
Chapter 6

Bivariate Least Squares

6.1 The Bivariate Linear Model

Consider the model

yi = α+ βxi + ui, i = 1, 2, . . . , n, (6.1)

where yi is the dependent variable, xi is the explanatory variable, and ui is the
unobservable disturbance. In matrix form, we have⎛⎜⎜⎜⎝

y1
y2
...
yn

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
1 x1
1 x2
...

...
1 xn

⎞⎟⎟⎟⎠
µ

α
β

¶
+

⎛⎜⎜⎜⎝
u1
u2
...
un

⎞⎟⎟⎟⎠ , (6.2)

or, more compactly, y = Xβ + u. This is the linear regression model . It is
linear in the variables (given α and β), linear in the parameters (given xi), and
linear in the disturbances.

Example 6.1 Neither of the following two equations is linear.

yi = (α+ βxi )ui (6.3)

yi = αxβi + ui (6.4)

2

6.1.1 Assumptions

For the disturbances, we assume that

48
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(i) E(ui ) = 0, for all i

(ii) E(u2i ) = σ2, for all i

(iii) E(uiuj ) = 0, for all i 6= j

For the independent variable, We suppose

(iv) xi nonstochastic for all i

(v) xi nonconstant

For purposes of inference in finite samples, we sometime assume

(vi) ui
iidvN( 0, σ2 ), for all i.

6.1.2 Line Fitting

Consider a scatter of plots as shown in Figure 6.1.

x y
2 12
3 7
4 8
5 5
6 3

0 2 4 6 8 10 12 14
0

2

4

6

8

10

12

14

Figure 6.1: Scatter plot

We assume that x and y are linearly related. That is,

yi = α+ βxi. (6.5)

Of course, we see that no single line “matches” all the observations.
Since no single line is entirely consistent with the data, we might choose α

and β that best “fits” the data, in some sense. Define

ui = yi − (α+ βxi ), for i = 1, 2, . . . , n (6.6)
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as the discrepancy between the line choosen and the observations. Our objective
then is to choose α and β to minimize the discrepancy.
A possible criterion for minimum discrepancy is

min
α,β

|
X
i

ui|, (6.7)

but this will be zero for any line passing through (x, y). Another possibility is

min
α,β

X
i

|ui|, (6.8)

which is called the minimum absolute distance (MAD) or L1 estimator. The
MAD estimator has problems since the mathematics (and statistical distribu-
tions) are intractible. A closely related choice is

min
α,β

X
i

u2i . (6.9)

This yields the least squares or L2 estimator.

6.2 Least Squares Regression

6.2.1 The First-Order Conditions

Let

φ =
nX
i=1

e2i =
nX
i=1

( yi − α− βxi )
2 (6.10)

Then the minimum values, bα and bβ say, must satisfy the following first-order
conditions:

0 =
∂φ

∂α
=

nX
i=1

−2 ( yi − α− βxi ) (6.11)

0 =
∂φ

∂β
=

nX
i=1

−2 ( yi − α− βxi )xi (6.12)

Now, these first-order conditions may be written as

nX
i=1

yi =
nX
i=1

(α+ βxi ) (6.13)
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nX
i=1

yixi =
nX
i=1

(αxi + βx2i ) (6.14)

Thus, (??) implies bα = y − bβx, (6.15)

where y =
Pn

i=1 yi/n and x =
Pn

i=1 xi/n.
Substituting (??) into (??) yields

nX
i=1

yixi =
nX
i=1

[ ( y − bβx )xi + βx2i ]

= y
nX
i=1

xi + bβ nX
i=1

xi (xi − x ) (6.16)

and
nX
i=1

yixi − nyx = bβÃ nX
i=1

x2i − nx2

!
nX
i=1

( yi − y )(xi − x ) = bβ nX
i=1

(xi − x )2 (6.17)

After solving for bβ, we have
bβ = Pn

i=1( yi − y )(xi − x )Pn
i=1(xi − x )2

(6.18)

6.2.2 The Second-Order Conditions

Note that the least squares estimators bβ, and in turn, bα, are unique. Taking
the second derivatives of the objective function yields

∂2φ

∂α2
= 2n, (6.19)

∂2φ

∂β2
= 2

nX
i=1

x2i , (6.20)

and

∂2φ

∂α∂β
= 2

nX
i=1

xi. (6.21)

Thus, the Hessian matrix is

H =

µ
2n 2

Pn
i=1 xi

2
Pn

i=1 xi 2
Pn

i=1 x
2
i

¶
, (6.22)

which is a positive definite matrix, so bα and bβ are, in fact, minimums.
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6.2.3 Matrix Interpretation

Now, the first-order conditions require (??) and (??), or

nX
i=1

yi =
nX
i=1

( bα+ bβxi ) (6.23)

nX
i=1

yixi =
nX
i=1

( bαxi + bβx2i ) (6.24)

These are the normal equations, and are linear in bα and bβ. In matrix form,
we have

µ Pn
i=1 yiPn

i=1 yixi

¶
=

µ
n

Pn
i=1 xiPn

i=1 xi
Pn

i=1 x
2
i

¶ µ bαbβ
¶
, (6.25)

which has the solution

µ bαbβ
¶

=

µ
n

Pn
i=1 xiPn

i=1 xi
Pn

i=1 x
2
i

¶−1µ Pn
i=1 yiPn

i=1 yixi

¶
=

1

n
Pn

i=1 x
2
i − (

Pn
i=1 xi)

2

µ Pn
i=1 x

2
i −

Pn
i=1 xi

−
Pn

i=1 xi n

¶µ Pn
i=1 yiPn

i=1 yixi

¶

=
1

n
Pn

i=1 x
2
i − (

Pn
i=1 xi)

2

⎛⎝ Pn
i=1 x

2
i

Pn
i=1 yi −

Pn
i=1 xi

Pn
i=1 xiyi

−
Pn

i=1 xi
Pn

i=1 yi + n
Pn

i=1 xiyi

⎞⎠ .

Now, bβ, according to this formula, is
bβ =

n
Pn

i=1 xiyi −
Pn

i=1 xi
Pn

i=1 yi
n
Pn

i=1 x
2
i − (

Pn
i=1 xi)

2
(6.26)

=

Pn
i=1 xiyi − x

Pn
i=1 yiPn

i=1 x
2
i − x

Pn
i=1 xi

=

Pn
i=1 xiyi − nxyPn
i=1 x

2
i − nx2

=

Pn
i=1( yi − y )(xi − x )Pn

i=1(xi − x )2
,
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while

bα =

Pn
i=1 x

2
i

Pn
i=1 yi −

Pn
i=1 xi

Pn
i=1 xiyi

n
Pn

i=1 x
2
i − (

Pn
i=1 xi)

2
(6.27)

=
y
Pn

i=1 x
2
i − x

Pn
i=1 xiyiPn

i=1 x
2
i − x

Pn
i=1 xi

=
y
Pn

i=1 x
2
i − yx

Pn
i=1 xi + yx

Pn
i=1 xi − x

Pn
i=1 xiyiPn

i=1 x
2
i − x

Pn
i=1 xi

=
y(
Pn

i=1 x
2
i − x

Pn
i=1 xi) + x2

Pn
i=1 yi − x

Pn
i=1 xiyiPn

i=1 x
2
i − x

Pn
i=1 xi

= y +
x2
Pn

i=1 yi − x
Pn

i=1 xiyiPn
i=1 x

2
i − x

Pn
i=1 xi

= y +
(x
Pn

i=1 yi −
Pn

i=1 xiyi)Pn
i=1 x

2
i − x

Pn
i=1 xi

x

= y − bβx.
6.3 Basic Statistical Properties

6.3.1 Method Of Moments Interpretation

Suppose, for the moment, that xi is a random variable that is uncorrelated with
ui. Let µx = E(xi ). Then

µy = E( yi ) = E(α+ βxi + ui ) = α+ βµx. (6.28)

Thus,

E( yi − µy ) = α+ βxi + ui − (α+ βµx ) = β(xi − µx ) + ui,
(6.29)

and

E( yi − µy )(xi − µx ) = β E(xi − µx )
2 +E(xi − µx )ui = β E(xi − µx )

2,
(6.30)

since xi and ui are uncorrelated. Solving for β, we have

β =
E(xi − µx )( yi − µy )

E(xi − µx )2
, (6.31)

while

α = µy − βµx. (6.32)

Thus the least-squares estimators are method of moments estimators with sam-
ple moments replacing the population moments.
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6.3.2 Mean of Estimates

Next, note that

bβ =

Pn
i=1(xi − x ) yiPn
i=1(xi − x )2

=

Pn
i=1(xi − x )(α+ βxi + ui )Pn

i=1(xi − x )2

= α

Pn
i=1(xi − x )Pn
i=1(xi − x )2

+ β

Pn
i=1(xi − x )xiPn
i=1(xi − x )2

+

Pn
i=1(xi − x )uiPn
i=1(xi − x )2

= β +

Pn
i=1(xi − x )uiPn
i=1(xi − x )2

. (6.33)

So, E( bβ ) = β, since E(ui ) = 0 for all i. Thus, bβ is an unbiased estimator of β.
Further,

bα = y − βx (6.34)

=
nX
i=1

yi
n
− x

Pn
i=1(xi − x ) yiPn
i=1(xi − x )2

=
nX
i=1

µ
1

n
− x

xi − xPn
i=1(xi − x )2

¶
yi

= α
nX
i=1

µ
1

n
− x

xi − xPn
i=1(xi − x )2

¶

+β
nX
i=1

µ
xi
n
− x

(xi − x )xiPn
i=1(xi − x )2

¶
+

nX
i=1

µ
1

n
− x

xi − xPn
i=1(xi − x )2

¶
ui

= α
nX
i=1

µ
1

n
− x

xi − xPn
i=1(xi − x )2

¶
ui

So we have E( bα ) = α, and bα is an unbiased estimator of α.
6.3.3 Variance of Estimates

Now,

bβ − β =

Pn
i=1(xi − x )uiPn
i=1(xi − x )2

=
nX
i=1

wiui, (6.35)

where

wi =
(xi − x )Pn
i=1(xi − x )2

. (6.36)
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So,

Var( bβ ) = E( bβ − β )2

= E(
nX
i=1

wiui )
2 = E(w1u1 + w2u2 + · · ·+ wnun )

2

= E[(w
2
1u
2
1 + w22u

2
2 + · · ·+ w2nu

2
n) + (w1u1w2u2 + · · ·wn−1un−1wnun )]

= w21σ
2 + w22σ

2 + · · ·+ w2nσ
2

= σ2
nX
i=1

w2i = σ2
nX
i=1

Ã
(xi − x )Pn

j=1(xj − x )2

!2
=

σ2Pn
i=1(xi − x )2

. (6.37)

Next, we note that

bα− α =
nX
i=1

µ
1

n
− x

xi − xPn
i=1(xi − x )2

¶
ui =

nX
i=1

viui, (6.38)

where

vi =

µ
1

n
− x

xi − xPn
i=1(xi − x )2

¶
. (6.39)

So, in a fashion similar to the one above, we find that

Var( bα− α ) = σ2
Pn

i=1 x
2
i

n
Pn

i=1(xi − x )2
, (6.40)

and

Cov( bα, bβ ) = E( bα− α )( bβ − β ) = σ2
Pn

i=1 xi
n
Pn

i=1(xi − x )2
. (6.41)

6.3.4 Estimation of σ2

Next, we would like to get an estimate of σ2. Let

s2 =
1

n− 2

nX
i=1

e2i , (6.42)
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where

ei = yi − α− βxi

= ( yi − y )− (α− α )− bβ(xi − x )

= ( yi − y )− bβ(xi − x )

= β(xi − x ) + (ui − u )− bβ(xi − x )

= −( bβ − β )(xi − x ) + (ui − u ) (6.43)

. (6.44)

So,

nX
i=1

e2i =
nX
i=1

[−( bβ − β )(xi − x ) + (ui − u )]2 (6.45)

= ( bβ − β )2
nX
i=1

(xi − x )2

−2( bβ − β )
nX
i=1

(xi − x )(ui − u ) +
nX
i=1

(ui − u )2.

Now, we have

E[( bβ − β )2
nX
i=1

(xi − x )2] = σ2, (6.46)

E(
nX
i=1

(ui − u )2) = E(
nX
i=1

(u2i − u2 ))

= E(
nX
i=1

u2i )−
1

n
E(

nX
i=1

ui )
2 = (n− 1 )σ2, (6.47)

and

E(( bβ − β )
nX
i=1

(xi − x )(ui − u )) (6.48)

= E

Ã
nX
i=1

wiui

!Ã
nX
i=1

(xi − x )ui −
nX
i=1

(xi − x )u

!

= E

Ã
nX
i=1

wiui

!
nX
i=1

(xi − x )ui =
nX
i=1

wi(xi − x )σ2 = σ2.

Therefore,

E(
nX
i=1

e2i ) = σ2 − 2σ2 + (n− 1 )σ2 = (n− 2 )σ2 (6.49)
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and

E( s
2 ) = σ2. (6.50)

6.4 Statistical Properties Under Normality

6.4.1 Distribution of bβ
Suppose that ui

iidvN( 0, σ2 ). Then,

bβ = β +
nX
i=1

wiui, (6.51)

where wi =
xi−x

n
i=1( xi−x )2

. Then bβ is also a normal random variable. Specifically,
bβ ∼ N(β, σ2q ), (6.52)

where q = 1
n
i=1( xi−x )2

. Thus, for a given β0,

bβ − β0 ∼ N(β − beta0, σ
2q ), (6.53)

and

zβ =
bβ − β0p
σ2q

∼ N
Ã bβ − β0p

σ2q
, 1

!
. (6.54)

Now, suppose that H0 : β = β0. Then,bβ − β0p
σ2q

∼ N( 0, 1 ), (6.55)

while for H0 : β = β1 > β0 we havebβ − β0p
σ2q

∼ N
Ã
β1 − β0p

σ2q
, 1

!
, (6.56)

and we would expect the statistic to be centered to the right of zero.

6.4.2 Distribution of bα
Again, suppose that ui

iidvN( 0, σ2 ). Then,

bα = α+
nX
i=1

viui, (6.57)
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where vi =
1
n −

x(xi−x )
n
i=1(xi−x )2

. Then bα is a normal random variable. Specifically,

bα ∼ N(α, σ2p ), (6.58)

where p =
n
i=1 x

2
i

n n
i=1( xi−x )2

. Then, for a given α0,

bα− α0 ∼ N(α− beta0, σ
2p ), (6.59)

and

zα =
bα− α0p

σ2p
∼ N

Ã bα− α0p
σ2p

, 1

!
. (6.60)

Now, suppose that H0 : α = α0. Then,bα− α0p
σ2p

∼ N( 0, 1 ), (6.61)

while for H0 : α = α1 6= α0 we have

bα− α0p
σ2p

∼ N
Ã
α1 − α0p

σ2p
, 1

!
, (6.62)

and we would expect the statistic not to be centered around zero.
It is important to note that

p =

Pn
i=1 x

2
i

n
Pn

i=1(xi − x )2
,

and so
p
σ2p grows small as n grows large. Thus, the noncentrality of the

distribution of the statistic zα will also grow under the alternative. A similar
statemetn can be made concerning q and the statistic zβ.

6.4.3 t-Distribution

In most cases, we do not know the value of σ2. A possible alternative is to use
s2, whereupon we obtain

bα− α0p
s2p

∼ tn−2, (6.63)

under H0 : α = α0, and bβ − β0p
s2q

∼ tn−2, (6.64)
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under H0 : β = β0.
The t-distibution is quite similar to the standard normal except being slightly

fatter. This reflects the added uncertainty introduced by using s2 rather than
σ2. However, as n increases and the precision of s2 becomes better, the t-
distibution grows closer and closer to the N( 0, 1 ). We loose two degrees of
freedom (and so tn−2) because of the fact that we estimated two coefficients,
namely α and β.
Just as in the case of zα and zβ, we would expect the t-distribution to be

off-center if the null hypothesis were not true.

6.4.4 Maximum Likelihood

Suppose that ui
iidvN( 0, σ2 ). Then,

yi
iidv N(α+ βxi, σ

2 ). (6.65)

Then, the pdf of yi is given by

f( yi ) =
1√
2πσ2

exp

½
− 1

2σ2
[ yi − (α+ βxi )]

2

¾
. (6.66)

Since the observations are independent, we can write the joint likelihood func-
tion as

f( y1, y2, . . . , yn ) = f( y1 )f( y2 ) · · · f( yn )

=
1

( 2πσ2 )
n
2
exp

(
− 1

2σ2

nX
i=1

[ yi − (α+ βxi )]
2

)
= L(α, β, σ2|y,x ). (6.67)

Now, let L = log L(α, β, σ2|y,x ). We seek to maximize

L = −n
2
log( 2π )− n

2
log(σ2 )− 1

2σ2

nX
i=1

[ yi − (α+ βxi )]
2.

(6.68)

Note that for (??) to be a maximum with respect to α and β, we most minimizePn
i=1[ yi − (α+ βxi )]

2.
The first-order conditions for (??) are

∂L
∂α

=
1

σ2

nX
i=1

[ yi − ( bα+ bβxi )] = 0, (6.69)

∂L
∂β

=
1

σ2

nX
i=1

[ yi − ( bα+ bβxi )xi ] = 0, (6.70)
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xi yi xi − x yi − y (xi − x)2 (xi − x)(yi − y)

2 12 -2 5 4 -24
3 7 -1 0 1 -7
4 8 0 1 0 0
5 5 1 -2 1 5
6 3 2 -4 4 6

20 35 0 0 10 -20

Table 6.1: Summary table.

and

∂L
∂β

= − n

2cσ2 + 1

2σ4

nX
i=1

[ yi − (α+ βxi )]
2. (6.71)

Note that the first two conditions imply that

α = y − bβx, (6.72)

and

bβ = Pn
i=1(xi − x )( yi − y )Pn

i=1(xi − x )2
, (6.73)

since these are the same as the normal equations (except for σ2). The third
condition yields

cσ2 =

Pn
i=1[ yi − (α+ βxi )]

2

n

=

Pn
i=1 e

2
i

n
=

n− 2
n

s2. (6.74)

6.5 An Example

Consider the scatter graph given in Figure 6.1. From this, we construct Table
6.1.
Thus, we have

bβ = Pn
i=1(xi − x )( yi − y )Pn

i=1(xi − x )2
=
−20
10

= −2,

and bα = y − bβx = 7− (−2 )4 = 15.
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bβxi bα+ bβxi ei e2i
-4 11 1 1
-6 9 -2 4
-8 7 1 1
-10 5 0 0
-12 3 0 0

Table 6.2: Residual calculations.

Now, we calculate the residuals in Table 6.2, and find

nX
i=1

e2i = 6

and

s2 =

Pn
i=1 e

2
i

n− 2 =
6

3
= 2.

An estimate of the variance of bβ, namely σ2q, is provided by
s2q = s2

1Pn
i=1(xi − x)2

= 2
1

10
= 0.2.

Suppose we wish to test H0 : β = 0 against H1 : β 6= 0. Thenbβ − 0p
s2q
∼ t3

under the null hypothesis, but

bβ − 0p
s2q

=
−2√
0.2

=
−2
0.45

= −4.2

is clearly in the left-hand 2.5% tail of the t3-distribution. Thus, we would reject
the null hypothesis at the 95% significance level.



Chapter 7

Linear Least Squares

7.1 Multiple Regression Model

The general k-variable linear model can be written as

yi = β1xi1 + β2xi2 + · · ·+ βkxik + ui i = 1, 2, . . . , n. (7.1)

Using matrix techniques, we can equivalently write this model as⎛⎜⎜⎜⎝
y1
y2
...
yn

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
x11 x12 · · · x1k
x21 x22 · · · x2k
...

...
. . .

...
xn1 xn2 · · · xnk

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

β1
β2
...
βk

⎞⎟⎟⎟⎠+
⎛⎜⎜⎜⎝

u1
u2
...
un

⎞⎟⎟⎟⎠ , (7.2)

or, more compactly, as
y = Xβ + u. (7.3)

7.1.1 Assumptions

In the general k-variable linear model, we make the following assumptions about
the disturbances:

(i) E(ui ) = 0 i = 1, 2, . . . , n

(ii) E(u2i ) = 0 i = 1, 2, . . . , n

(iii) E(uiuj ) = 0 i 6= j

These assumptions can be written in matrix notaion as

E(u ) = 0 (7.4)

62
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and

Cov(u ) = E(uu0 ) = σ2In, (7.5)

where In is an n× n identity matrix.

The nonstochastic assumptions are

(iv) X is nonstochastic.

(v) X has full column rank (the columns are linearly independent).

Sometimes, we will also assume that the ui’s are normally distrubuted

(vi) u ∼ E( 0, σ2In ).

7.1.2 Plane Fitting

Suppose k = 3 and xi1 = 1. Then,

yi = β1 + β2xi2 + β3xi3 + ui i = 1, 2, . . . , n. (7.6)

Now, byi = bβ1 + bβ2xi2 + bβ3xi3 i = 1, 2, . . . , n. (7.7)

define planes in the three-dimentional space of y, x2, and x3. We seek to choosebβ1, bβ2 and bβ3 so that the points on the plane corresponding to xi2 and xi3,
namely byi, will be close to yi. That is, we will “fit” a plane to the observations.
As we did in the two-dimensional case, we choose to measure closeness in

the vertical distance. That is,

ei = yi − ( bβ1 + bβ2xi2 + bβ3xi3 ) i = 1, 2, . . . , n, (7.8)

and

φ =
nX
i=1

e2t (7.9)

7.1.3 Least Squares

In general, we want to

min
β

nX
i=1

[ yi − ( bβ1 + bβ2xi2 + · · ·+ bβkxik )]2 (7.10)
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7.2 Least Squares Regression

7.2.1 The OLS Estimator

As was stated above, we seek to minimize

φ =
nX
i=1

[ yi − (β1 + β2xi2 + · · ·+ βkxik )]
2 (7.11)

with respect to the coefficients β1, β2, . . . , βk. The first-order conditions are

0 =
∂φ

∂β1
= 2

nX
i=1

[ yi − ( bβ1 + bβ2xi2 + · · ·+ bβkxik )]xi1, (7.12)

0 =
∂φ

∂β2
= 2

nX
i=1

[ yi − ( bβ1 + bβ2xi2 + · · ·+ bβkxik )]xi2,
...

0 =
∂φ

∂βk
= 2

nX
i=1

[ yi − ( bβ1 + bβ2xi2 + · · ·+ bβkxik )]xik.
where (bβ1, bβ2, · · · , bβk) are solutions. Rearranging, we have the normal equa-
tions:

bβ1 nX
i=1

x2i1 +
bβ2 nX

i=1

xi1xi2 + · · ·+ bβk nX
i=1

xi1xik =
nX
i=1

xi1yi

bβ1 nX
i=1

xi2xi1 + bβ2 nX
i=1

x2i2 + · · ·+ bβk nX
i=1

xi2xik =
nX
i=1

xi2yi

...bβ1 nX
i=1

xikxi1 + bβ2 nX
i=1

xikxi2 + · · ·+ bβk nX
i=1

x2ik =
nX
i=1

xikyi

(7.13)

or⎛⎜⎜⎜⎝
Pn

i=1 x
2
i1

Pn
i=1 xi1xi2 · · ·

Pn
i=1 xi1xikPn

i=1 xi2xi1
Pn

i=1 x
2
i2 · · ·

Pn
i=1 xi2xik

...
...

. . .
...Pn

i=1 xikxi1
Pn

i=1 xikxi2 · · ·
Pn

i=1 x
2
ik

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

bβ1bβ2
...bβk

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
Pn

i=1 xi1yiPn
i=1 xi2yi
...Pn

i=1 xikyi

⎞⎟⎟⎟⎠ .

(7.14)
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As in the bivariate model,

X =

⎛⎜⎜⎜⎝
x11 x21 · · · xn1
x12 x22 · · · xn2
...

...
. . .

...
x1n x2n · · · xnn

⎞⎟⎟⎟⎠ , (7.15)

so

X0X =

⎛⎜⎜⎜⎝
Pn

i=1 x
2
i1

Pn
i=1 xi1xi2 · · ·

Pn
i=1 xi1xikPn

i=1 xi2xi1
Pn

i=1 x
2
i2 · · ·

Pn
i=1 xi2xik

...
...

. . .
...Pn

i=1 xikxi1
Pn

i=1 xikxi2 · · ·
Pn

i=1 x
2
ik

⎞⎟⎟⎟⎠ , (7.16)

and

X0y =

⎛⎜⎜⎜⎝
Pn

i=1 xi1yiPn
i=1 xi2yi
...Pn

i=1 xikyi

⎞⎟⎟⎟⎠ . (7.17)

Thus, we can write the normal equations in matrix notation:

X0Xbβ = X0y. (7.18)

where β0 = (bβ1, bβ2, · · · , bβk).Therefore, we have the unique solution
bβ = (X0X )−1X0y, (7.19)

as long as |X0X| 6= 0, which is assured by Assumption (v).

7.2.2 Some Algebraic Results

Define the fitted value for each i as byi = xi1bβ1 + xi2bβ2 + · · · + xik bβk = x0i
bβ

whereupon by = Xbβ. (7.20)

Next define the OLS residual for each i as ei = yi − byi so
e = y − by. (7.21)

Then,

X0e = X0(y− by )
= X0y−X0X(X0X)−1X0y

= 0, (7.22)
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and we say that the residuals are orthogonal to the regressors. Also, we find

by0y = (Xbβ)0(Xbβ + e)
= bβ0X0Xbβ + bβ0X0e

= bβ0X0Xbβ
= by0by. (7.23)

Now, suppose that the first coefficient is the intercept. Then, the first column
of X and hence the first row of X0 are all ones. This means that

0 = X0e =

⎛⎜⎜⎜⎝
1 1 · · · 1
x12 x22 · · · xn2
...

...
. . .

...
x1n x2n · · · xnn

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

e1
e2
...
en

⎞⎟⎟⎟⎠

=

⎛⎜⎜⎜⎝
Pn

i=1 eiPn
i=1 xi2ei
...Pn

i=1 xikei

⎞⎟⎟⎟⎠ . (7.24)

So,
Pn

i=1 ei = 0, which means that

nX
i=1

yi =
nX
i=1

byi + ei =
nX
i=1

byi. (7.25)

Finally, we note that

e = y−Xbβ
= y− (X0X)−1X0y

= [ In − (X0X)−1X0 ]y

= My

= M(Xβ + u )

= [ In − (X0X)−1X0 ](Xβ ) +Mu

= Mu. (7.26)

We see that the OLS residuals are a linear transformation of the underlying
disturbances. The matrix M , which is sometimes called ”the idempotent ma-
trix” plays an important role in the sequel, has the property M =M ·M or of
idempotence.



7.2. LEAST SQUARES REGRESSION 67

7.2.3 The R2 Statistic

Define the following:

SSE =
nX
i=1

e2i =
nX
i=1

( yi − byi )2, (7.27)

SST =
nX
i=1

( yi − y )2, (7.28)

SSR =
nX
i=1

( byi − y )2. (7.29)

Note that SSE is the variation of actuals around the fitted plane and is called
the unexplained sum-of-squares. SSR, or residual sum-of-squares, is variation
of the fitted values around the sample mean and SST, or total sum-of-squares,
is the variation of the actual around the sample mean.
The three sums-of-squares are closely related. Consider

SST− SSE =
nX
i=1

[( yi − y )2 − ( yi − byi )2]
=

nX
i=1

y2 − 2y
nX
i=1

yi + 2
nX
i=1

yibyi − nX
i=1

by2i
=

nX
i=1

y2 − 2y
nX
i=1

yi +
nX
i=1

by2i
=

nX
i=1

y2 − 2y
nX
i=1

byi + nX
i=1

by2i
=

nX
i=1

( byi − y )2 = SSR. (7.30)

Thus SST = SSE+ SSR.
We now define

R2 = 1− SSE
SST

=
SST

SST
− SSE
SST

=
SSR

SST
. (7.31)

as the percent of of total variation explained by the model.
This statistic can also be interpreted as a squared correlation coefficient.

Consider the sample second moments,

Var(y ) =
1

n

nX
i=1

( yi − y )2 =
1

n
SST, (7.32)
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Var( by ) = 1

n

nX
i=1

( byi − y )2 =
1

n
SSR, (7.33)

and

Cov(y, by ) =
1

n

nX
i=1

( yi − y )( byi − y )

=
1

n

nX
i=1

yibyi − ybyi − yyi + y2

=
1

n

nX
i=1

by2i − 2ybyi + y2

=
1

n

nX
i=1

( byi − y )2

=
1

n
SSR. (7.34)

Then the correlation between yi and byi can be written as,
bρ
y,by =

Cov(y, by )p
Var( by ) Var( by )

=
1
nSSRq

1
nSST

1
nSSR

=

√
SSR√
SST

,

so bρ2
y,by = SSR

SST
= R2. (7.35)

This statistic is variously called the coefficient of determination, the multiple
correlation statistic and the ”R”-squared statistic.

7.3 Basic Statistical Results

7.3.1 Mean and Covariance of bβ
From the previous section, under assumption (v), we have

bβ = (X0X )−1X0y

= (X0X )−1X0(Xβ + u )

= (X0X )−1X0Xβ + (X0X )−1X0u

= β + (X0X )−1X0u. (7.36)
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Since X is nonstochasticby assumption (iv), we have, also using assumption (i),

E( bβ ) = β +E[(X
0X )−1X0u ]

= β + (X0X )−1X0
E(u )

= β. (7.37)

Thus, the OLS estimator is unbiased. Also, using assumptions (ii) and (iii),

Cov( bβ ) = E( bβ − β )( bβ − β )0
= E[(X0X )−1X0uu0X(X0X )−1]

= (X0X )−1X0 E(uu0 )X(X0X )−1

= (X0X )−1X0σ2InX(X
0X )−1

= σ2(X0X )−1. (7.38)

7.3.2 Best Linear Unbiased Estimator (BLUE)

The OLS estimator is linear in y and it is an unbiased estimator, as we saw
above. Let eβ = eAy, (7.39)

whereA is a k×nmatrix that is nonstochastic, be any other unbiased estimator.
That is, E( eβ ) = β. Define

A = eA− (X0X )−1X0. (7.40)

Then,

eβ = [A+(X0X )−1X0 ]y

= [A+(X0X )−1X0 ][Xβ + u ]

= AXβ + β + [A+ (X0X )−1X0 ]u. (7.41)

Now, eβ is an unbiased estimator, so
E( eβ ) = AXβ + β + [A+ (X0X )−1X0 ] E(u )

= AXβ + β = β, (7.42)

which implies that for all β, AX = 0. Thus,

eβ = β + [A+ (X0X )−1X0 ]u, (7.43)

and

Cov( eβ ) = E( eβ − β )( eβ − β )0
= E{[A+ (X0X )−1X0 ]uu0[A+ (X0X )−1X0 ]0}
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= [A+ (X0X )−1X0 ] E(uu0 )[A+ (X0X )−1X0 ]0

= [A+ (X0X )−1X0 ]σ2In[A+ (X
0X )−1X0 ]0

= σ2[AA0 + (X0X )−1 ]

= σ2AA0 + σ2(X0X )−1.

(7.44)

This shows that the covariance matrix of any other linear unbiased estimator
exceeds the covariance matrix of the OLS estimator by a possitive semi-definite
matrix σ2AA0. Hence, OLS is said to be best linear unbiased estimator (BLUE).
Note that we have used all of the assumptions (i)-(v) to get to this point.

7.3.3 Consistancy

Typically, the elements of X0X are unbounded (they go to infinity) as n gets
very large. For example, the 1, 1 element is n and the j, j element is

Pn
i=1 x

2
ij .

Therefore,
lim
n→∞

(X0X )−1 = 0, (7.45)

and the variances of bβ converge to zero. This means that the distribution
collapses about its expected value, namely β. So,

plim
n→∞

bβ = β, (7.46)

and OLS estimation is consistent. A more formal proof of this property will be
given in the chapter on stochastic regressors.

7.3.4 Estimation Of σ2

Recall that
e =Mu, (7.47)

where M = In −X(X0X )−1X0. Then,

e0e = (Mu )0Mu = u0MMu = u0Mu, (7.48)

since M is symmetric and idempotent. Also,

e0e = tr e0e = tru0Mu = trMu0u, (7.49)

since e0e is a scalar, and trAB = trBA, when both multiplications are defined.
Thus,

E( e
0e ) = E( trMu

0u )

= trME(u
0u )

= trMσ2In

= σ2 trM. (7.50)
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But,

trM = tr( In −X(X0X )−1X0 )

= tr In − tr(,X(X0X )−1X0 )

= n− tr((X0X )−1X0X )

= n− k. (7.51)

Now, define

s2 =
e0e

n− k
. (7.52)

Then

E( s
2 ) =

E( e0e )

n− k
=

σ2(n− k )

n− k
= σ2, (7.53)

so s2 is an unbiased estimator of σ2. We can also establish that s2 is a consistent
estimator of σ2. That is,

plim
n→∞

s2 = σ2. (7.54)

7.3.5 Prediction

Suppose that we wish to predict

yp = β1xp1 + β2xp2 + · · ·+ βkxpk + up = xp
0β + up. (7.55)

Note that

E( yp|xp ) = x0pβ. (7.56)

A natural choice for a predictor isbyp = x0p
bβ

= x0p(X
0X )−1X0y

= x0p(X
0X )−1X0(X0β + u

= x0pβ + x
0
p(X

0X )−1X0u. (7.57)

Now,

E( yp|xp ) = x
0

pβ, (7.58)

and

E[( yp − byp )|xp ] = 0. (7.59)

Hence, byp is an unbiased predictor of yp.
We also have

Var( byp ) = E( byp − x0pβ )2 = σ2x
0

p(X
0X )−1xp, (7.60)

while
MSPE( byp ) = E( yp − byp ) = σ2[ 1 + x

0

p(X
0X )−1xp ]. (7.61)

It can be shown as above that byp is the best (minimum variance) linear unbiased
predictor (BLUP) of yp.
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7.4 Statistical Properties Under Normality

7.4.1 Distribution Of bβ
Suppose that we introduce assumption (vi), so the ui’s are normal:

u ∼ E( 0, σ2In ). (7.62)

Recall that bβ = β + (X0X )−1X0u, (7.63)

so bβ is linear in u and X and hence (X0X )−1X0 are nonstochastic. Then, bβ is
also normally distributed: bβ ∼ E( 0, σ2(X0X )−1 ). (7.64)

Thus, we may test H0 : βi = βi0 withbβ − βi0q
σ2(X0X )−1ii

∼ E( 0, 1 ). (7.65)

More will be said on this statistic for use in inference in the next chapter.

7.4.2 Maximum Likelihood Estimation

Now,
yi = β1xi1 + β2xi2 + · · ·+ βkxik + ui = xi

0β + ui, (7.66)

is linear in ui, so yi is also normal given xi:

yi ∼ N( xi
0β, σ2 ). (7.67)

Further, the yi’s are independent. Thus, the density for yi is given by

f( yi ) =
1√
2πσ2

exp

½
− 1

2σ2
[ yi − xi0β ]2

¾
. (7.68)

Since the yi’s are independent, the joint likelihood function is

f( y1, y2, . . . , yn ) = f( y1 )f( y2 ) · · · f( yn )

=
1

( 2πσ2 )
n
2
exp

(
− 1

2σ2

nX
i=1

[ yi − xi0β ]2
)

= L(β, σ2|y,X ). (7.69)

Let L = log L(β, σ2|y,X ). We wish to maximize L with respect β. However,
this means that we minimize the sum of squares, sobβMLE = (X

0X )−1X0y, (7.70)
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which is the OLS estimator from above. It is easily shown that

cσ2MLE =
e0e

n
=

n− k

n
s2. (7.71)

7.4.3 Efficiency of bβ and s2

Since bβ is the MLE and unbiased, we find then it is the minimum variance un-
biased estimator (BUE). And s2 is not the MLE, so it is not BUE. On the other

hand, cσ2MLE is biased, so it is not BUE either. The will both be equivalent in
large samples and be asymptotically BUE.



Chapter 8

Confidence Intervals and
Hypothesis Tests

8.1 Introduction

8.1.1 Model and Assumptions

The model is a k-variable linear model:

y = Xβ + u, (8.1)

where y and u are both n × 1 vectors, X is a n × k matrix and β is a k × 1
vector. We make the following assumptions about the disturbances:

(i) E(u ) = 0

and

(ii),(iii) Cov(u ) = E(uu0 ) = σ2In,

where In is an n× n identity matrix. The nonstochastic assumptions are

(iv) X is nonstochastic.

(v) X has full column rank (the columns are linearly independent).

For inferences, we assume that u are normally distributed. That is,

(vi) u ∼ ( 0, σ2In ).

74
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8.1.2 Ordinary Least Squares Estimation

For some estimate bβ of β, define
e = y −Xβ (8.2)

and
φ = e0e (8.3)

Choosing bβ to minimize φ yields the ordinary least squares (OLS) estimator
bβ = (X0X )−1X0y, (8.4)

Substitution yields bβ = (X0X )−1X0(Xβ + u )

= (X0X )−1X0Xβ + (X0X )−1X0u

= β + (X0X )−1X0u. (8.5)

8.1.3 Properties of bβ
Since X is nonstochastic,

E[ bβ ] = β +E[(X0X )−1X0u ]

= β + (X0X )−1X0 E[u ]

= β. (8.6)

Thus, the OLS estimator is unbiased. Also,

Cov( bβ ) = E( bβ − β )( bβ − β )0
= E[(X

0X )−1X0uu0X(X0X )−1]

= (X0X )−1X0
E(uu

0 )X(X0X )−1

= (X0X )−1X0σ2InX(X
0X )−1

= σ2(X0X )−1. (8.7)

The elements of X0X are unbounded as n gets very large. Therefore,

lim
n→∞

(X0X )−1 = 0, (8.8)

and the variances of bβ converge to zero. This means that the distribution
collapses about its expected value, namely β. So,

plim
n→∞

bβ = β, (8.9)

and OLS estimation is consistent.
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The OLS estimates bβ are the best linear unbiased (BLUE) in that they have
minimum variance in the class of unbiased estimators of β that are also linear
in y.
Suppose that u is normal, then the linear transformationbβ − β = (X0X )−1X0u (8.10)

is also normal. bβ − β ∼ N( 0, σ2(X0X )−1 ). (8.11)

or bβ ∼ N(β, σ2(X0X )−1 ). (8.12)

Moreover, the bβ are maximum likelihood and hence minimum variance in the
class of unbiased estimators.

8.1.4 Properties of e

Now, the OLS residuals are

e = y−Xbβ
= y−X(X0X)−1X0y

= [ In −X(X0X)−1X0 ]y

= My M =In −X(X0X)−1X0 (8.13)

= M(Xβ + u )

= [ In −X(X0X)−1X0 ](Xβ ) +Mu

= Mu. (8.14)

Since MX = 0. Thus, the OLS residuals are a linear transformation of the
underlying disturbances. Also,

X0e = X0Mu

= 0, (8.15)

again, sinceMX = 0, and the OLS residuals are orthogonal or linearly unrelated
to X. When u are normal, then the linear transformation e = Mu is also
normal. Specifically,

e ∼ N( 0, σ2M ) (8.16)

since

E e = EMu =MEu = 0, (8.17)

and

E ee
0 = EMuu

0M0

= M ( Euu
0 )M0

= M
¡
σ2I

¢
M0

= σ2M, (8.18)
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since MM0 =M.

8.2 Tests Based on the χ2 Distribution

8.2.1 The χ2 Distribution

Suppose that z1, z2, . . . , zn are iid N(0, 1) random variables. Then,

nX
i=1

z2i ∼ χ2n. (8.19)

8.2.2 Distribution of (n− k)s2/σ2

Now,
ui = yi − x0iβ ∼ N(0, σ2), (8.20)

so
ui
σ
∼ N(0, 1) (8.21)

and
nX
i=1

³ ui
σ

´2
=

nX
i=1

u2i
σ2
∼ χ2n. (8.22)

Now,
ei = yi − x0ibβ (8.23)

is an estimate of ui and we might expect that

nX
i=1

e2i
σ2
∼ χ2n. (8.24)

However, this would be wrong as only n−k of the observations are independent
since e satisfies the k equations X0e = 0.
The properties of e =Mu follow from the properties ofM = In−X(X0X)−1X0,

which is symmetric idempotent and positive semi-definite and hence has some
very special properties. First, rank(M) = tr(M) =n−k. Second, we can write
the decomposition M = QDn−kQ

0 where Dn−k is a diagonal matrix with its
first n−k diagonals unity and the remainder zero, and Q0Q = In so Q

0 = Q−1.
Let

v = Q0u (8.25)

then v ∼ N(0, In) and u = Qv. Substitution yields

1

σ2
e0e =

1

σ2
u0Mu (8.26)

=
1

σ2
u0QDn−kQ

0u
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=
1

σ2
v0Q0QDn−kQ

0Qv

=
1

σ2
v0Dn−kv

=
1

σ2
Pn−k

i=1 v2i

=
Pn−k

i=1 (
vi
σ
)2 ∼ χ2n−k

Thus,
nX
i=1

e2i
σ2
∼ χ2n−k (8.27)

and

(n− k )

Pn

i=1
e2i

n−k
σ2

= (n− k )
s2

σ2
∼ χ2n−k. (8.28)

Not only so but e =Mu and bβ − β = (X0X)−1X0u are jointly normal and

E[e(bβ − β)0] = E[Muu
0X(X0

X)
−1
] (8.29)

= Mσ2InX(X
0X)−1

= σ2MX(X0X)−1 = 0

so they are uncorrelated and independent and s2 is independent of bβ, since it
is a function only of e.

8.2.3 A Confidence Interval

Now, let a and b be numbers such that

Pr( b ≤ χ2n−k ≤ a ) = 0.95, (8.30)

say. Then a and b can be obtained from a table. Thus,

Pr

µ
b ≤ (n− k )

s2

σ2
≤ a

¶
= 0.95

Pr

µ
1

b
≥ σ2

(n− k )s2
≥ 1

a

¶
= 0.95

Pr

µ
(n− k )s2

b
≥ σ2 ≥ (n− k )s2

a

¶
= 0.95 (8.31)

establishes a 95% confidence interval for σ2.
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For example, for n− k = 14, we have

Pr

µ
5.64 ≤ 14s

2

σ2
≤ 26.12

¶
= 0.95

Pr

µ
14s2

5.63
≥ σ2 ≥ 14s2

26.12

¶
= 0.95 (8.32)

and if s2 = 4.0, then

Pr

µ
56

5.63
≥ σ2 ≥ 56

26.12

¶
= 0.95 (8.33)

or
Pr
¡
10 ≥ σ2 ≥ 2.1

¢
= 0.95 (8.34)

is the confidence interval.

8.2.4 A Hypothesis Test

Suppose that
H0:σ

2 = σ20 , H1:σ
2 6= σ20 .

Then we know that

(n− k )
s2

σ20
∼ χ2n−k. (8.35)

under the null hypothesis.
Choose α = 0.05, say, then critical values corresponding to 2.5% tails are

5.63 and 26.12 for n− k = 14. Thus, if

5.62 ≤ 14 s
2

σ20
≤ 26.12, (8.36)

we fail to reject the null hypothesis. Otherwise, we reject it at the 5% level of
confidence. For example, suppose that s2 = 4.0 and σ20 = 1, then

14
s2

σ20
= 56 (8.37)

and we reject the null hypothesis since we fall into the right-hand 2.5% tail.

8.3 Tests Based on the t Distribution

8.3.1 The t Distribution

Suppose that z is a N(0, 1) random variable and that w ∼ χ2m independent of
z. Then,

zp
w
m

∼ tm. (8.38)
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8.3.2 The Distribution of ( bβi − βi )/( s
2dii )

1/2

We have seen that bβi ∼ N(βi, σ2dii ), (8.39)

where dii is the (i, i) element of the matrix (X
0X)1/2. Then,

z =
bβi − βi√
σ2dii

∼ N( 1, 0 ), (8.40)

while

w = (n− k )
s2

σ20
∼ χ2n−k. (8.41)

Since bβ and s2 are independent, we have

bβi−βi√
σ2diiq

(n−k )s2
σ20

/(n− k )
=
bβi − βi√
s2dii

∼ tn−k. (8.42)

8.3.3 Confidence Interval for βi

First, obtain a such that

Pr(−a ≤ tn−k ≤ a ) = 0.95, (8.43)

say, from a table. Then,

Pr

Ã
−a ≤

bβi − βi√
σ2dii

≤ a

!
= 0.95

Pr

Ã bβi + a
p
σ2dii ≥

bβi − βi√
σ2dii

≥ bβi − a
p
σ2dii

!
= 0.95 (8.44)

and bβi ± a
√
σ2dii defines a 95% confidence interval for βi.

8.3.4 Testing a Hypothesis

Suppose that

H0:βi = β0i , H1:βi 6= β0i .

We know that bβi − βi√
σ2dii

∼ tn−k. (8.45)
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Now, choose α = 0.05, say, then critical values corresponding to 2.5% tails of a
t distribution with (n− k) degrees of freedom are ±a, say, so if

−a ≤
bβi − βi√
σ2dii

≤ a, (8.46)

we fail to reject the null hypothesis. Otherwise we reject the null hypothesis in
favor of the alternative.

8.3.5 The Distribution of c0( bβ − β )/ ( s2c0(X0X )−1c )
1/2

Consider the linear combination
c0bβ. (8.47)

Then,
c0bβ ∼ N( c0β, σ2c0(X0X )−1c ), (8.48)

Then,

c0( bβ − β )p
σ2c0(X0X )−1c

∼ N( 1, 0 ). (8.49)

As before, we use s2 instead of σ2, so while

c0( bβ − β )p
s2c0(X0X )−1c

∼ tn−k. (8.50)

We can perform inferences and calculate confidence intervals as before.

8.4 Tests Based on the F Distribution

8.4.1 The F Distribution

Suppose that
v ∼ χ2l and v ∼ χ2m

If v and w are independent, then

v/l

w/m
∼ Fl,m. (8.51)

8.4.2 Distribution of (R bβ − r)0[s2R(X 0X)−1R0]−1(R bβ − r)/q

Suppose we are interested in testing a set of q linear restrictions. Examples
would be β1 + β2 + ...+ βk = 1 and β3 = 2β2. More generally, we consider

H0: Rβ = r H1:Rβ 6= r
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where r is a q × 1 known vector and R is a q × k known matrix. Due to the
multivariate normality of bβ, then under the null hypothesis, we have

Rbβ−r ∼N(0, σ2R(X0X)−1R0) (8.52)

and hence

(Rbβ−r)0[σ2R(X0X)−1R0)]−1(Rbβ−r) ∼ χ2q. (8.53)

Recall that bβ and s2 are independent so (n− k) s
2

σ2∼χ2n−k is independent of
the quadratic form in (8.53). Thus, under the null hypothesis,

(Rbβ−r)0[σ2R(X0X)−1R0)]−1(Rbβ−r)/q
(n− k) s

2

σ2 /(n− k)
∼ Fq,n−k (8.54)

and after some simplification

(Rbβ−r)0[s2R(X0X)−1R0)]−1(Rbβ−r)/q ∼ Fq,n−k. (8.55)

Under the alternative hypothesisRβ 6= r, then the numerator diverges at the
rate n and we expect large positive values of the statistic with high probability.
Accordingly, we only consult the RHS tail values of the distribution to establish
critical values. Values of the statistic exceeding these critical values are rare
events under the null but typical under the alternative, so we reject when the
realization exceeds the critical value.

8.4.3 The Distribution of [( SSEr − SSEu )/q ]/SSEu/(n− k )

The most common form of linear restrictions that occur are zero restrictions.
Suppose the model of interest can be written as

y = X1β1 +X2β2 + u (8.56)

and

H0:β2 = 0 H1:β2 6= 0.

Define the “unrestricted” residuals

eu = y −X1
bβ1 −X2

bβ2 (8.57)

and

SSEu = e
0
ueu (8.58)

from the OLS regression of y on X1 and X2.
Next, define the “restricted” residuals

er = y−X1
bβ1 (8.59)
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and
SSEr = e

0
rer (8.60)

from the OLS regression of y on X1 only.
Now, SSEr ≥ SSEu, but under H0:β2 = 0, we expect

SSEu
σ2

∼ χ2n−(k1+k2) and
SSEr
σ2

∼ χ2n−k1 (8.61)

to have similar values. We therefore might expect

SSEr/(n− k1)

SSEu/(n− (k1 + k2))
∼ Fn−k1,n−(k1+k2), (8.62)

but unfortunately, SSEr and SSEu are not independent because they both satisfy

X0
1eu = X

0
1er = 0. (8.63)

The appropriate ratio can be determined by applying the results of the
previous section. Specifically, we take R = (0 : Ik2) and r = 0 whereupon
the restictions Rβ = r are equivalent to β2 = 0. For this choice of R and r we

have Rbβ − r =bβ2 and using the results for inverses of partitioned matrices
R(X0X)−1R0 = (X0

2X2 −X0
2X1(X

0
1X1)

−1X0
1X2)

−1 (8.64)

= (X0
2M1X2)

−1

where M1 = In −X1(X
0
1X1)

−1X0
1. Substitution yields

(Rbβ−r)0[σ2R(X0X)−1R0)]−1(Rbβ−r)/q = bβ02[σ2(X0
2M1X2)

−1]−1bβ2
=

1

σ2
bβ02X0

2M1X2
bβ2

=
1

σ2
bβ02X0

2M1M1X2
bβ2

=
1

σ2
(M1y− eu)

0
(M1y − eu)

=
1

σ2
(y0M1y− 2e0uM1y− e0ueu)

=
1

σ2
(y0M1y− e0ueu)

=
1

σ2
(e0rer−e0ueu) (8.65)

where we use the results

M1y = M1(X1
bβ1 +X2

bβ2 + eu)
= M1(X2

bβ2 + eu)
= M1X2

bβ2 +M1eu (8.66)
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andM1eu=M1My =My = eu.
Since SSEr = e0rer and SSEu = e0ueu, then SSEr − SSEu is the sum-of-

squares with k2 degrees of freedom that are independent of SSEu and form
(canceling σ2 in the numerator and denominator)

( SSEr − SSEu )/k2
SSEu/(n− (k1 + k2))

∼ Fk1,n−(k1+k2). (8.67)

Under the null hypothesis, this value will usually be small. Under the alternative
of β2 6= 0, however, we would expect SSEu to be much smaller than SSEr and
the above ratio to be large.

8.4.4 Testing a Hypothesis

We can consult the tables to find the critical point, c, corresponding to α = 0.05,
say. Then, if

( SSEr − SSEu )/k1
SSEu/(n− (k1 + k2))

> c, (8.68)

we reject the null hypothesis at the 5% level.
Note that for k1 = 1, that is, one restriction,s

( SSEr − SSEu )/k1
SSEu/(n− (k1 + k2))

∼ tn−(k1+k2) (8.69)

8.5 An Example

Consider the model

Yt = β1 + β2Xt,2 + β3Xt,3 + ut, (8.70)

where Yt is wheat yield, Xt,2 is the amount of fertilizer applied and Xt,3 is the
annual rainfall. The data are given in Table 8.5. After we rescale the data, we
obtain the estimates of the βs given in Table 8.5.
Now,

X0X =

⎛⎝ 55.9141 −0.4189 −15.4560
−0.4189 0.0371 0.0773
−15.4560 0.0773 4.3277

⎞⎠ , (8.71)

and s2 =
P

t e
2
t/(T − 3) = 0.5232/4 = 0.1308. Now, R2 = 1 − 0.5232/13.5 =

0.9612 and R
2
= 1− 6/4 · 0.0388 = 0.9419. Recall

E[( bβ − β )( bβ − β )0] = Cov( bβ ) = σ2(X0X )−1, (8.72)

which we estimate using

est. Cov( bβ ) = s2(X0X )−1. (8.73)
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Wheat Yield Fertilizer Rainfall
(Bushels/Acre) (Pounds/Acre) (Inches/Year)

40 100 36
45 200 33
50 300 37
65 400 37
70 500 34
70 600 32
80 700 36

Table 8.1: Wheat yield data.

Parameter Estimate
β1 1.1329
β2 0.6893
β3 0.6028

Table 8.2: Wheat yield parameter estimates.

Thus,

est. Var( bβ1 ) = s2d11 = 7.3133

est. Var( bβ2 ) = s2d22 = 0.0049

est. Var( bβ3 ) = s2d33 = 0.5660

For H0:β1 = 0 vs H1:β1 6= 0, we havebβ1 − β01q
Var(bβ1) =

1.1329

2.7043
= 0.4189 ∼ t4. (8.74)

Now, a 95% acceptance region for a t4 distribution is −2.776 ≤ t4 ≤ 2.776.
Thus, we fail to reject the null hypothesis.
For H0:β2 = 0 vs H1:β2 6= 0, we havebβ2 − β02q

Var(bβ2) =
0.6893

0.0697
= 9.8965 ∼ t4. (8.75)

and we reject the null hypothesis at the 95% confidence level. In fact, we reject at
the 99.9% confidence level, where the acceptance region is −7.173 ≤ t4 ≤ 7.173.


