)

as a consistent estimate of Q. Substituting, we have

√
n(bβj − βj)p

s2bqjj
√
n(bβj − βj)p

s2[n(X0X)−1]jj
=

bβj − βjp
s2[(X0X)−1]jj

d−→ N(0, 1).
(10.35)

Thus, the usual statistics we use in conducting t-tests are asymptotically
standard normal. This is particularly convenient since the t-distribution
converges to the standard normal. The small-sample inferences we learned
for the nonstochastic regressor case are appropriate in large samples for the
stochastic regressor case.

In a similar fashion, we can show that the approach introduced in previ-
ous chapters for inference on complex hypotheses that had an F -distribution
under normality with nonstochastic regressors continue to be appropriate in
large samples with non-normality and stochastic regressors. For example,
consider again the model

y = X1β1 +X2β2 + u (10.36)

with H0 : β2 = 0 and H1 : β2 6= 0. Regression on this unrestriced model
yields SSEu while regression on the restricted model y = X1β1 + u yields
the SSEr. We form the statistic [(SSEr − SSEu)/k2]/[SSEu/(n − k)],
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where k is the unrestricted numer of regressors and k2 is the number of
restrictions. Under normality and nonstochastic regressors this statistic will
have a Fk2,n−k distribution. Note that asymptotically, as n becomes large,
the denominator converges to σ2 and the Fk2,n−k distribution converges to a
χ2k2 distribution (divided by k2). But this would be the limiting distribution
of this statistic even if the regressors are nonstochastic and the disturbances
non-normal.

10.3 Correcting for Correlated X

10.3.1 Instruments

Consider

y = Xβ + u (10.37)

and premultiply by X0 to obtain

X0y = X0Xβ +X0u
1

n
X0y =

1

n
X0Xβ +

1

n
X0u. (10.38)

If X is uncorrelated with u, then the last term disappears in large samples:

plim
n→∞

1

n
X0y = plim

n→∞

1

n
(X0X)β, (10.39)

which may be solved to obtain

β = plim
n→∞

µ
1

n
X0X

¶
1

n
X0y

= plim
n→∞

(X0X)X0y = plim
n→∞

bβ. (10.40)

Of course, if X is correlated with u, say Exiui = d, then

plim
n→∞

1

n
X0u = d and plim

n→∞
bβ 6= β. (10.41)

Suppose we can find iid variables zi that are independent and hence
uncorrelated with ui, then

E ziui = 0. (10.42)
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Also, suppose that the zi are correlated with xi so

E zixi = P, E zizi =M, (10.43)

and P is nonsingular. Such variables are known as instruments for the
variables xi.

10.3.2 Instrumental Variable (IV) Estimation

Suppose that we premultiply (10.37) by

Z0 = (z1, z2, . . . , zn) (10.44)

to obtain

Z0y = Z0Xβ + Z0u
1

n
Z0y =

1

n
Z0Xβ +

1

n
Z0u. (10.45)

But since E ziui = 0, then

plim
n→∞

1

n
Z0u = plim

n→∞

1

n

nP
i=1
ziui = 0, (10.46)

so

plim
n→∞

1

n
Z0y = plim

n→∞

1

n
Z0Xβ (10.47)

or

β = plim
n→∞

µ
1

n
Z0X

¶−1 1
n
Z0y

= plim
n→∞

(Z0X)−1Z0y. (10.48)

Now,

eβ = (Z0X)−1Z0y (10.49)

is known as the instrumental variable (IV) estimator. Note that OLS is an
IV estimator with X chosen as the instruments.
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10.3.3 Properties of the IV Estimator

We have just shown that

plim
n→∞

eβ = β, (10.50)

so the IV estimator is consistent. In small samples, since

eβ = (Z0X)−1Z0y

= (Z0X)−1Z0(Xβ + u)

= β + (Z0X)−1Z0u, (10.51)

we generally have bias since we are only assured that zi is uncorrelated with
ui, but not that (Z

0X)−1Z0 is uncorrelated with u.
Asymptotically, if zi is independent of ui, then

√
n(bβ − β) d−→ (0, σ2P−1MP−1), (10.52)

where, as above,

P = plim
n→∞

1

n
Z0X and M = plim

n→∞

1

n
Z0Z. (10.53)

Let

ee = y−Xeβ (10.54)

be the IV residuals. Then

es2 = ee0ee
n− k

=
nP
i=1

ee2t
n− k

(10.55)

is consistent.

The ratios

eβj − βjpes2[(Z0X)−1Z0Z(X0Z)−1]jj d−→ N(0, 1), (10.56)

where the denominator is printed by IV packages as the estimated standard
errors of the estimates.
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10.3.4 Optimal Instruments

The instruments zi cannot be just any variables that are independent of and
uncorrelated with ui. They should be as closely related to xi as possible
while remaining uncorrelated with ui.

Looking at the asymptotic covariance matrix P−1MP−1, we can see as
zi and xi become unrelated and hence uncorrelated, that

plim
n→∞

1

n
Z0X = P (10.57)

goes to zero. The inverse of P consequently grows large and P−1MP−1 will
become large. Then the consequence of using zi that are not close to xi is
imprecise estimates. In fact, we can speak of optimal instruments as being
all of xi except the part that is correlated with ui.

10.4 Detecting Correlated X

10.4.1 An Incorrect Procedure

With other problems of OLS we have examined the OLS residuals for signs
of the problem. In the present case, where ui being correlated with xi is the
problem, we might naturally see if our proxy for ui, the OLS residuals et,
are correlated with xi. Thus,

nP
i=1
xiet = X

0e (10.58)

might be taken as an indication of any correlation between xi and ui. Un-
fortunately, one of the properties of OLS guarantees that

X0e = 0. (10.59)

Thus, this procedure will not work.

10.4.2 A Priori Information

Typically, we know that xi is correlated with ui as a result of the structure
of the model. For example, in the errors in variables models. In such cases,
the candidates for instruments also usually are evident.
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10.4.3 Example: Simultaneous Equations

Consider the consumption equation

Ct = α+ βYt + ut, (10.60)

where income, Yt, is defined by the identity

Yt = Ct +Gt. (10.61)

Substituting (10.60) into (10.61), we obtain

Yt = α+ βYt + ut +Gt, (10.62)

and solving for Yt,

Yt =
α

1− β
+

1

1− β
Gt +

1

1− β
ut. (10.63)

Rather obviously, Yt is linearly related and hence correlated with ut. A
candidate as an instrument for Yt is the exogenous variable Gt.

10.4.4 An IV Approach

As a test of whether xi is correlated with ui and hence

plim
n→∞

bβ 6= β,

the most common procedure is to compare the OLS and IV estimates. If
OLS is consistent, we expect to find between no difference between the two.
If not, then

plim
n→∞

bβ 6= β = plim
n→∞

eβ
and the difference will show up.

More formally,
√
n(bβ − eβ) d−→

£
0, σ2(P−1MP−1 −Q−1)

¤
, (10.64)

where

P = plim
n→∞

1

n
Z0X,

M = plim
n→∞

1

n
Z0Z,

Q = plim
n→∞

1

n
X0X.

This procedure is known as the Wu test.
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Nonscalar Covariance

11.1 Nature of the Problem

11.1.1 Model and Ideal Conditions

Consider the model

y = Xβ + u, (11.1)

where y is n × 1 vector of observations on the dependent variable, X is the
n× k matrix of observations on the explanatory variables, and u is the vector
of unobservable disturbances.

The ideal conditions are

(i) E[u] = 0

(ii & iii) E[uu0] = σ2In

(iv) X full column rank

(v) X nonstochastic

(vi) [u ∼N(0,σ2In)]

11.1.2 Nonscalar Covariance

Nonscalar covariance means that

E[uu
0] = σ2Ω, tr(Ω) = n (11.2)

113
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an n-by-n positive definite matrix such that Ω 6= In. That is,

E

⎡⎢⎢⎢⎣
⎛⎜⎜⎜⎝

u1
u2
...
un

⎞⎟⎟⎟⎠ (u1, u2, . . . , un)
⎤⎥⎥⎥⎦ = σ2

⎡⎢⎢⎢⎣
ω11 ω12 · · · ω1n
ω21 ω22 · · · ω2n
...

...
. . .

...
ω1n ω2n · · · ωnn

⎤⎥⎥⎥⎦
(11.3)

A covariance matrix can be nonscalar either by having non-constant diagonal
elements or non-zero off diagonal elements or both.

11.1.3 Some Examples

Serial Correlation

Consider the model

yt = α+ βxt + ut, (11.4)

where

ut = ρut−1 + εt, (11.5)

and E[εt] = 0, E[ε
2
t ] = σ2, and E[εtεs] = 0 for all t 6= s. Here, ut and ut−1 are

correlated, so Ω is not diagonal. This is a problem that afflicts a large fraction
of time series regressions.

Heteroscedasticity

Consider the model

Ci = α+ βYi + ui i = 1, 2, . . . , n, (11.6)

where Ci is consumption and Yi is income for individual i. For a cross-section,
we might expect more variation in consumption by high-income individuals.
Thus, E[u2i ] is not constant. This is a problem that afflicts many cross-sectional
regressions.

Systems of Equations

Consider the joint model

yt1 = x0t1β1 + ut1

yt2 = x0t2β2 + ut2.

If ut1 and ut2 are correlated, then the joint model has a nonscalar covariance.
If the error terms ut1 and ut2 are viewed as omitted variables then it is obvious
to ask whether common factors have been omitted and hence the terms are
correlated.
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11.2 Consequences of Nonscalar Covariance

11.2.1 For Estimation

The OLS estimates are

bβ = (X0X)−1X0y

= β + (X0X)−1X0u. (11.7)

Thus,

E[bβ] = β + (X0X)−1X0
E[u] = β, (11.8)

so OLS is still unbiased (but not BLUE since (ii & iii) not satisfied).
Now

bβ − β =(X0X)−1X0u. (11.9)

so

E[(bβ − β)(bβ − β)0] = (X0X)−1X0 E[uu0]X(X0X)−1

= σ2(X0X)−1X0ΩX(X0X)−1

6= σ2(X0X)−1.

The diagonal elements of (X0X)−1X0ΩX(X0X)−1 can be either larger or smaller
than the corresponding elements of (X0X)−1. In certain cases we will be able
to establish the direction of the inequality.
Suppose

1

n
X0X

p→Q p.d. (11.10)

1

n
X0ΩX

p→M

then (X0X)−1X0ΩX(X0X)−1 = 1
n(

1
nX

0X)−1 1nX
0ΩX( 1nX

0X)−1
p→ 1
nQ
−1MQ−1

p→0
so

bβ p→β (11.11)

since bβ unbiased and the variances go to zero.
11.2.2 For Inference

Suppose

u ∼ N(0, σ2Ω) (11.12)
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then

bβ ∼ N(β, σ2(X0X)−1X0ΩX(X0X)−1). (11.13)

Thus bβj − βjp
σ2[(X0X)−1]jj

¿ N(0, 1) (11.14)

since the denominator may be either larger or smaller than
p
σ2[(X0X)−1X0ΩX(X0X)−1]jj .

And bβj − βjp
s2[(X0X)−1]jj

¿ tn−k (11.15)

We might say that OLS yields biased and inconsistent estimates of the variance-
covariance matrix. This means that our statistics will have incorrect size so we
over- or under-reject a correct null hypothesis.

11.2.3 For Prediction

We seek to predict

y∗ = x
0
∗β + u∗ (11.16)

where ∗ indicates an observation outside the sample. The OLS (point) predictor
is

by∗ = x0∗bβ (11.17)

which will be unbiased (but not BLUP). Prediction intervals based on σ2(X0X)−1

will be either too wide or too narrow so the probablility content will not be the
ostenisble value.

11.3 Correcting For Nonscalar Covariance

11.3.1 Generalized Least Squares

Since Ω positive definite we can write

Ω = PP0 (11.18)

for some n × n nonsingular matrix P (typically upper or lower triangular).
Multiplying (11.1) by P−1 yields

P−1y = P−1Xβ +P−1u (11.19)
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or

y∗ = X∗β + u∗ (11.20)

where y∗ = P−1y, X∗ = P−1X, and u∗ = P−1u.
Perform OLS on the transformed model yields the generalized least squares

or GLS estimator

β = (X∗0X∗)−1X∗0y∗

= ((P−1X)0P−1X)−1(P−1X)0P−1y

= (X0P−1
0
P−1X)−1X0P−10P−1y.

But P−1
0
P−1 = P0−1P−1 = Ω−1 whereupon we have the alternative represen-

tation

β = (X0Ω−1X)−1X0Ω−1y. (11.21)

This estimator is also known as the Aitken estimator. Note that GLS reduces
to OLS when Ω = In.

11.3.2 Properties with Known Ω

Suppose that Ω is a known, fixed matrix, then

• E[u∗] = 0

• E[u∗u∗0] = P−1 E[uu0]P−10 = σ2P−1ΩP−10 = σ2P−1PP0P−10 = σ2In

• X∗ = P−1X nonstochastic

• X∗ has full column rank

so the transformed model satisfies the ideal model assumptions (i)-(v).
Applying previous results for the ideal case to the transformed model we

have

E[β] = β (11.22)

E[(β − β)(β − β)0] = σ2(X∗0X∗)−1 = σ2(X0Ω−1X)−1

(11.23)

and the GLS estimator is unbiased and BLUE. We assume the transformed
model satisfies the asymptotic properties studied in the previous chapter. First,
suppose

1

n
X0Ω−1X =

1

n
X∗0X∗

p→Q∗ p.d. (a)
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then β
p→β. Secondly, suppose

1√
n
X0Ω−1u =

1√
n
X∗0u∗

d→N(0, σ2Q∗) (b)

then
√
n(β−β) d→N(0, σ2Q∗−1). Inference and prediction can proceed as before

for the ideal case.

11.3.3 Properties with Unknown Ω

If Ω is unknown then the obvious approach is to estimate it. Bear in mind,
however, that there are up to n(n+1)/2 possible different parameters if we have
no restrictions on the matrix. Such a matrix cannot be estimated consistently
since we only have n observations and the number of parameters is increasing
faster than the sample size. Accordingly, we look at cases where Ω = Ω(λ) for
λ a p× 1 finite-length vector of unknown paramters. The three examples will
fall into this category.
Suppose we have an estimator bλ (possibly consistent) then we obtain bΩ= Ω(bλ)

and the feasible GLS estimatorbβ = (X0bΩ−1X)−1X0bΩ−1y
= β+(X0bΩ−1X)−1X0bΩ−1u.

The small sample properties of this estimator are problematic since bΩ = bPbP0
will generally be a function of u so the regressors of the feasible transformed
model bX∗ = bP−1X become stochastic. The feasible GLS will be biased and
non-normal in small samples even if the original disturbances were normal.
It might be supposed that if bλ is consistent that everything will work out in

large samples. Such happiness is not assured since there are possibly n(n+1)/2
possible nonzero elements in Ω which can interact with the x0s in a pathological
fashion. Suppose that (a) and (b) are satisfied and furthermore

1

n
[X0Ω(bλ)−1X−X0Ω(λ)−1X]

p→0 (c)

and

1√
n
[X0Ω(bλ)−1u−X0Ω(λ)−1u]

p→0 (d)

then

√
n(bβ − β) d→N(0, σ2Q∗−1). (11.24)

Thus in large samples, under (a)-(d), the feasible GLS estimator has the same
asymptotic distribution as the true GLS. As such it shares the optimality
properties of the latter.
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11.3.4 Maximum Likelihood Estimation

Suppose

u ∼ N(0, σ2Ω) (11.25)

then

y ∼ N(Xβ, σ2Ω) (11.26)

and

L(β, σ2,Ω;y,X) = f(y|X;β, σ2,Ω)

=
1

(2πσ2)n/2 |Ω|1/2
e−

1
2σ2

(y−Xβ)0Ω−1(y−Xβ).

Taking Ω as given, we can maximize L(·) w.r.t. β by minimizing

(y−Xβ)0Ω−1(y−Xβ) = (y −Xβ)0P0−1P−1(y−Xβ) (11.27)

= (y∗−X∗β)0(y∗−X∗β).

Thus OLS on the transformed model or the GLS estimator

β = (X0Ω−1X)−1X0Ω−1y (11.28)

is MLE and BUE since it is unbiased.

11.4 Seemingly Unrelated Regressions

11.4.1 Sets of Regression Equations

We consider a model with G agents and a behavioral equation with n observa-
tions for each agent. The equation for agent j can be written

yj = Xjβj + uj , (11.29)

where yj is n× 1 vector of observations on the dependent variable for agent j,
Xj is the n× k matrix of observations on the explanatory variables, and uj is
the vector of unobservable disturbances. Writing the G sets of equations as one
system yields⎛⎜⎜⎜⎝

y1
y2
...
yG

⎞⎟⎟⎟⎠ =

⎡⎢⎢⎢⎣
X1 0 . . . 0
0 X2 . . . 0
...

...
. . .

...
0 0 . . . XG

⎤⎥⎥⎥⎦
⎛⎜⎜⎜⎝

β1
β2
...
βG

⎞⎟⎟⎟⎠+
⎛⎜⎜⎜⎝
u1
u2
...
uG

⎞⎟⎟⎟⎠
(11.30)
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or more compactly

y = Xβ + u (11.31)

where the definitions are obvious.
The individual equations satisfy the usual OLS assumptions

E[uj ] = 0 (11.32)

and

E[uju
0
j ] = σ2j In (11.33)

but due to common ommited factors we must allow for the possibility that

E[uju
0
c] = σjcIn j 6= c. (11.34)

In matrix notation we have

E[u] = 0 (11.35)

and

E[uu
0] = Σ⊗ In = σ2Ω (11.36)

where

Σ =

⎡⎢⎢⎢⎣
σ21 σ12 . . . σ1G
σ12 σ22 . . . σ2G
...

...
. . .

...
σG1 σG2 . . . σ2G

⎤⎥⎥⎥⎦ . (11.37)

11.4.2 SUR Estimation

We can estimate each equation by OLS

bβj = (X0
jXj)

−1X0
jyj (11.38)

and as usual the estimators will be unbiased, BLUE for linearity w.r.t. yj , and
under normality

bβ ∼ N(βj , σ
2
j (X

0
jXj)

−1). (11.39)

This procedure, however, ignores the covariances between equations. Treat-
ing all equations as a combined system yields

y = Xβ + u (11.40)



11.4. SEEMINGLY UNRELATED REGRESSIONS 121

where

u ∼ (0,Σ⊗ In) (11.41)

is non-scalar. Applying GLS to this model yields

β = (X
0
(Σ⊗ In)−1X)−1X

0
(Σ⊗ In)−1y

= (X
0
(Σ−1 ⊗ In)X)−1X

0
(Σ−1 ⊗ In)y

This estimator will be unbiased and BLUE for linearity in y and will, in general,
be efficient relative to OLS.
If u is multivariate normal then

β ∼ N(β,(X
0
(Σ⊗ In)−1X)−1). (11.42)

Even if u is not normal then, with reasonable assumptions about the behavior
of X, we have

√
n(β − β) d→N(0, [ lim

1

n
(X

0
(Σ⊗ In)−1X)]−1). (11.43)

11.4.3 Diagonal Σ

There are two special cases in which the SUR esimator simplifies to OLS on
each equation. The first case is when Σ is diagonal. In this case

Σ =

⎡⎢⎢⎢⎣
σ21 0 . . . 0
0 σ22 . . . 0
...

...
. . .

...
0 0 . . . σ2G

⎤⎥⎥⎥⎦ (11.44)

and

X
0
(Σ⊗ In)−1X =

⎡⎢⎢⎢⎣
X0
1 0 . . . 0
0 X0

2 . . . 0
...

...
. . .

...
0 0 . . . X0

G

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

1
σ21
In 0 . . . 0

0 1
σ22
In . . . 0

...
...

. . .
...

0 0 . . . 1
σ2G
In

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎣
X1 0 . . . 0
0 X2 . . . 0
...

...
. . .

...
0 0 . . . XG

⎤⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎣
1
σ21
X0
1X1 0 . . . 0

0 1
σ22
X0
2X2 . . . 0

...
...

. . .
...

0 0 . . . 1
σ2G
X0
GXG

⎤⎥⎥⎥⎥⎦ .
Similarly,
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X
0
(Σ⊗ In)−1y=

⎡⎢⎢⎢⎢⎣
1
σ21
X0
1y1 0 . . . 0

0 1
σ22
X0
2y2 . . . 0

...
...

. . .
...

0 0 . . . 1
σ2G
X0
GyG

⎤⎥⎥⎥⎥⎦ (11.45)

whereupon

β =

⎡⎢⎢⎢⎣
(X0

1X1)
−1X0

1y1
(X0

2X2)
−1X0

2y2
...

(X0
GXG)

−1X0
GyG

⎤⎥⎥⎥⎦ . (11.46)

So the estimator for each equation is just the OLS estimator for that equation
alone.

11.4.4 Identical Regressors

The second case is when each equation has the same set of regressor, i.e. Xj = X
so

X = IG ⊗X. (11.47)

And

β = [(IG ⊗X0)(Σ−1 ⊗ In)(IG ⊗X)]−1(IG ⊗X0)(Σ−1 ⊗ In)y
= (Σ−1 ⊗X0X)−1(Σ−1 ⊗X0)y

= [Σ⊗ (X0X)−1](Σ−1 ⊗X0)y

= [IG ⊗ (X0X)−1X0]y

=

⎡⎢⎢⎢⎣
(X0X)−1X0y1
(X0X)−1X0y2

...
(X0X)−1X0yG

⎤⎥⎥⎥⎦ .
In both these cases the other equations have nothing to add to the estimation
of the equation of interest because either the omitted factors are unrelated or
the equation has no additional regressors to help reduce the sum- of-squared
errors for the equation of interest.

11.4.5 Unknown Σ

Note that for this case Σ comprises λ in the general form Ω = Ω(λ). It is finite-
length with G(G+1)/2 unique elements. It can be estimated consistently using
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OLS residuals. Let
ej = yj −Xj

bβj
denote the OLS residuals for agent j. Then by the usual arguments

bσjc = 1

n

nP
i=1

eijeic

and bΣ = (bσjc)
will be consistent. Form the feasible GLS estimatorbβ = (X0

(bΣ−1 ⊗ In)X)−1X0
(bΣ−1 ⊗ In)y

which can be shown to satisfy (a)-(d) and will have the same asymptotic dis-
tribution as β. This estimator will be obtained in two steps: the first step is
to estimate all equations by OLS and thereby obtain the estimator bΣ, in the
second step we obtain the feasible GLS estimator.


