
Chapter 1

What Is Econometrics

1.1 Data

1.1.1 Accounting

Definition 1.1 Accounting data is routinely recorded data (that is, records of
transactions) as part of market activities. Most of the data used in econmetrics
is accounting data. 2

Acounting data has many shortcomings, since it is not collected specifically
for the purposes of the econometrician. An econometrician would prefer data
collected in experiments or gathered for her.

1.1.2 Nonexperimental

The econometrician does not have any control over nonexperimental data. This
causes various problems. Econometrics is used to deal with or solve these prob-
lems.

1.1.3 Data Types

Definition 1.2 Time-series data are data that represent repeated observations
of some variable in subseqent time periods. A time-series variable is often sub-
scripted with the letter t. 2

Definition 1.3 Cross-sectional data are data that represent a set of obser-
vations of some variable at one specific instant over several agents. A cross-
sectional variable is often subscripted with the letter i. 2

Definition 1.4 Time-series cross-sectional data are data that are both time-
series and cross-sectional. 2
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An special case of time-series cross-sectional data is panel data. Panel data
are observations of the same set of agents over time.

1.1.4 Empirical Regularities

We need to look at the data to detect regularities. Often, we use stylized facts,
but this can lead to over-simplifications.

1.2 Models

Models are simplifications of the real world. The data we use in our model is
what motivates theory.

1.2.1 Economic Theory

By choosing assumptions, the

1.2.2 Postulated Relationships

Models can also be developed by postulating relationships among the variables.

1.2.3 Equations

Economic models are usually stated in terms of one or more equations.

1.2.4 Error Component

Because none of our models are exactly correct, we include an error component
into our equations, usually denoted ui. In econometrics, we usually assume that
the error component is stochastic (that is, random).
It is important to note that the error component cannot be modeled by

economic theory. We impose assumptions on ui, and as econometricians, focus
on ui.

1.3 Statistics

1.3.1 Stochastic Component

Some stuff here.

1.3.2 Statistical Analysis

Some stuff here.
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1.3.3 Tasks

There are three main tasks of econometrics:

1. estimating parameters;

2. hypothesis testing;

3. forecasting.

Forecasting is perhaps the main reason for econometrics.

1.3.4 Econometrics

Since our data is, in general, nonexperimental, econometrics makes use of eco-
nomic theory to adjust for the lack of proper data.

1.4 Interaction

1.4.1 Scientific Method

Econometrics uses the scientific method, but the data are nonexperimental. In
some sense, this is similar to astronomers, who gather data, but cannot conduct
experiments (for example, astronomers predict the existence of black holes, but
have never made one in a lab).

1.4.2 Role Of Econometrics

The three components of econometrics are:

1. theory;

2. statistics;

3. data.

These components are interdependent, and each helps shape the others.

1.4.3 Ocam’s Razor

Often in econometrics, we are faced with the problem of choosing one model
over an alternative. The simplest model that fits the data is often the best
choice.



Chapter 2

Some Useful Distributions

2.1 Introduction

2.1.1 Inferences

Statistical Statements

As statisticians, we are often called upon to answer questions or make statements
concerning certain random variables. For example: is a coin fair (i.e. is the
probability of heads = 0.5) or what is the expected value of GNP for the quarter.

Population Distribution

Typically, answering such questions requires knowledge of the distribution of
the random variable. Unfortunately, we usually do not know this distribution
(although we may have a strong idea, as in the case of the coin).

Experimentation

In order to gain knowledge of the distribution, we draw several realizations of
the random variable. The notion is that the observations in this sample contain
information concerning the population distribution.

Inference

Definition 2.1 The process by which we make statements concerning the pop-
ulation distribution based on the sample observations is called inference. 2

Example 2.1 We decide whether a coin is fair by tossing it several times and
observing whether it seems to be heads about half the time. 2

4



2.1. INTRODUCTION 5

2.1.2 Random Samples

Suppose we draw n observations of a random variable, denoted {x1, x2, ..., xn}
and each xi is independent and has the same (marginal) distribution, then
{x1, x2, ..., xn} constitute a simple random sample.

Example 2.2 We toss a coin three times. Supposedly, the outcomes are inde-
pendent. If xi counts the number of heads for toss i, then we have a simple
random sample. 2

Note that not all samples are simple random.

Example 2.3 We are interested in the income level for the population in gen-
eral. The n observations available in this class are not indentical since the higher
income individuals will tend to be more variable. 2

Example 2.4 Consider the aggregate consumption level. The n observations
available in this set are not independent since a high consumption level in one
period is usually followed by a high level in the next. 2

2.1.3 Sample Statistics

Definition 2.2 Any function of the observations in the sample which is the
basis for inference is called a sample statistic. 2

Example 2.5 In the coin tossing experiment, let S count the total number of
heads and P = S

3 count the sample proportion of heads. Both S and P are
sample statistics. 2

2.1.4 Sample Distributions

A sample statistic is a random variable – its value will vary from one experiment
to another. As a random variable, it is subject to a distribution.

Definition 2.3 The distribution of the sample statistic is the sample distribu-
tion of the statistic. 2

Example 2.6 The statistic S introduced above has a multinomial sample dis-
tribution. Specifically Pr(S = 0) = 1/8, Pr(S = 1) = 3/8, Pr(S = 2) = 3/8, and
Pr(S = 3) = 1/8. 2
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2.2 Normality And The Sample Mean

2.2.1 Sample Sum

Consider the simple random sample {x1, x2, ..., xn}, where xmeasures the height
of an adult female. We will assume that Exi = µ and Var(xi) = σ2 , for all
i = 1, 2, ..., n
Let S = x1 + x2 + · · ·+ xn denote the sample sum. Now,

ES = E(x1 + x2 + · · ·+ xn ) = Ex1 +Ex2 + · · ·+Exn = nµ (2.1)

Also,

Var(S) = E(S − ES )2

= E(S − nµ )2

= E(x1 + x2 + · · ·+ xn − nµ )2

= E

"
nX
i=1

(xi − µ )

#2
= E[(x1 − µ )2 + (x1 − µ )(x2 − µ ) + · · ·+

(x2 − µ )(x1 − µ ) + (x2 − µ )2 + · · ·+ (xn − µ )2]

= nσ2. (2.2)

Note that E[(xi − µ )(xj − µ )] = 0 by independence.

2.2.2 Sample Mean

Let x = S
n denote the sample mean or average.

2.2.3 Moments Of The Sample Mean

The mean of the sample mean is

Ex = E
S

n
=
1

n
ES =

1

n
nµ = µ. (2.3)

The variance of the sample mean is

Var(x) = E(x− µ)2

= E(
S

n
− µ )2

= E[
1

n
(S − nµ ) ]2

=
1

n2
E(S − nµ )2
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=
1

n2
nσ2

=
σ2

n
. (2.4)

2.2.4 Sampling Distribution

We have been able to establish the mean and variance of the sample mean.
However, in order to know its complete distribution precisely, we must know
the probability density function (pdf) of the random variable x.

2.3 The Normal Distribution

2.3.1 Density Function

Definition 2.4 A continuous random variable xi with the density function

f (xi ) =
1√
2πσ2

e−
1

2σ2
( xi−µ )2 (2.5)

follows the normal distribution, where µ and σ2 are the mean and variance of
xi, respectively.2

Since the distribution is characterized by the two parameters µ and σ2, we
denote a normal random variable by xi ∼ N(µ, σ2 ).
The normal density function is the familiar “bell-shaped” curve, as is shown

in Figure 2.1 for µ = 0 and σ2 = 1. It is symmetric about the mean µ.
Approximately 2

3 of the probability mass lies within ±σ of µ and about .95
lies within ±2σ. There are numerous examples of random variables that have
this shape. Many economic variables are assumed to be normally distributed.

2.3.2 Linear Transformation

Consider the transformed random variable

Yi = a+ bxi

We know that
µY = EYi = a+ bµx

and
σ2Y = E(Yi − µY )

2 = b2σ2x

If xi is normally distributed, then Yi is normally distributed as well. That is,

Yi ∼ N(µY , σ2Y )
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Figure 2.1: The Standard Normal Distribution

Moreover, if xi ∼ N(µx, σ2x ) and zi ∼ N(µz, σ2z ) are independent, then

Yi = a+ bxi + czi ∼ N( a+ bµx + cµz, b
2σ2x + c2σ2z )

These results will be formally demonstrated in a more general setting in the
next chapter.

2.3.3 Distribution Of The Sample Mean

If, for each i = 1, 2, . . . , n, the xi’s are independent, identically distributed (iid)
normal random variables, then

xi ∼ N(µx,
σ2x
n
) (2.6)

2.3.4 The Standard Normal

The distribution of x will vary with different values of µx and σ2x, which is
inconvenient. Rather than dealing with a unique distribution for each case, we



2.4. THE CENTRAL LIMIT THEOREM 9

perform the following transformation:

Z =
x− µxq

σ2x
n

=
xq
σ2x
n

− µxq
σ2x
n

(2.7)

Now,

EZ =
Exq
σ2x
n

− µxq
σ2x
n

=
µxq
σ2x
n

− µxq
σ2x
n

= 0.

Also,

Var(Z ) = E

⎛⎝ xq
σ2x
n

− µxq
σ2x
n

⎞⎠2

= E

∙
n

σ2x
(x− µx )

2

¸
=

n

σ2x

σ2x
n

= 1.

Thus Z ∼ N(0, 1). The N( 0, 1 ) distribution is the standard normal and is well-
tabulated. The probability density function for the standard normal distribution
is

f ( zi ) =
1√
2π

e−
1
2 ( zi )

2

= ϕ(zi) (2.8)

2.4 The Central Limit Theorem

2.4.1 Normal Theory

The normal density has a prominent position in statistics. This is not only
because many random variables appear to be normal, but also because most
any sample mean appears normal as the sample size increases.
Specifically, suppose x1, x2, . . . , xn is a simple random sample and Exi = µx

and Var(xi ) = σ2x, then as n→∞, the distribution of x becomes normal. That
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is,

lim
n→∞

f

⎛⎝ x− µxq
σ2x
n

⎞⎠ = ϕ

⎛⎝ x− µxq
σ2x
n

⎞⎠ (2.9)

2.5 Distributions Associated With The Normal
Distribution

2.5.1 The Chi-Squared Distribution

Definition 2.5 Suppose that Z1, Z2, . . . , Zn is a simple random sample, and
Zi ∼ N( 0, 1 ). Then

nX
i=1

Z2i ∼ X 2
n , (2.10)

where n are the degrees of freedom of the Chi-squared distribution. 2

The probability density function for the X 2
n is

fχ2(x ) =
1

2n/2Γ(n/2 )
xn/2−1e−x/2, x > 0 (2.11)

where Γ(x) is the gamma function. See Figure 2.2. If x1, x2, . . . , xn is a simple
random sample, and xi ∼ N(µx, σ2x ), then

nX
i=1

µ
xi − µ

σ

¶2
∼ X 2

n . (2.12)

The chi-squared distribution will prove useful in testing hypotheses on both
the variance of a single variable and the (conditional) means of several. This
multivariate usage will be explored in the next chapter.

Example 2.7 Consider the estimate of σ2

s2 =

Pn
i=1(xi − x )2

n− 1 .

Then

(n− 1 ) s
2

σ2
∼ X 2

n−1. (2.13)

2
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Figure 2.2: Some Chi-Squared Distributions

2.5.2 The t Distribution

Definition 2.6 Suppose that Z ∼ N( 0, 1 ), Y ∼ X 2
k , and that Z and Y are

independent. Then
Zq
Y
k

∼ tk, (2.14)

where k are the degrees of freedom of the t distribution. 2

The probability density function for a t random variable with n degrees of
freedom is

ft(x ) =
Γ
¡
n+1
2

¢
√
nπ Γ

¡
n
2

¢ ¡
1 + x2

n

¢(n+1)/2 , (2.15)

for −∞ < x <∞. See Figure 2.3
The t (also known as Student’s t) distribution, is named after W.S. Gosset,

who published under the pseudonym “Student.” It is useful in testing hypotheses
concerning the (conditional) mean when the variance is estimated.

Example 2.8 Consider the sample mean from a simple random sample of nor-
mals. We know that x ∼ N(µ, σ2/n ) and

Z =
x− µq

σ2

n

∼ N( 0, 1 ).
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Figure 2.3: Some t Distributions

Also, we know that

Y = (n− 1 ) s
2

σ2
∼ X 2

n−1,

where s2 is the unbiased estimator of σ2. Thus, if Z and Y are independent
(which, in fact, is the case), then

Zq
Y

(n−1 )

=

x−µ
σ2

nr
(n−1 ) s2

σ2

(n−1 )

= (x− µ )

s
n
σ2

s2

σ2

=
x− µq

s2

n

∼ tn−1 (2.16)

2
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2.5.3 The F Distribution

Definition 2.7 Suppose that Y ∼ X 2
m, W ∼ X 2

n , and that Y and W are inde-
pendent. Then

Y
m
W
n

∼ Fm,n, (2.17)

where m,n are the degrees of freedom of the F distribution. 2

The probability density function for a F random variable with m and n
degrees of freedom is

fF(x ) =
Γ
¡
m+n
2

¢
(m/n)m/2

Γ
¡
m
2

¢
Γ
¡
n
2

¢ x(m/2)−1

(1 +mx/n)(m+n)/2
(2.18)

The F distribution is named after the great statistician Sir Ronald A. Fisher,
and is used in many applications, most notably in the analysis of variance. This
situation will arise when we seek to test multiple (conditional) mean parameters
with estimated variance. Note that when x ∼ tn then x2 ∼ F1,n. Some
examples of the F distribution can be seen in Figure 2.4.

Figure 2.4: Some F Distributions



Chapter 3

Multivariate Distributions

3.1 Matrix Algebra Of Expectations

3.1.1 Moments of Random Vectors

Let ⎡⎢⎢⎢⎣
x1
x2
...
xm

⎤⎥⎥⎥⎦ = x
be an m × 1 vector-valued random variable. Each element of the vector is a
scalar random variable of the type discussed in the previous chapter.
The expectation of a random vector is

E[x ] =

⎡⎢⎢⎢⎣
E[x1 ]

E[x2 ]
...

E[xm ]

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣

µ1
µ2
...
µm

⎤⎥⎥⎥⎦ = µ. (3.1)

Note that µ is also an m×1 column vector. We see that the mean of the vector
is the vector of the means.
Next, we evaluate the following:

E[(x− µ )(x− µ )0]

= E

⎡⎢⎢⎢⎣
(x1 − µ1 )

2 (x1 − µ1 )(x2 − µ2 ) · · · (x1 − µ1 )(xm − µm )
(x2 − µ2 )(x1 − µ1 ) (x2 − µ2 )

2 · · · (x2 − µ2 )(xm − µm )
...

...
. . .

...
(xm − µm )(x1 − µ1 ) (xm − µm )(x2 − µ2 ) · · · (xm − µm )

2

⎤⎥⎥⎥⎦
14
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=

⎡⎢⎢⎢⎣
σ11 σ12 · · · σ1m
σ21 σ22 · · · σ2m
...

...
. . .

...
σm1 σm2 · · · σmm

⎤⎥⎥⎥⎦
= Σ. (3.2)

Σ, the covariance matrix, is an m × m matrix of variance and covariance
terms. The variance σ2i = σii of xi is along the diagonal, while the cross-product
terms represent the covariance between xi and xj .

3.1.2 Properties Of The Covariance Matrix

Symmetric

The variance-covariance matrix Σ is a symmetric matrix. This can be shown
by noting that

σij = E(xi − µi )(xj − µj ) = E(xj − µj )(xi − µi ) = σji.

Due to this symmetry Σ will only have m(m+ 1)/2 unique elements.

Positive Semidefinite

Σ is a positive semidefinite matrix. Recall that any m × m matrix is posi-
tive semidefinite if and only if it meets any of the following three equivalent
conditions:

1. All the principle minors are nonnegative;

2. λ0Σλ ≥ 0, for all λ|{z}
m×1

6= 0;

3. Σ = PP0, for some P|{z}
m×m

.

The first condition (actually we use negative definiteness) is useful in the study
of utility maximization while the latter two are useful in econometric analysis.
The second condition is the easiest to demonstrate in the current context.

Let λ 6= 0. Then, we have

λ0Σλ = λ0 E[(x− µ )(x− µ )0]λ
= E[λ

0(x− µ )(x− µ )0λ ]
= E{ [λ0(x− µ )]2 } ≥ 0,
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since the term inside the expectation is a quadratic. Hence, Σ is a positive
semidefinite matrix.
Note that P satisfying the third relationship is not unique. Let D be any

m × m orthonormal martix, then DD0 = Im and P∗ = PD yields P∗P∗0 =
PDD0P0 = PImP

0 = Σ. Usually, we will choose P to be an upper or lower
triangular matrix with m(m+ 1)/2 nonzero elements.

Positive Definite

Since Σ is a positive semidefinite matrix, it will be a positive definite matrix if
and only if det(Σ) 6= 0. Now, we know that Σ = PP0 for some m×m matrix
P. This implies that det(P) 6= 0.

3.1.3 Linear Transformations

Let y|{z}
m×1

= b|{z}
m×1

+ B|{z}
m×m

m×1z}|{
x . Then

E[y ] = b+BE[x ]

= b+Bµ

= µy (3.3)

Thus, the mean of a linear transformation is the linear transformation of the
mean.
Next, we have

E[ (y− µy )(y − µy )0 ] = E{[B (x− µ )][ (B (x− µ ))0 ]}
= BE[(x− µ )(x− µ)0]B0

= BΣB0

= BΣB0 (3.4)

= Σy (3.5)

where we use the result (ABC )0 = C 0B0A0, if conformability holds.

3.2 Change Of Variables

3.2.1 Univariate

Let x be a random variable and fx(·) be the probability density function of x.
Now, define y = h(x), where

h0(x ) =
d h(x )

d x
> 0.



3.2. CHANGE OF VARIABLES 17

That is, h(x ) is a strictly monotonically increasing function and so y is a one-
to-one transformation of x. Now, we would like to know the probability density
function of y, fy(y). To find it, we note that

Pr( y ≤ h( a ) ) = Pr(x ≤ a ), (3.6)

Pr(x ≤ a ) =

Z a

−∞
fx(x ) dx = Fx( a ), (3.7)

and,

Pr( y ≤ h( a ) ) =

Z h( a )

−∞
fy( y ) dy = Fy(h( a )), (3.8)

for all a.
Assuming that the cumulative density function is differentiable, we use (3.6)

to combine (3.7) and (3.8), and take the total differential, which gives us

dFx( a ) = dFy(h( a ))

fx( a )da = fy(h( a ))h
0( a )da

for all a. Thus, for a small perturbation,

fx( a ) = fy(h( a ))h
0( a ) (3.9)

for all a. Also, since y is a one-to-one transformation of x, we know that h(·)
can be inverted. That is, x = h−1(y). Thus, a = h−1(y), and we can rewrite
(3.9) as

fx(h
−1( y )) = fy( y )h

0(h−1( y )).

Therefore, the probability density function of y is

fy( y ) = fx(h
−1( y ))

1

h0(h−1( y ))
. (3.10)

Note that fy( y ) has the properties of being nonnegative, since h
0(·) > 0. If

h0(·) < 0, (3.10) can be corrected by taking the absolute value of h0(·), which
will assure that we have only positive values for our probability density function.

3.2.2 Geometric Interpretation

Consider the graph of the relationship shown in Figure 3.1. We know that

Pr[h( b ) > y > h( a )] = Pr( b > x > a ).

Also, we know that

Pr[h( b ) > y > h( a )] ' fy[h( b )][h( b )− h( a )],
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a b x

h(b)
h(a)

y

h(x)

Figure 3.1: Change of Variables

and
Pr( b > x > a ) ' fx( b )( b− a ).

So,

fy[h( b )][h( b )− h( a )] ' fx( b )( b− a )

fy[h( b )] ' fx( b )
1

[h( b )− h( a )]/( b− a )]
(3.11)

Now, as we let a→ b, the denominator of (3.11) approaches h0(·). This is then
the same formula as (3.10).

3.2.3 Multivariate

Let
x|{z}

m×1

∼ fx(x ).

Define a one-to-one transformation

y|{z}
m×1

=

m×1z}|{
h (x ).

Since h(·) is a one-to-one transformation, it has an inverse:

x = h−1(y ).



3.2. CHANGE OF VARIABLES 19

We also assume that ∂h(x )
∂x0 exists. This is the m×m Jacobian matrix, where

∂h(x )

∂x0
=

∂

⎡⎢⎢⎢⎣
h1(x )
h2(x )
...

hm(x )

⎤⎥⎥⎥⎦
∂(x1x2 · · ·xm)

=

⎡⎢⎢⎢⎢⎣
∂h1(x )
∂x1

∂h2(x )
∂x1

· · · ∂hm(x )
∂x1

∂h1(x )
∂x2

∂h2(x )
∂x2

· · · ∂hm(x )
∂x2

...
...

. . .
...

∂h1(x )
∂xm

∂h2(x )
∂xm

· · · ∂hm(x )
∂xm

⎤⎥⎥⎥⎥⎦
= Jx(x ) (3.12)

Given this notation, the multivariate analog to (3.11) can be shown to be

fy(y ) = fx[h
−1(y )]

1

|det(Jx[h−1(y )])|
(3.13)

Since h(·) is differentiable and one-to-one then det(Jx[h−1(y )]) 6= 0.

Example 3.1 Let y = b0 + b1x, where x, b0, and b1 are scalars. Then

x =
y − b0
b1

and
dy

dx
= b1.

Therefore,

fy( y ) = fx

µ
y − b0
b1

¶
1

|b1|
. 2

Example 3.2 Let y = b + Bx, where y is an m × 1 vector and det(B) 6= 0.
Then

x = B−1(y− b )

and
∂y

∂x0
= B = Jx(x ).

Thus,

fy(y ) = fx
¡
B−1(y− b )

¢ 1

|det(B )| . 2
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3.3 Multivariate Normal Distribution

3.3.1 Spherical Normal Distribution

Definition 3.1 An m × 1 random vector z is said to be spherically normally
distributed if

f(z) =
1

( 2π )n/2
e−

1
2z

0z. 2

Such a random vector can be seen to be a vector of independent standard
normals. Let z1, z2, . . . , zm, be i.i.d. random variables such that zi ∼ N(0, 1).
That is, zi has pdf given in (2.8), for i = 1, ...,m. Then, by independence, the
joint distribution of the zi’s is given by

f( z1, z2, . . . , zm ) = f( z1 )f( z2 ) · · · f( zm )

=
nY
i=1

1√
2π

e−
1
2 z

2
i

=
1

( 2π )m/2
e−

1
2

n
i=1 z

2
i

=
1

( 2π )m/2
e−

1
2z

0z, (3.14)

where z0 = (z1 z2 ... zm).

3.3.2 Multivariate Normal

Definition 3.2 The m× 1 random vector x with density

fx(x ) =
1

( 2π )n/2[ det(Σ )]1/2
e−

1
2 (x−µ )

0Σ−1(x−µ ) (3.15)

is said to be distributed multivariate normal with mean vector µ and positive
definite covariance matrix Σ. 2

Such a distribution for x is denoted by x ∼ N(µ,Σ). The spherical normal
distribution is seen to be a special case where µ = 0 and Σ = Im.
There is a one-to-one relationship between the multivariate normal random

vector and a spherical normal random vector. Let z be an m × 1 spherical
normal random vector and

x|{z}
m×1

= µ+Az,

where z is defined above, and det(A) 6= 0. Then,

Ex = µ+AE z = µ , (3.16)
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since E[z] = 0.

Also, we know that

E( zz
0 ) = E

⎡⎢⎢⎢⎣
z21 z1z2 · · · z1zm
z2z1 z22 · · · z1zm
...

...
. . .

...
zmz1 zmz2 · · · z2m

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣
1 0 · · · 0
0 1 · · · 0
...
...
. . .

...
0 0 · · · 1

⎤⎥⎥⎥⎦ = Im , (3.17)

since E[zizj ] = 0, for all i 6= j, and E[z2i ] = 1, for all i. Therefore,

E[(x− µ )(x− µ )0] = E(Azz
0A0 )

= AE( zz
0 )A0

= AImA
0 = Σ, (3.18)

where Σ is a positive definite matrix (since det(A) 6= 0).
Next, we need to find the probability density function fx(x ) of x. We know

that

z = A−1(x− µ ) ,

z0 = (x− µ )0A−10 ,

and

Jz( z ) = A,

so we use (3.13) to get

fx(x ) = fz[A
−1(x− µ )] 1

|det(A )|

=
1

( 2π )m/2
e−

1
2 (x−µ )

0A−1
0
A−1(x−µ ) 1

|det(A )|

=
1

( 2π )m/2
e−

1
2 (x−µ )

0(AA0)−1(x−µ ) 1

|det(A )| (3.19)

where we use the results (ABC) = C−1B−1A−1 and A0−1 = A−10. However,

Σ = AA0, so det(Σ) =det(A)·det(A), and |det(A)|= [ det(Σ)]1/2. Thus we
can rewrite (3.19) as

fx(x ) =
1

( 2π )m/2[ det(Σ )]1/2
e−

1
2 (x−µ )

0Σ−1(x−µ ) (3.20)

and we see that x ∼ N(µ,Σ) with mean vector µ and covariance matrix Σ.
Since this process is completely reversable the relationship is one-to-one.
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3.3.3 Linear Transformations

Theorem 3.1 Suppose x ∼ N(µ,Σ) with det(Σ) 6= 0 and y = b+Bx with B
square and det(B) 6= 0. Then y ∼ N(µy,Σy). 2

Proof: From (3.3) and (3.4), we have Ey = b+Bµ = µy and E[(y−µy )(y−
µy )

0] = BΣB0 = Σy. To find the probability density function fy(y ) of y, we
again use (3.13), which gives us

fy(y ) = fx[B
−1(y− b )] 1

|det(B )|

=
1

( 2π )m/2[ det(Σ )]1/2
e−

1
2 [B

−1(y−b )−µ ]0Σ−1[B−1(y−b )−µ ] 1

|det(B )|

=
1

( 2π )m/2[ det(BΣB0)]1/2
e−

1
2 (y−b−Bµ )

0(BΣB0)−1(y−b−Bµ )

=
1

( 2π )m/2[ det(Σy )]1/2
e−

1
2 (y−µy )

0Σ−1y (y−µy ) (3.21)

So, y ∼ N(µy,Σy). 2
Thus we see, as asserted in the previous chapter, that linear transformations

of multivariate normal random variables are also multivariate normal random
variables. And any linear combination of independent normals will also be
normal.

3.3.4 Quadratic Forms

Theorem 3.2 Let x ∼ N(µ,Σ ), where det(Σ) 6= 0, then (x − µ )0Σ−1(x −
µ ) ∼ X 2

m. 2

Proof Let Σ = PP0. Then

(x− µ ) ∼ N( 0,Σ ),

and
z = P−1(x− µ ) ∼ N( 0, Im ).

Therefore,

z0z =
nX
i=1

z2i ∼ X 2
m

= P−1(x− µ )0P−1(x− µ )
= (x− µ )0P−10P−1(x− µ )
= (x− µ )0Σ−1(x− µ ) ∼ X 2

m. 2 (3.22)

Σ−1 is called the weight matrix . With this result, we can use the X 2
m to

make inferences about the mean µ of x.
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3.4 Normality and the Sample Mean

3.4.1 Moments of the Sample Mean

Consider the m× 1 vector xi ∼ i.i.d. jointly, with m× 1 vector mean E[xi] = µ
and m×m covariance matrix E[(xi−µ)(xi−µ)0] = Σ. Define xn = 1

n

Pn
i=1 xi

as the vector sample mean which is also the vector of scalar sample means. The
mean of the vector sample mean follows directly:

E[xn] =
1

n

nX
i=1

E[xi] = µ.

Alternatively, this result can be obtained by applying the scalar results element
by element. The second moment matrix of the vector sample mean is given by

E[(xn − µ)(xn − µ)0] =
1

n2
E
h
(
Pn

i=1 xi − nµ) (
Pn

i=1 xi − nµ)
0
i

=
1

n2
E[{(x1 − µ) + (x2 − µ) + ...+ (xn − µ)}

{(x1 − µ) + (x2 − µ) + ...+ (xn − µ)}0]

=
1

n2
nΣ =

1

n
Σ

since the covariances between different observations are zero.

3.4.2 Distribution of the Sample Mean

Suppose xi ∼ i.i.d.N(µ,Σ) jointly. Then it follows from joint multivariate
normality that xn must also be multivariate normal since it is a linear transfor-
mation. Specifically, we have

xn ∼ N(µ,
1

n
Σ)

or equivalently

xn − µ ∼ N(0,
1

n
Σ)

√
n(xn − µ) ∼ N(0,Σ)√

nΣ−1/2(xn − µ) ∼ N(0, Im)

where Σ = Σ1/2Σ1/20 and Σ−1/2 = (Σ1/2)−1.

3.4.3 Multivariate Central Limit Theorem

Theorem 3.3 Suppose that (i) xi ∼ i.i.d jointly, (ii) E[xi] = µ, and (iii)

E[(xi − µ)(xi − µ)0] = Σ, then
√
n(xn − µ)→d N(0,Σ)
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or equivalently
z =
√
nΣ−1/2(xn − µ)→d N(0, Im) 2 .

These results apply even if the original underlying distribution is not normal
and follow directly from the scalar results applied to any linear combination of
xn.

3.4.4 Limiting Behavior of Quadratic Forms

Consider the following quadratic form

n · (xn − µ)0Σ−1(xn − µ) = n · (xn − µ)0(Σ1/2Σ1/20)−1(xn − µ)
= [n · (xn − µ)0Σ−1/20Σ−1/2(xn − µ)
= [

√
nΣ−1/2(xn − µ)]0[

√
nΣ−1/2(xn − µ)]

= z0z→2
d χ2m.

This form is convenient for asymptotic joint test concerning more than one mean
at a time.

3.5 Noncentral Distributions

3.5.1 Noncentral Scalar Normal

Definition 3.3 Let x ∼ N(µ, σ2). Then,

z∗ =
x

σ
∼ N(µ/σ, 1 ) (3.23)

has a noncentral normal distribution. 2

Example 3.3 When we do a hypothesis test of mean, with known variance, we
have, under the null hypothesis H0 : µ = µ0,

x− µ0
σ

∼ N( 0, 1 ) (3.24)

and, under the alternative H1 : µ = µ1 6= µ0,

x− µ0
σ

=
x− µ1

σ
+

µ1 − µ0
σ

= N( 0, 1 ) +
µ1 − µ0

σ
∼ N

µ
µ1 − µ0

σ
, 1

¶
. (3.25)

Thus, the behavior of x−µ0
σ under the alternative hypothesis follows a non-

central normal distribution. 2

As this example makes clear, the noncentral normal distribution is especially
useful when carefully exploring the behavior of the alternative hypothesis.
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3.5.2 Noncentral t

Definition 3.4 Let z∗∼N(µ/σ, 1 ), w ∼ χ2k, and let z
∗ and w be independent.

Then
z∗p
w/k

∼ tk(µ ) (3.26)

has a noncentral t distribution. 2

The noncentral t distribution is used in tests of the mean, when the variance
is unknown.

3.5.3 Noncentral Chi-Squared

Definition 3.5 Let z∗∼N(µ, Im). Then
z∗0z∗ ∼ X 2

m( δ ), (3.27)

has a noncentral chi-aquared distribution, where δ = µ0µ is the noncentrality
parameter. 2

In the noncentral chi-squared distribution, the probability mass is shifted to
the right as compared to a regular chi-squared distribution.

Example 3.4 When we do a test of µ, with known Σ, we have

H0 : µ = µ0

(x− µ0 )0Σ−1(x− µ0 ) ∼ X 2
m (3.28)

H1 : µ = µ1 6= µ0
Let z∗=P−1(x−µ0). Then, we have

(x− µ0 )0Σ−1(x− µ0 ) = (x− µ0 )0P−1
0
P−1(x− µ0 )

= z∗0z∗

∼ X 2
m[(µ1 − µ0 )0Σ−1(µ1 − µ0 )] (3.29)

2

3.5.4 Noncentral F

Definition 3.6 Let Y ∼ χ2m(δ), W ∼χ2n, and let Y and W be independent
random variables. Then

Y/m

W/n
∼ Fm,n( δ ), (3.30)

has a noncentral F distribution, where δ is the noncentrality parameter. 2

The noncentral F distribution is used in tests of mean vectors, where the
variance-covariance matrix is unknown and must be estimated.



Chapter 4

Asymptotic Theory

4.1 Convergence Of Random Variables

4.1.1 Limits And Orders Of Sequences

Definition 4.1 A sequence of real numbers a1, a2, . . . , an, . . . , is said to have
a limit of α if for every δ > 0, there exists a positive real number N such that
for all n > N , | an − α | < δ. This is denoted as

lim
n→∞

an = α . 2

Definition 4.2 A sequence of real numbers { an } is said to be of at most order
nk, and we write { an } is O(nk ), if

lim
n→∞

1

nk
an = c,

where c is any real constant. 2

Example 4.1 Let { an } = 3 + 1/n, and { bn } = 4− n2. Then, { an } is O( 1 )
=O(n0 ), since

lim
n→∞

1

n
an = 3,

and { bn } is O(n2 ), since

lim
n→∞

1

n2
bn=-1. 2

Definition 4.3 A sequence of real numbers { an } is said to be of order smaller
than nk, and we write { an } is o(nk ), if

lim
n→∞

1

nk
an = 0. 2

26
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Example 4.2 Let { an } = 1/n. Then, { an } is o( 1 ), since

lim
n→∞

1

n0
an=0. 2

4.1.2 Convergence In Probability

Definition 4.4 A sequence of random variables y1, y2, . . . , yn, . . . , with distri-
bution functions F1(·), F2(·), . . . , Fn(·), . . . , is said to converge weakly in proba-
bility to some constant c if

lim
n→∞

Pr[ | yn − c | > � ] = 0. 2 (4.1)

for every real number � > 0.

Weak convergence in probability is denoted by

plim
n→∞

yn = c, (4.2)

or sometimes,

yn
p−→ c, (4.3)

or
yn →p c.

This definition is equivalent to saying that we have a sequence of tail proba-
bilities (of being greater than c+� or less than c−�), and that the tail probabil-
ities approach 0 as n → ∞, regardless of how small � is chosen. Equivalently,
the probability mass of the distribution of yn is collapsing about the point c.

Definition 4.5 A sequence of random variables y1, y2, . . . , yn, . . . , is said to
converge strongly in probability to some constant c if

lim
N→∞

Pr[ sup
n>N

| yn − c | > � ] = 0, (4.4)

for any real � > 0. 2

Strong convergence is also called almost sure convergence and is denoted

yn
a.s.−→ c, (4.5)

or
yn →a.s. c.

Notice that if a sequence of random variables converges strongly in probability, it
converges weakly in probability. The difference between the two is that almost
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sure convergence involves an element of uniformity that weak convergence does
not. A sequence that is weakly convergent can have Pr[| yn − c | > �] wiggle-
waggle above and below the constant δ used in the limit and then settle down
to subsequently be smaller and meet the condition. For strong convergence,
once the probability falls below δ for a particular N in the sequence it will
subsequently be smaller for all larger N .

Definition 4.6 A sequence of random variables y1, y2, . . . , yn, . . . , is said to
converge in quadratic mean if

lim
n→∞E

[ yn ] = c

and

lim
n→∞

Var[ yn ] = 0. 2

By Chebyshev’s inequality, convergence in quadratic mean implies weak con-
vergence in probability. For a random variable x with mean µ and variance
σ2, Chebyshev’s inequality states Pr(|x− µ| ≥ kσ) ≤ 1

k2 . Let σ2n denote
the variance on yn, then we can write the condition for the present case as
Pr(|yn − E[yn]| ≥ kσn) ≤ 1

k2 . Since σ
2
n → 0 and E[yn]→ c the probability will

be less than 1
k2 for sufficiently large n for any choice of k. But this is just weak

convergence in probability to c.

4.1.3 Orders In Probability

Definition 4.7 Let y1, y2, . . . , yn, . . . be a sequence of random variables. This
sequence is said to be bounded in probability if for any 1 > δ > 0, there exist a
∆ <∞ and some N sufficiently large such that

Pr(| yn | > ∆ ) < δ,

for all n > N . 2

These conditions require that the tail behavior of the distributions of the
sequence not be pathological. Specifically, the tail mass of the distributions
cannot be drifting away from zero as we move out in the sequence.

Definition 4.8 The sequence of random variables { yn } is said to be at most
of order in probability nλ, and is denoted Op(n

λ ), if n−λyn is bounded in
probability. 2

Example 4.3 Suppose z ∼ N(0, 1) and yn = 3+n · z, then n−1yn = 3/n+ z is
a bounded random variable since the first term is asymptotically negligible and
we see that yn = Op(n ).
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Definition 4.9 The sequence of random variables { yn } is said to be of order
in probability smaller than nλ, and is denoted op(n

λ ), if n−λyn
p−→ 0. 2

Example 4.4 Convergence in probability can be represented in terms of order

in probability. Suppose that yn
p−→ c or equivalently yn − c

p−→ 0, then

n0(yn − c)
p−→ 0 and yn − c = op( 1 ).

4.1.4 Convergence In Distribution

Definition 4.10 A sequence of random variables y1, y2, . . . , yn, . . . , with cu-
mulative distribution functions F1(·), F2(·), . . . , Fn(·), . . . , is said to converge
in distribution to a random variable y with a cumulative distribution function
F ( y ), if

lim
n→∞

Fn(·) = F (·), (4.6)

for every point of continuity of F (·). The distribution F (·) is said to be the
limiting distribution of this sequence of random variables. 2

For notational convenience, we often write yn
d−→ F (·) or yn →d F (·) if

a sequence of random variables converges in distribution to F (·). Note that
the moments of elements of the sequence do not necessarily converge to the
moments of the limiting distribution.

4.1.5 Some Useful Propositions

In the following propositions, let xn and yn be sequences of random vectors.

Proposition 4.1 If xn − yn converges in probability to zero, and yn has a
limiting distribution, then xn has a limiting distribution, which is the same. 2

Proposition 4.2 If yn has a limiting distribution and plim
n→∞

xn = 0, then for

zn = yn
0xn,

plim
n→∞

zn = 0. 2

Proposition 4.3 Suppose that yn converges in distribution to a random vari-
able y, and plim

n→∞
xn = c. Then xn

0yn converges in distribution to c
0y. 2

Proposition 4.4 If g(·) is a continuous function, and if xn − yn converges in
probability to zero, then g(xn )− g(yn ) converges in probability to zero. 2

Proposition 4.5 If g(·) is a continuous function, and if xn converges in proba-
bility to a constant c, then zn = g(xn ) converges in distribution to the constant
g( c ). 2
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Proposition 4.6 If g(·) is a continuous function, and if xn converges in dis-
tribution to a random variable x, then zn = g(xn ) converges in distribution to
a random variable g(x ). 2

4.2 Estimation Theory

4.2.1 Properties Of Estimators

Definition 4.11 An estimator bθn of the p×1 parameter vector θ is a function
of the sample observations x1, x2, ..., xn. 2

It follows that bθ1, bθ2, . . . , bθn form a sequence of random variables.

Definition 4.12 The estimator bθn is said to be unbiased if Ebθn = θ, for all n.
2

Definition 4.13 The estimator bθn is said to be asympotically unbiased if lim
n→∞E

bθn =θ.
2

Note that an estimator can be biased in finite samples, but asymptotically
unbiased.

Definition 4.14 The estimator bθn is said to be consistent if plim
n→∞

bθn =θ. 2
Consistency neither implies nor is implied by asymptotic unbiasedness, as

demonstrated by the following examples.

Example 4.5 Let

eθn = ½ θ, with probability 1− 1/n
θ + nc, with probability 1/n

We have E eθn = θ+ c, so eθn is a biased estimator, and limn→∞ E eθn = θ+ c, soeθn is asymptotically biased as well. However, limn→∞ Pr(| eθn − θ | > � ) = 0, soeθn is a consistent estimator. 2
Example 4.6 Suppose xi ∼ i.i.d.N(µ, σ2) for i = 1, 2, ..., n, ... and let exn = xn
be an estimator of µ. Now E[exn] = µ so the estimator is unbiased but

Pr(|exn − µ| > 1.96σ) = .05

so the probability mass is not collapsing about the target point µ so the esti-
mator is not consistent.
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4.2.2 Laws Of Large Numbers And Central Limit Theo-
rems

Most of the large sample properties of he estimators considered in the sequel
derive from the fact the estimators involve sample averages and the asymptotic
behavior of averages is well studies. In addition to the central limit theorems
presented in the previous two chapters we have the following two laws of large
numbers:

Theorem 4.1 If x1, x2, . . . , xn is a simple random sample, that is, the xi’s are
i.i.d., and Exi = µ and Var(xi ) = σ2, then by Chebyshev’s Inequality,

plim
n→∞

xn = µ 2 (4.7)

Theorem 4.2 (Khitchine) Suppose that x1, x2, . . . , xn are i.i.d. random vari-
ables, such that for all i = 1, . . . , n, Exi = µ, then,

plim
n→∞

xn = µ 2 (4.8)

Both of these results apply element-by-element to vectors of estimators. For
sake of completeness we repeat the following scalar central linit theorem.

Theorem 4.3 (Linberg-Levy) Suppose that x1, x2, . . . , xn are i.i.d. random
variables, such that for all i = 1, . . . , n, Exi = µ and Var(xi ) = σ2, then
√
n(xn − µ )

d−→ N( 0, σ2 ), or

lim
n→∞

f(xn − µ ) =
1√
2πσ2

e
1

2σ2
( xn−µ )2

= N( 0, σ2 ) 2 (4.9)

This result is easily generalized to obtain the multivariate version given in The-
orem 3.3.

Theorem 4.4 (Multivariate CLT) Suppose thatm×1 random vectors x1,x2, . . . ,xn
are (i) jointly i.i.d., (ii) Exi = µ, and (iii) Cov(xi ) = Σ, then

√
n(xn − µ ) d−→ N(0,Σ ) (4.10)

4.2.3 CUAN And Efficiency

Definition 4.15 An estimator is said to be consistently uniformly asymptoti-
cally normal (CUAN) if it is consistent, and if

√
n( bθn−θ ) converges in distrib-

ution to N(0,Ψ ), and if the convergence is uniform over some compact subset
of the parameter space. 2
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Suppose that
√
n( bθn − θ ) converges in distribution to N(0,Ψ ). Let eθn

be an alternative estimator such that
√
n( eθn − θ ) converges in distribution to

N(0,Ω ).

Definition 4.16 If bθn is CUAN with asymptotic covariance Ψ and eθn is CUAN
with asymptotic covariance Ω, then bθn is asymptotically efficient relative to eθn
if Ψ−Ω is a positive semidefinite matrix. 2

Among other properties asymptotic relative efficiency implies that the diag-
onal elements of Ψ are no larger than those of Ω, so the asymptotic variances
of bθn,i are no larger than those of eθn,i. And a similar result applies for the
asymptotic variance of any linear combination.

Definition 4.17 A CUAN estimator bθn is said to be asymptotically efficient if
it is asymptotically efficient relative to any other CUAN estimator. 2

4.3 Asymptotic Inference

4.3.1 Normal Ratios

Now, under the conditions of the central limit theorem,
√
n(xn − µ )

d−→
N( 0, σ2 ), so

(xn − µ )p
σ2/n

d−→ N( 0, 1 ) (4.11)

Suppose that cσ2 is a consistent estimator of σ2. Then we also have
(xn − µ )pbσ2/n =

p
σ2/npbσ2/n (xn − µ )p

σ2/n

=

r
σ2bσ2 (xn − µ )p

σ2/n

d−→ N( 0, 1 ) (4.12)

since the term under the square root converges in probability to one and the
remainder converges in distribution to N( 0, 1).
Most typically, such ratios will be used for inference in testing a hypothesis.

Now, for H0 : µ = µ0, we have

(xn − µ0 )pbσ2/n d−→ N( 0, 1 ), (4.13)

while under H1 : µ = µ1 6= µ0, we find that

(xn − µ0 )pbσ2/n =

√
n(xn − µ1 )√bσ2 +

√
n(µ1 − µ0 )√bσ2

= N( 0, 1 ) + Op(
√
n ) (4.14)
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Thus, extreme values of the ratio can be taken as rare events under the null or
typical events under the alternative.
Such ratios are of interest in estimation and inference with regard to more

general parameters. Suppose that θ is the parameter vector
√
n( bθ

p×1
− θ ) d−→ N(0, Ψ

p×p
).

Then, if θi is the parameter of particular interest we consider

( bθi − θi )p
ψii/n

d−→ N( 0, 1 ), (4.15)

and duplicating the arguments for the sample mean

( bθi − θi )qbψii/n
d−→ N( 0, 1 ), (4.16)

where bΨ is a consistent estimator of Ψ. This ratio will have a similar behavior
under a null and alternative hypotesis with regard to θi.

4.3.2 Asymptotic Chi-Square

Suppose that √
n( bθ − θ ) d−→ N(0,Ψ ),

where bΨ is a consistent estimator of the nonsingular p×p matrix Ψ. Then, from
the previous chapter we have

√
n( bθ − θ )0Ψ−1√n( bθ − θ ) = n · ( bθ − θ )0Ψ−1( bθ − θ ) d−→ χ2p

(4.17)

and

n · ( bθ − θ )0bΨ−1( bθ − θ ) d−→ χ2p (4.18)

for bΨ a consistent estimator of Ψ.
This result can be used to conduct infence by testing the entire parmater

vector. If H0 : θ1 = θ01, then

n · ( bθ − θ0 )0bΨ−1( bθ − θ0 ) d−→ χ2p, (4.19)

and large positive values are rare events. while for H1 : θ1 = θ11 6= θ01, we can
show (later)

n · ( bθ − θ0 )0bΨ−1( bθ − θ0 ) = n · (( bθ − θ1 ) + (θ1 − θ0 ))0Ψ−1(( bθ − θ1 ) + (θ1 − θ0 ))
= n · ( bθ − θ1 )0bΨ−1( bθ − θ1 ) + 2n · (θ1 − θ0 )0Ψ−1( bθ − θ1 )

+n · (θ1 − θ0 )0bΨ−1(θ1 − θ0 )
= χ2p +Op(

√
n) + Op(n) (4.20)
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Thus, if we obtain a large value of the statistic, we may take it as evidence that
the null hypothesis is incorrect.
This result can also be applied to any subvector of θ. Let

θ =

µ
θ1
θ2

¶
,

where θ1 is a p1 × 1 vector. Then
√
n( bθ1 − θ1 ) d−→ N( 0,Ψ11 ), (4.21)

where Ψ11 is the upper left-hand q × q submatrix of Ψ and,

n · ( bθ1 − θ1 )0bΨ−111 ( bθ1 − θ1 ) d−→ χ2p1 (4.22)

4.3.3 Tests Of General Restrictions

We can use similar results to test general nonlinear restrictions. Suppose that
r(·) is a q × 1 continuously differentiable function, and

√
n( bθ − θ ) d−→ N(0,Ψ ).

By the intermediate value theorem we can obtain the exact Taylor’s series rep-
resentation

r(bθ) = r(θ) + ∂r(θ∗)

∂θ0
( bθ − θ )

or equivalently

√
n(r(bθ)− r(θ)) =

∂r(θ∗)

∂θ0
√
n( bθ − θ )

= R(θ∗ )
√
n( bθ − θ )

where R(θ∗ ) = ∂r(θ∗)
∂θ0 and θ∗ lies between bθ and θ. Now bθ →p θ so θ

∗ →p θ
and R(θ∗ )→ R(θ ). Thus, we have

√
n[ r( bθ )− r(θ )] d−→ N( 0,R(θ )ΨR0(θ )). (4.23)

Thus, under H0 : r(θ ) = 0, assuming R(θ )ΨR
0(θ ) is nonsingular, we have

n · r( bθ )0[R(θ )ΨR0(θ )]−1r( bθ ) d−→ χ2q, (4.24)

where q is the length of r(·). In practice, we substitute the consistent estimates
R( bθ ) for R(θ ) and bΨ for Ψ to obtain, following the arguments given above

n · r( bθ )0[R( bθ )bΨR0( bθ )]−1r( bθ ) d−→ χ2q, (4.25)

The behavior under the alternative hypothesis will be Op(n) as above.



Chapter 5

Maximum Likelihood
Methods

5.1 Maximum Likelihood Estimation (MLE)

5.1.1 Motivation

Suppose we have a model for the random variable yi, for i = 1, 2, . . . , n, with
unknown (p × 1) parameter vector θ. In many cases, the model will imply a
distribution f( yi,θ ) for each realization of the variable yi.

A basic premise of statistical inference is to avoid unlikely or rare models,
for example, in hypothesis testing. If we have a realization of a statistic that
exceeds the critical value then it is a rare event under the null hypothesis. Under
the alternative hypothesis, however, such a realization is much more likely to
occur and we reject the null in favor of the alternative. Thus in choosing
between the null and alternative, we select the model that makes the realization
of the statistic more likely to have occured.

Carrying this idea over to estimation, we select values of θ such that the
corresponding values of f( yi,θ ) are not unlikely. After all, we do not want a
model that disagrees strongly with the data. Maximum likelihood estimation
is merely a formalization of this notion that the model chosen should not be
unlikely. Specifically, we choose the values of the parameters that make the
realized data most likely to have occured. This approach does, however, require
that the model be specified in enough detail to imply a distribution for the
variable of interest.

35



36 CHAPTER 5. MAXIMUM LIKELIHOOD METHODS

5.1.2 The Likelihood Function

Suppose that the random variables y1, y2, . . . , yn are i.i.d. Then, the joint
density function for n realizations is

f( y1, y2, . . . , yn|θ ) = f( y1|θ ) · f( y2, |θ ) · . . . · f( yn|θ )

=
nY
i=1

f( yi|θ ) (5.1)

Given values of the parameter vector θ, this function allows us to assign local
probability measures for various choices of the random variables y1, y2, . . . , yn.
This is the function which must be integrated to make probability statements
concerning the joint outcomes of y1, y2, . . . , yn.
Given a set of realized values of the random variables, we use this same

function to establish the probability measure associated with various choices of
the parameter vector θ.

Definition 5.1 The likelihood function of the parameters, for a particular sam-
ple of y1, y2, . . . , yn, is the joint density function considered as a function of θ
given the yi’s. That is,

L(θ|y1, y2, . . . , yn ) =
nY
i=1

f( yi|θ ) 2 (5.2)

5.1.3 Maximum Likelihood Estimation

For a particular choice of the parameter vector θ, the likelihood function gives
a probability measure for the realizations that occured. Consistent with the
approach used in hypothesis testing, and using this function as the metric, we
choose θ that make the realizations most likely to have occured.

Definition 5.2 The maximum likelihood estimator of θ is the estimator ob-
tained by maximizing L(θ|y1, y2, . . . , yn ) with respect to θ. That is,

max
θ

L(θ|y1, y2, . . . , yn ) = bθ, (5.3)

where bθ is called the MLE of θ. 2
Equivalently, since log(·) is a strictly monotonic transformation, we may find

the MLE of θ by solving

max
θ
L(θ|y1, y2, . . . , yn ), (5.4)

where
L(θ|y1, y2, . . . , yn ) = log L(θ|y1, y2, . . . , yn )
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is denoted the log-likelihood function. In practice, we obtain bθ by solving the
first-order conditions (FOC)

∂L(θ; y1, y2, . . . , yn )
∂θ

=
nX
i=1

∂ log f( yi; bθ )
∂θ

= 0.

The motivation for using the log-likelihood function is apparent since the sum-
mation form will result, after division by n, in estimators that are approximately
averages, about which we know a lot. This advantage is particularly clear in
the folowing example.

Example 5.1 Suppose that yi ∼i.i.d.N(µ, σ2 ), for i = 1, 2, . . . , n. Then,

f( yi|µ, σ2) =
1√
2πσ2

e−
1

2σ2
( yi−µ )2 ,

for i = 1, 2, . . . , n. Using the likelihood function (5.2), we have

L(µ, σ2|y1, y2, . . . , yn ) =
nY
i=1

1√
2πσ2

e−
1

2σ2
( yi−µ )2 . (5.5)

Next, we take the logarithm of (5.5), which gives us

logL(µ, σ2|y1, y2, . . . , yn ) =
nX
i=1

∙
−1
2
log( 2πσ2 )− 1

2σ2
( yi − µ )2

¸

= −n
2
log( 2πσ2 )− 1

2σ2

nX
i=1

( yi − µ )2 (5.6)

We then maximize (5.6) with respect to both µ and σ2. That is, we solve the
following first order conditions:

(A) ∂ logL(·)
∂µ = 1

σ2

Pn
i=1( yi − µ ) = 0;

(B) ∂ logL(·)
∂σ2 = − n

2σ2 +
1
2σ4

Pn
i=1( yi − µ )2 = 0.

By solving (A), we find that µ = 1
n

Pn
i=1 yi = yn. Solving (B) gives us

σ2 = 1
n

Pn
i=1( yi − yn ). Therefore, bµ = yn, and bσ2 = 1

n

Pn
i=1( yi − bµ ). 2

Note that bσ2 = 1
n

Pn
i=1( yi − bµ ) 6= s2, where s2 = 1

n−1
Pn

i=1( yi − bµ ). s2 is
the familiar unbiased estimator for σ2, and bσ2 is a biased estimator.
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5.2 Asymptotic Behavior of MLEs

5.2.1 Assumptions

For the results we will derive in the following sections, we need to make five
assumptions:

1. The yi’s are iid random variables with density function f( yi,θ ) for i =
1, 2, . . . , n;

2. log f( yi,θ ) and hence f( yi,θ ) possess derivatives with respect to θ up to
the third order for θ ∈ Θ;

3. The range of yi is independent of θ hence differentiation under the integral
is possible;

4. The parameter vector θ is globally identified by the density function.

5. ∂3 log f( yi,θ )/∂θi∂θj∂θk is bounded in absolute value by some function
Hijk( y ) for all y and θ ∈θ, which, in turn, has a finite expectation for all
θ ∈ Θ.

The first assumption is fundamental and the basis of the estimator. If it is
not satisfied then we are misspecifying the model and there is little hope for
obtaining correct inferences, at least in finite samples. The second assumption
is a regularity condition that is usually satisfied and easily verified. The third
assumption is also easily verified and guarateed to be satisfied in models where
the dependent variable has smooth and infinite support. The fourth assumption
must be verified, which is easier in some cases than others. The last assumption
is crucial and bears a cost and really should be verified before MLE is undertaken
but is usually ignored.

5.2.2 Some Preliminaries

Now, we know that Z
L(θ0|y )dy =

Z
f(y|θ0 )dy = 1 (5.7)
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for any value of the true parameter vector θ0. Therefore,

0 =
∂
R
L(θ0|y )dy
∂θ

=

Z
∂L(θ0|y )

∂θ
dy

=

Z
∂f(y|θ0 )

∂θ
dy

=

Z
∂ log f(y|θ0 )

∂θ
f(y|θ0 )dy, (5.8)

and

0 = E

∙
∂ log f(y|θ0 )

∂θ

¸
= E

∙
∂ log L(θ0|y )

∂θ

¸
(5.9)

for any value of the true parameter vector θ0.
Differentiating (5.8) again yields

0 =

Z ∙
∂2 log f(y|θ0 )

∂θ∂θ0
f(y|θ0 ) + ∂ log f(y|θ0 )

∂θ

∂f(y|θ0 )
∂θ0

¸
dy.

(5.10)

Since

∂f(y|θ0 )
∂θ0

=
∂ log f(y|θ0 )

∂θ0
f(y|θ0 ), (5.11)

then we can rewrite (5.10) as

0 = E

∙
∂2 log f(y|θ0 )

∂θ∂θ0

¸
+E

∙
∂ log f(y|θ0 )

∂θ

∂ log f(y|θ0 )
∂θ0

¸
.

(5.12)

or, in terms of the likelihood function,

ϑ(θ0 ) = E

∙
∂ log L(θ0|y )

∂θ

∂ log L(θ0|y )
∂θ0

¸
= −E

∙
∂ log L(θ0|y )

∂θ∂θ0

¸
.
(5.13)

The matrix ϑ(θ0 ) is called the information matrix and the relationship given
in (5.13) the information matrix equality.
Finally, we note that

E

∙
∂ log L(θ0|y )

∂θ

∂ log L(θ0|y )
∂θ0

¸
= E

"
nX
i=1

∂ log fi(y|θ0 )
∂θ

nX
i=1

∂ log fi(y|θ0 )
∂θ0

#

=
nX
i=1

E

∙
∂ log fi(y|θ0 )

∂θ

∂ log fi(y|θ0 )
∂θ0

¸
,(5.14)
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since the covariances between different observations is zero.

5.2.3 Asymptotic Properties

Consistent Root Exists

Consider the case where p = 1. Then, expanding in a Taylor’s series and using
the intermediate value theorem on the quadratic term yields

1

n

∂ log L( θ|y )
∂θ

=
1

n

nX
i=1

∂ log f( yi|θ0 )
∂θ

+
1

n

nX
i=1

∂2 log f( yi|θ0 )
∂θ2

( bθ − θ0 )

+
1

2

1

n

nX
i=1

∂3 log f( yi|θ∗ )
∂θ3

( bθ − θ0 )2 (5.15)

where θ∗ lies between bθ and θ0. Now, by assumption 5, we have

1

n

nX
i=1

∂3 log f( yi|θ∗ )
∂θ3

= k
nX
i=1

H( yi ), (5.16)

for some |k| < 1. So,

1

n

∂ log L( θ|y )
∂θ

= aδ2 + bδ + c, (5.17)

where

δ = bθ − θ0,

a =
k

2

1

n

nX
i=1

H( yi ),

b =
1

n

nX
i=1

∂2 log f( yi|θ0 )
∂θ2

, and

c =
1

n

nX
i=1

∂ log f( yi|θ0 )
∂θ

.

Note that |a| ≤ 1
2
1
n

Pn
i=1H( yi ) =

1
2 E[H( yi )]+op(1) = Op(1), plim

n→∞
c = 0, and

plim
n→∞

b = −ϑ( θ0 ).

Now, since ∂ log L( bθ|y )/∂θ = 0, we have aδ2 + bδ + c = 0. There are two
possibilities. If a 6= 0 with probability 1, which will occur when the FOC are
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nonlinear in a, then

δ =
−b±

√
b2 − 4ac
2a

. (5.18)

Since ac = op(1), then δ
p−→ 0 for the plus root while δ

p−→ ϑ( θ0 )/α for the
negative root if plim

n→∞
a = α 6= 0 exists. If a = 0, then the FOC are linear

in δ whereupon δ = − c
b and again δ

p−→ 0. If the F.O.C. are nonlinear but

asymptotically linear then a
p−→ 0 and ac in the numerator of (5.18) will still

go to zero faster than a in the denominator and δ
p−→ 0. Thus there exits at

least one consistent solution bθ which satisfies
plim
n→∞

( bθ − θ0 ) = 0. (5.19)

and in the asymptotically nonlinear case there is also a possibly inconsistent
solution.
For the case of θ a vector, we can apply a similar style proof to show there

exists a solution bθ to the FOC that satisfies plim
n→∞

( bθ−θ0 ) = 0. And in the event
of asymptotically nonlinear FOC there is at least on other possibly inconsistent
root.

Global Maximum Is Consistent

In the event of multiple roots, we are left with the problem of selecting between
them. By assumption 4, the parameter θ is globally identified by the density
function. Formally, this means that

f( y,θ ) = f( y,θ0 ), (5.20)

for all y implies that θ = θ0. Now,

E

∙
f( y,θ )

f( y,θ0 )

¸
=

Z
f( y,θ )

f( y,θ0 )
f( y,θ0 ) = 1. (5.21)

Thus, by Jensen’s Inequality, we have

E

∙
log

f( y,θ )

f( y,θ0 )

¸
< log E

∙
f( y,θ )

f( y,θ0 )

¸
= 0, (5.22)

unless f( y,θ ) = f( y,θ0 ) for all y, or θ = θ0. Therefore, E [log f( y,θ )]
achieves a maximum if and only if θ = θ0.
However, we are solving

max
1

n

nX
i=1

log f( yi,θ )
p−→ E [log f( yi,θ )] , (5.23)
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and if we choose an inconsistent root, we will not obtain a global maximum.
Thus, asymptotically, the global maximum is a consistent root. This choice of
the global root has added appeal since it is in fact the MLE among the possible
alternatives and hence the choice that makes the realized data most likely to
have occured.
There are complications in finite samples since the value of the likelihood

function for alternative roots may cross over as the sample size increases. That
is the global maximum in small samples may not be the global maximum in
larger samples. An added problem is to identify all the alternative roots so
we can choose the global maximum. Sometimes a solution is available in a
simple consistent estimator which may be used to start the nonlinear MLE
optimization.

Asymptotic Normality

For p = 1, we have aδ2 + bδ + c = 0, so

δ = bθ − θ0 =
−c

aδ + b
(5.24)

and

√
n( bθ − θ0 ) =

−√nc
a( bθ − θ0 ) + b

=
−1

a( bθ − θ0 ) + b

√
nc.

Now since a = Op(1) and bθ − θ0 = op(1), then a( bθ − θ0 ) = op(1) and

a( bθ − θ0 ) + b
p−→ −ϑ( θ0 ). (5.25)

And by the CLT we have

√
nc =

1√
n

nX
i=1

∂ log f( yi|θ0 )
∂θ

d−→ N( 0, ϑ( θ
0 )). (5.26)

Substituing these two results in (5.25), we find

√
n( bθ − θ0 )

d−→ N( 0, ϑ( θ
0 )−1).

In general, for p > 1, we can apply the same scalar proof to show
√
n(λ0bθ−

λ0θ0 )
d−→ N( 0,λ

0ϑ(θ0 )−1λ) for any vector λ, which means

√
n( bθ − θ0 ) d−→ N(0,ϑ

−1(θ0 )), (5.27)

if bθ is the global maximum.
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Cramér-Rao Lower Bound

In addition to being the covariance matrix of the MLE, ϑ−1(θ0 ) defines a lower

bound for covariance matrices with certain desirable properties. Let eθ(y ) be
any unbiased estimator, then

E eθ(y ) = Z eθ(y )f(y;θ )dy = θ, (5.28)

for any underlying θ = θ0. Differentiating both sides of this relationship with
respect to θ yields

Ip =
∂ E eθ(,y )

∂θ0

=

Z eθ(y )∂f(y;θ0 )
∂θ0

dy

=

Z eθ(y )∂ log f(y;θ0 )
∂θ0

f(y;θ0 )dy

= E

∙eθ(y )∂ log f(y;θ0 )
∂θ0

¸
= E

∙
( eθ(y )− θ0 )∂ log f(y;θ0 )

∂θ0

¸
. (5.29)

Next, we let

C(θ0 ) = E
h
( eθ(y )− θ0 )( eθ(y )− θ0 )0 i . (5.30)

be the covariance matrix of eθ(y ), then,
Cov

µ eθ(y )
∂ logL
∂θ

¶
=

µ
C(θ0 ) Ip
Ip ϑ(θ0 )

¶
, (5.31)

where Ip is a p×p identity matrix, and (5.31) as a covariance matrix is positive
semidefinite.
Now, for any (p× 1) vector a, we have¡
a0 a0ϑ(θ0 )−1

¢ µ C(θ0 ) Ip
Ip ϑ(θ0 ),

¶ µ
a0

a0ϑ(θ0 )−1

¶
= a0[ C(θ0 )− ϑ(θ0 )−1 ]a ≥ 0.

(5.32)

Thus, any unbiased estimator eθ(y ) has a covariance matrix that exceeds ϑ(θ0 )−1
by a positive semidefinite matrix. And if the MLE estimator is unbiased, it is
efficient within the class of unbiased estimators. Likewise, any CUAN estima-
tor will have a covariance exceeding ϑ(θ0 )−1. Since the asymptotic covariance
of MLE is, in fact, ϑ(θ0 )−1, it is efficient (asymptotically). ϑ(θ0 )−1 is called
the Camér-Rao lower bound.
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5.3 Maximum Likelihood Inference

5.3.1 Likelihood Ratio Test

Suppose we wish to test H0 : θ = θ0 against H0 : θ 6= θ0. Then, we define

Lu = max
θ

L(θ|y ) = L( bθ|y ) (5.33)

and

Lr = L(θ0|y ), (5.34)

where Lu is the unrestricted likelihood and Lr is the restricted likelihood. We
then form the likelihood ratio

λ =
Lr
Lu

. (5.35)

Note that the restricted likelihood can be no larger than the unrestricted which
maximizes the function.
As with estimation, it is more convenient to work with the logs of the like-

lihood functions. It will be shown below that, under H0,

LR = −2 log λ

= −2
∙
log

Lr
Lu

¸
= 2[L( bθ|y )− L(θ0|y )] d−→ χ2p, (5.36)

where bθ is the unrestricted MLE, and θ0 is the restricted MLE. If H1 applies,
then LR = Op(n ). Large values of this statistic indicate that the restrictions
make the observed values much less likely than the unrestricted and we prefer
the unrestricted and reject the restictions.
In general, for H0 : r(θ ) = 0, and H1 : r(θ ) 6= 0, we have

Lu = max
θ

L(θ y ) = L( bθ |y ), (5.37)

and

Lr = max
θ

L(θ y ) s.t. r(θ ) = 0

= L( eθ |y ). (5.38)

Under H0,

LR = 2[L( bθ|y )− L( eθ|y )] d−→ χ2q, (5.39)

where q is the length of r(·).
Note that in the general case, the likelihood ratio test requires calculation

of both the restricted and the unrestricted MLE.
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5.3.2 Wald Test

The asymptotic normality of MLE may be used to obtain a test based only on
the unrestricted estimates.
Now, under H0 : θ = θ0, we have

√
n( bθ − θ0 ) d−→ N( 0, ϑ

−1(θ0 )). (5.40)

Thus, using the results on the asymptotic behavior of quadratic forms from the
previous chapter, we have

W = n( bθ − θ0 )0ϑ(θ0 )( bθ − θ0 ) d−→ χ2p, (5.41)

which is the Wald test. As we discussed for quadratic tests, in general, under
H0 : θ 6= θ0, we would have W = Op(n ).
In practice, since

1

n

∂2L( bθ|y )
∂θ∂θ0

=
nX
i=1

1

n

∂2 log f( bθ|y )
∂θ∂θ0

p−→ −ϑ(θ0 ), (5.42)

we use

W∗ = −( bθ − θ0 )0 ∂2L( bθ|y )
∂θ∂θ0

( bθ − θ0 ) d−→ χ2p. (5.43)

Aside from having the same asymptotic distribution, the Likelihood Ratio
and Wald tests are asymptotically equivalent in the sense that

plim
n→∞

( LR−W∗ ) = 0. (5.44)

This is shown by expanding L(θ0|y ) in a Taylor’s series about bθ. That is,
L(θ0 ) = L( bθ ) + ∂L( bθ )

∂θ
(θ0 − bθ )

+
1

2
(θ0 − bθ )0 ∂2L( bθ )

∂θ∂θ0
(θ0 − bθ )

+
1

6

P
i

P
j

P
k

∂3L(θ∗ )
∂θi∂θj∂θk

(θ0i − bθi)(θ0j − bθj)(θ0k − bθk). (5.45)

where the third line applies the intermediate value theorem for θ∗ between bθ
and θ0. Now ∂L(θ )

∂θ = 0, and the third line can be shown to be Op(1/
√
n)

under assumption 5, whereupon we have

L( bθ )− L(θ0 ) = −1
2
(θ0 − bθ )0 ∂2L( bθ )

∂θ∂θ0
(θ0 − bθ ) +Op( 1/

√
n )

(5.46)
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and

LR = W∗ +Op( 1/
√
n ). (5.47)

In general, we may test H0 : r(θ ) = 0 with

W∗ = −r( bθ )0
⎡⎣R( bθ )Ã∂2L( bθ )

∂θ∂θ0

!−1
R0( bθ )

⎤⎦−1 r( bθ ) d−→ χ2p.
(5.48)

5.4 Lagrange Multiplier

Alternatively, but in the same fashion, we can expand L( bθ ) about θ0 to obtain
L( bθ ) = L(θ0 ) + ∂L(θ0 )

∂θ
( bθ − θ0 )

+
1

2
( bθ − θ0 )0 ∂2L(θ0 )

∂θ∂θ0
( bθ − θ0 ) +Op( 1/

√
n ). (5.49)

Likewise, we can also expand 1
n
∂L(θ )
∂θ about θ0, which yields

0 =
1

n

∂L( bθ )
∂θ

=
1

n

∂L(θ0 )
∂θ

+
1

n

∂2L(θ0 )
∂θ∂θ0

( bθ − θ0 ) +Op( 1/n ),
(5.50)

or

( bθ − θ0 ) = −µ∂2L(θ0 )
∂θ∂θ0

¶−1
∂L(θ0 )

∂θ
+Op( 1/n ). (5.51)

Substituting (5.51) into (5.49) gives us

L( bθ )− L(θ0 ) = −1
2

∂L(θ0 )
∂θ0

µ
∂2L(θ0 )
∂θ∂θ0

¶−1
∂L(θ0 )

∂θ
+Op( 1/

√
n ),
(5.52)

and LR = LM+Op( 1/
√
n ), where

LM = −∂L(θ
0 )

∂θ0

µ
∂2L(θ0 )
∂θ∂θ0

¶−1
∂L(θ0 )

∂θ
, (5.53)

is the Lagrange Multiplier test.
Thus, under H0 : θ = θ0,

plim
n→∞

( LR− LM) = 0. (5.54)
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and

LM
d−→ χ2p. (5.55)

Note that the Lagrange Multiplier test only requires the restricted values of the
parameters.
In general, we may test H0 : r(θ ) = 0 with

LM = −∂L(
eθ )

∂θ0

Ã
∂2L( eθ )
∂θ∂θ0

!−1
∂L( eθ )
∂θ

d−→ χ2q, (5.56)

where L(·) is the unrestricted log-likelihood function, and eθ is the restricted
MLE.

5.5 Choosing Between Tests

The above analysis demonstrates that the three tests: likelihood ratio, Wald,
and Lagrange multiplier are asymptotically equivalent. In large samples, not
only do they have the same limiting distribution, but they will accept and reject
together. This in not the case in finite samples where one can reject when the
other does not. This might lead a cynical analyst to use one rather than the
other by choosing the one that yields the results (s)he wants to obtain. Making
an informed choice based on their finite sample behavior is beyond the scope of
this course.
In many cases, however, one of the tests is a much more natural choice than

the others. Recall that Wald test only requires the unrestricted estimates while
the Lagrange multiplier test only requires the restricted estimates. In some
cases the unrestricted estimates are much easier to obtain than the restricted
and in other cases the reverse is true. In the first case we might be inclined
to use the Wald test while in the latter we would prefer to use the Lagrange
multiplier.
Another issue is the possible sensitivity of the test results to how the restric-

tions are written. For example, θ1 + θ2 = 0 can also be written −θ2/θ1 = 1.
The Wald test, in particular is sensitive to how the restriction is written. This
is yet another situation where a cynical analyst might be tempted to choose the
”normalization” of the restriction to force the desired result. The Lagrange
multiplier test, as presented above, is also sensitive to the normalization of the
restriction but can be modified to avoid this difficulty. The likelihood ratio test
however will be unimpacted by the choice of how to write the restriction.


