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Clues to the cochlear amplifier from

the turtle ear

Robert Fettiplace, Anthony J. Ricci and Carole M. Hackney

In the vertebrate inner ear, sound stimuli are
detected by hair cells of the cochlea via deformation of
their mechanically sensitive hair bundles (Fig. 1).
Although much has been learnt about this process
over the past twenty years, several issues are still

unresolved. One is the molecular identity of the
mechanotransducer channel, a mechanosensitive ion
channel responsible for converting vibrations of the
sensory hair bundles into electrical signals1–3.
Another is the precise mechanism underlying
cochlear amplification, whereby sound-induced
vibrations of the cochlear membranes are boosted by
energy supplied by the hair cells (Fig. 1). This
amplification is necessary to overcome the damping
effects of the cochlear fluids, and is central to
explaining not only the cochlea’s high sensitivity but
also its frequency selectivity, whereby each cell
responds best to a narrow range of sound
frequencies4. A variety of evidence implicates the
outer hair cells as the site of force-generation in the
mammalian cochlea4, and the discovery that these
cells can contract rapidly in response to changes in
membrane potential has raised a possible mechanism
for this process5–7. However, studies on lower

Sound stimuli are detected in the cochlea by vibration of hair bundles on

sensory hair cells, which activates mechanotransducer ion channels and

generates an electrical signal. Remarkably, the process can also work in

reverse with additional force being produced by the ion channels as they open

and close, evoking active movements of the hair bundle. These movements

could supplement the energy of the sound stimuli but to be effective they

would need to be very fast. New measurements in the turtle ear have shown

that such active bundle movements occur with delays of less than a

millisecond, and are triggered by the entry of Ca2++ into the cell via the

mechanotransducer channel. Furthermore, their speed depends on the

frequency to which the hair cell is most sensitive, suggesting that such

movements could be important in cochlear amplification and frequency

discrimination.



vertebrate hair cells have shown that the hair
bundles can make active movements too8–11, but
neither the mechanism nor the role of these
movements is fully understood. It has been proposed
that they might increase auditory sensitivity by
amplifying the hair bundle vibrations to incoming
sounds12,13. Active bundle movements might also be
the origin of otoacoustic emissions14, in which the ear
spontaneously radiates sound energy. The fact that
such emissions occur in all vertebrates studied,
including mammals, might indicate a common
mechanism of hair cell amplification across the
vertebrate kingdom. The active bundle movements
are intimately related to adaptation of the
mechanotransducer channels15. These channels are
permeable to most cations but have a particularly
high selectivity for Ca2+ (Refs 1,2,16,17), which is
important for regulating both adaptation and the

active movements. This review focuses on recent
evidence in support of force-generation by the hair
bundle15, its link to adaptation and its potential role
in cochlear amplification.

Hair bundle structure and mechanics

The hair bundle is composed of between 20 and 300
modified microvilli or stereocilia arranged in rows of
increasing height (Fig. 2). An extracellular matrix of
fine links interconnects the stereocilia18–22 so that
when the tip of the bundle is deflected, each
stereocilium pivots around its base and the ensemble
moves as a whole3,23. One category of links, the tip
links, has been suggested to transmit force to the
mechanotransducer channels18. The exact location of
these channels in relation to the links is still
debatable, but most evidence places them towards the
tips of the stereocilia24,25. An alternative suggestion is
that the channels lie in a contact region just below the
stereociliary tips, a region where short lateral
connections can be seen between the membranes of
adjacent stereocilia26,27. Either way, the
mechanotransducer channels respond to stereociliary
shearing27,28: deflection towards the tallest row of
stereocilia results in opening of the channels and
deflection towards the shortest row results in closing
of the channels1–3.

The compliance of the hair bundle, similar to the
compliance of a spring, represents the amount of
deformation induced by a given force. Motion of the
bundle resulting from the force of the acoustic
stimulus is shaped by the bundle’s compliance, which
has a passive component attributable to the flexibility
of the stereociliary ankles8 and the interstereociliary
connections28. It also has an active component known
as the ‘gating compliance’ linked to the opening and
closing of the transducer channels29–31. Thus,
molecular rearrangements of the channel during
activation can exert force on the bundle via the
interstereociliary connections and, in turn, influence
its motion. Consequently, bundle compliance behaves
in a non-linear way, increasing as the transducer
channels open, reaching a maximum when the
probability of opening of the channels is about 0.5 and
then decreasing again at larger open probabilities29.
An important repercussion of these findings is that
factors influencing channel activation might also
move the hair bundle.

Two components of transducer adaptation

The hair cell is exquisitely sensitive to mechanical
stimuli, with displacements of approximately 100 nm
at the tip of the bundle being sufficient to open all the
transducer channels. In hair cells, as in other sensory
receptors, an adaptation mechanism is required to
maintain the channels within a narrow operating
range and optimize their sensitivity to incoming
stimuli3,32,33. If the bundle is pushed towards its
taller edge, the channels first open, allowing an
influx of K+ and Ca2+ ions, and then almost
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Fig. 1. The twin functions of cochlear hair cells. Reptiles such as the turtle (a) have one type of hair
cell but mammals (b) possess two types, inner hair cells and outer hair cells with different
functions. Sound stimuli vibrate the basilar membrane causing to-and-fro motion of the sensory
hair bundles relative to an overlying gelatinous flap, the tectorial membrane. Red arrows show the
direction of motion for excitation, which bends the hair bundle towards its taller edge and opens
mechanotransducer channels. This allows entry of K+ and Ca2+ ions and depolarizes the hair cell.
Hair cells can also mechanically amplify the sound energy, thus greatly improving cochlear
sensitivity. A ubiquitous amplification mechanism might involve the mechanotransducer channels
generating force as they open and shut, which is transmitted back to the hair bundle to reinforce its
vibration. An additional mechanism exists only in mammals where the outer hair cells contract in
response to stimulation, thus augmenting the passive vibrations of the basilar membrane. The
black arrows denote the direction of force produced in response to excitatory stimuli. The bundle
amplification has not yet been seen in mammals. A single hair cell is shown on the right-hand side
of the figure.



immediately close again. This adaptation
mechanism has been most extensively studied in the
hair cells of lower vertebrates, such as the turtle and
the frog. In turtle auditory hair cells, channel closure
occurs in two stages: a fast adaptation on a sub-
millisecond time scale predominates for low-level
stimuli, with a slower process that extends over tens
of milliseconds appearing for large stimuli34,35

(Fig. 2b). Both components are susceptible to
changes in extracellular Ca2+ or cytoplasmic Ca2+

buffer34–36. Moreover, the fast adaptation rate is
directly proportional to the amount of Ca2+ entering
via the transducer channels, implying that an
elevation in intracellular Ca2+ is the trigger for
channel closure17. Experiments on frog vestibular
hair cells have largely focused on the slow component
of adaptation37,38 but these cells can also exhibit a
fast component9, suggesting that a two-stage
adaptation mechanism is a general feature of hair
cell mechanotransduction. The different balance
between the fast and slow components in turtles and
frogs might be partly as a result of the fact that the
turtle hair cells are auditory and normally respond to
higher frequencies of vibration compared with frog
vestibular hair cells.

In one proposed mechanism for adaptation9,37,38,
the tension in the tip link is adjusted by moving its
upper attachment point along the side of the
stereocilium. The attachment coincides with an
electron-dense patch (Fig. 3) that has been suggested

to contain myosin Iβ (Refs 39,40). Ca2+ influx through
a nearby mechanotransducer channel is postulated to
detach the myosin molecules from the actin core of
the stereocilium, allowing the link’s attachment to
slip. This would reduce the tension on the channels
and close them. However, although a myosin-based
mechanism might regulate bundle position on a slow
time scale, it could not act quickly enough to account
for the fast adaptation. Indeed, the fast adaptation
observed in turtle hair cells is insensitive to inhibitors
of myosin-based motors34. The speed of fast
adaptation probably requires a direct interaction
between Ca2+ and the mechanotransducer channel to
modulate the probability of opening41–43 (Fig. 4). The
sub-millisecond time course of fast adaptation makes
it improbable that this is mediated by enzymatic
pathways such as phosphorylation. Because of the
relationship between bundle compliance and
channel-open probability (the gating compliance),
channel closure following binding of Ca2+ might
produce sufficient force to actively move the hair
bundle.

Bundle movements and amplification

Active hair-bundle movements of between 1 and
100 nm have been described in several species and
can occur spontaneously with amplitudes in excess 
of that expected for Brownian motion8,11,13. Such
movements have also been observed as reactions to
hair bundle displacements with compliant
probes8,9,15,44, and in response to changes in
membrane potential, the effects of which might be
secondary to alteration of Ca2+ influx8,15,45. The
evoked movements fall into two categories with
different time scales matching those of fast and slow
adaptation. One includes fast responses that occur
within a few milliseconds8,15,44 (Fig. 5), the other
embraces slower deflections extending over tens or
hundreds of milliseconds. The slower type of
movement might again involve the myosin-based
motor proposed to regulate tip link tension and thus
be related to slow adaptation38. However, the most
conspicuous movements in turtle hair cells (Fig. 5)
closely follow channel closure associated with fast
adaptation, and can have a time constant as brief as
0.3 milliseconds15. The time course of the fast bundle
movements, similar to those of adaptation, is slowed
by reducing extracellular Ca2+. Both processes might
therefore result from the same mechanism of Ca2+

regulation of the mechanotransducer channels. If
Ca2+ binds directly to the channels, the speed of
adaptation and of the fast bundle movements might
be limited only by the closing rate of the channels,
which is ∼ 0.1 ms in turtle hair cells3. Of the two
kinds of active hair-bundle movements, only the fast
one is fast enough to work on each cycle of the
waveform at the frequencies used by the auditory
system.

Channels that are opened during extrinsic bundle
deflection enable Ca2+ ions to enter and bind to the
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Fig. 2. Mechanosensitivity of an auditory hair cell. (a) Scanning electron micrograph of a hair bundle
on a turtle hair cell, showing the increase in height of the stereocilia across the bundle, the close
apposition of the stereocilia towards their tips and the narrowing at their bases. Scale bar, 1 µm. (b)
Family of mechanotransducer currents recorded from a voltage-clamped turtle hair cell in response to
step displacements of the hair bundle. Positive deflections towards the tallest stereociliary row evoke
an inward transducer current at −80 mV holding potential. Note that for all but the largest stimuli, the
current declines rapidly from its peak to a steady level. Slowing of the time course of decline in the
current for large displacements might be a result of recruitment of a second adaptation mechanism.



channels intracellularly, closing them in a manner
that produces sufficient force to return the bundle
back towards its original resting position. Ca2+ entry
is then reduced, permitting the channels to open
again. This is a negative feedback mechanism, with
the bundle generating force to oppose its initial
deflection. Feedback processes are often encountered
in control of biological systems46 and can provide
both under-damped resonance and amplification,
dictated by the feedback parameters. Thus,
depending on the amount of Ca2+ entering the
stereocilia and the bundle stiffness, oscillations at a
specific frequency might be produced. This
mechanism might underlie the damped oscillatory
transducer currents36 and oscillating hair-bundle
motion8 previously observed in turtle hair cells. Such
oscillations might be important for amplifying the
hair bundle vibrations set up by sound, especially
near threshold. How Ca2+ interacts with the
mechanotransducer channel is unknown, but
theoretical analysis has shown that its feedback
action can explain the resonance in the transducer
current34. Furthermore, other models of hair-bundle
mechanics47,48 have exploited the capacity of
feedback systems to become unstable and create
spontaneous limit-cycle oscillations46. Under such
conditions, the hair bundle would behave in a similar
way to a highly tuned mechanical resonator, not only
accounting for cochlear amplification but also for
phenomena such as otoacoustic emissions.

Frequency selectivity

A fundamental property of the cochlea is its
frequency selectivity: each hair cell responds best to
a narrow range of sound frequencies49. To play a role
in this process, feedback via the mechanotransducer
channels might need to operate at different rates in
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Fig. 3. Interstereociliary connections. (a) Field-emission scanning
electron micrograph21 and (b) transmission electron micrograph27 of
stereocilia from guinea pig cochlear outer hair cells. (c) Diagram of a
pair of stereocilia showing the structures relevant to
mechanotransduction and adaptation. Note the tip links [black arrows
in (a) and (b)], lateral links [white arrowheads in (a) and (b)], the
electron-dense plaque at the upper insertion of the tip link and the
contact region [white square bracket, (b)] between the stereocilia. Scale
bars, 0.1 µm. The stereocilia are filled with actin filaments that flex
where their rootlets enter the actin meshwork of the cuticular plate. The
mechanotransducer channel is thought to be located near the tip of the
stereocilium24,25, and to be opened by force transmitted by the tip link or
by interstereociliary connections in the contact region. The channels
are located in the general area indicated in (c). Myosin Iβ has been
immunolocalized in the stereocilia and might be concentrated in the
electron-dense regions at either end of the tip link39,40. A theory of slow
adaptation38 suggests that the plaque is a ‘myosin motor’ that climbs
the actin filaments to tension the tip links, the activity of the motor
being regulated by binding of Ca2+ ions that enter via
mechanotransducer channels37,38.
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Fig. 4. A scheme for Ca2+ interaction with the mechanotransducer channel. (a) Deflection of the hair
bundle extends the gating spring (G) causing the channel to go from closed (C) to open (O)
configuration. Ca2+ entering the stereocilium through the open channel binds at the inner face of the
channel and shuts it. Note that this generates force by increasing the tension in the gating spring. 
(b) A simple kinetic scheme for the mechanotransducer channel. Force applied to the channel converts
it from closed (C) to open (O), allowing influx of Ca2+, which binds to the channel (OCa) and then
rapidly closes it (CaC). It is assumed that the equilibrium constant K1(x) is much larger than K2(x) so
that the equilibrium for the Ca2+-bound channel is towards the closed state. Other kinetic schemes for
the mechanotransducer channel include extra closed states3, or binding of multiple Ca2+ ions47.



cells tuned to different frequencies. Several factors,
morphological and molecular, could affect the rate of
the feedback. For example, both the maximum
height of the hair bundle and numbers of stereocilia
vary with optimal frequency50–53 and can influence
the bundle’s passive mechanical properties54,55. In
the turtle cochlea, there is also evidence that
adaptation and active bundle movements are faster
in hair cells tuned to higher frequencies (Fig. 6),
which can be partly explained by an increase in the
number of mechanotransducer channels per
stereocilium35. But the properties of individual
channels, such as their Ca2+ permeability or the
speed with which they respond to changes in
internal Ca2+, might also vary36. As yet, the
molecular identity of the mechanotransducer
channels is unknown. However, recent
characterization of Ca2+-activated K+ (BK) channels,
which underlie electrical tuning in lower vertebrate
hair cells, indicates a variation in channel structure
with resonant frequency56–58. Such variation results
in differences in both Ca2+ sensitivity and kinetics
among channel isoforms59,60. Therefore, it would not
be surprising to find multiple variants of the
mechanotransducer channels that are differentially
distributed along the cochlea.

Amplification in the mammalian cochlea

The mammalian cochlea encodes a much wider
frequency range than the auditory organs of lower
vertebrates. It also contains inner and outer hair cells
with distinct roles. Both types of hair cell convert
bundle deflections into receptor potentials but outer
hair cells also have a motor function and can undergo
rapid length changes5–7 that might amplify the
vibrations of the basilar membrane61. This motility is
thought to involve a novel motor protein, recently
identified as prestin62. It has been suggested that
voltage-dependent changes in the shape of the motor
protein, which is present at high density in the lateral
membrane of the hair cell, alter the surface area and
thus the length of the cell. Discovery of the specialized
form of force production by outer hair cells has meant
that less attention has been paid to the stereociliary
bundle as a possible source of mechanical
amplification in mammals. Furthermore, it has
proved difficult to study mechanotransduction in the
adult mammalian cochlea, and there is no evidence so
far for active bundle movements in outer hair cells.
However, recordings in neonatal preparations have
shown that the mechanotransducer currents in
neonatal mammalian hair cells possess properties
similar to those in lower vertebrates, and exhibit both
adaptation63,64 and gating compliance30,65. If the
technical difficulties of measuring transduction in
adult mammalian preparations can be overcome, it is
probable that active bundle movements will be found
there too.

Why have mammals added the extra process of
somatic motility? It might be that the bundle-based
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Fig. 5. Adaptation and hair bundle movements in turtle hair cells. (a) The hair bundle was stimulated
with a fine glass fiber producing an adapting mechanotransducer current (middle) and displacement
of the bundle (bottom). The stiffness of the fibre was less than that of the bundle so the stimulus (top)
approximated a force step of 28 pN. The displacement of the bundle was measured by projecting its
image onto a pair of photodiodes and determining the movement from the change in the
photocurrent8,15. The bundle initially moved in the positive direction, but then recoiled with a time
course identical to that of adaptation of the current. This rapid transient in the displacement record
indicates the active mechanical response. (b) Reducing Ca2+ concentration from 2.8 mM to 50.0 µM

slowed both the current adaptation and the bundle recoil. At the end of the force step, overshoots in
the current and movement were caused by resetting of the adaptation on return to the resting
position. The results show how active bundle motion is linked to the opening and closing of the
mechanotransducer channels.
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Fig. 6. Tonotopic variations of adaptation rate in auditory hair cells. (a) Mechanotransducer
currents from hair cells near the low-frequency end and the high-frequency end of the turtle
cochlea. The currents in the cell tuned to the higher frequency are larger (implying a greater
number of mechanotransducer channels) and adapt more rapidly. The numbers in parentheseis
give the positions of the hair cells, expressed as the functional distance along the cochlea for the
low frequency end. In the turtle, and in other vertebrates, the position of the cell in the cochlea
specifies the sound frequency to which it is most sensitive. (b) The time constant of adaptation for
small bundle deflections in different hair cells is plotted against the fractional distance of each cell
from the low frequency apex end of the cochlea. Note that adaptation is faster in cells tuned to
higher frequencies. In other measurements of bundle motion15 the time course of its recoil during
a force step (Fig. 5) also varied with the frequency to which the hair cell was tuned. Modified, with
permission, from Ref. 49.



mechanism found in lower vertebrates cannot
deliver sufficient force to overcome the viscous
damping at the higher frequencies used by
mammals, and needs to be boosted by larger
movements of the outer hair cells themselves. Some
insight into this might be gained by calculating the
forces generated by the two processes. The peak
force produced by electrically stimulating isolated
outer hair cells has been estimated as up to 100 pN
per millivolt change in membrane potential66,67.
Maximum receptor potentials of 5–10 mV have 
been recorded from outer hair cells68,69, indicating a
force caused by somatic shortening of 1000 pN 
(1 pN is 10–12 Newtons, which is about half the 
force generated by a single muscle myosin II
head70). To calculate the force contributed by the
mechanotransducer channels requires knowledge of
the gating force per channel and the number of
channels. Assuming a gating force65,71 of the order 
of 0.5 pN, and 200 channels per hair cell35, this 
sets an upper limit to the hair bundle force of
100 pN. Thus, the force generated by somatic
contractility could be ten times that caused by 
active hair-bundle motion. However, these

calculations rely upon extrapolations from lower
vertebrate measurements for the number and
properties of mechanotransducer channels. 
They also give no clue as to how efficiently either
force generator influences cochlear
micromechanics4.

In order to determine the contribution of active
bundle movements to cochlear amplification, several
key issues need to be resolved. One is the molecular
nature of the mechanotransducer channel, its
interactions with Ca2+ and whether its characteristics
or numbers vary with position along the cochlea. The
recent cloning of a Drosophila mechanosensitive
channel72 will probably lead us closer to the
identification of a vertebrate homologue in hair cells.
It also remains to be determined whether the active
movements observed in the hair bundles of lower
vertebrates can be detected in mammalian hair cells,
especially in the adult cochlea. Nevertheless, it is
clear from work on the former that the evolutionary
substrate exists for fast mechanical amplification 
by active bundle motion, raising the possibility 
that it might be an important component of the
cochlear amplifier.
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