Sound stimuli are detected in the cochlea by vibration of hair bundles on sensory hair cells, which activates mechanotransducer ion channels and generates an electrical signal. Remarkably, the process can also work in reverse with additional force being produced by the ion channels as they open and close, evoking active movements of the hair bundle. These movements could supplement the energy of the sound stimuli but to be effective they would need to be very fast. New measurements in the turtle ear have shown that such active bundle movements occur with delays of less than a millisecond, and are triggered by the entry of Ca$^{2+}$ into the cell via the mechanotransducer channel. Furthermore, their speed depends on the frequency to which the hair cell is most sensitive, suggesting that such movements could be important in cochlear amplification and frequency discrimination.

In the vertebrate inner ear, sound stimuli are detected by hair cells of the cochlea via deformation of their mechanically sensitive hair bundles (Fig. 1). Although much has been learnt about this process over the past twenty years, several issues are still unresolved. One is the molecular identity of the mechanotransducer channel, a mechanosensitive ion channel responsible for converting vibrations of the sensory hair bundles into electrical signals. Another is the precise mechanism underlying cochlear amplification, whereby sound-induced vibrations of the cochlear membranes are boosted by energy supplied by the hair cells (Fig. 1). This amplification is necessary to overcome the damping effects of the cochlear fluids, and is central to explaining not only the cochlea’s high sensitivity but also its frequency selectivity, whereby each cell responds best to a narrow range of sound frequencies. A variety of evidence implicates the outer hair cells as the site of force-generation in the mammalian cochlea, and the discovery that these cells can contract rapidly in response to changes in membrane potential has raised a possible mechanism for this process. However, studies on lower

Clues to the cochlear amplifier from the turtle ear

Robert Fettiplace, Anthony J. Ricci and Carole M. Hackney

http://tins.trends.com 0166-2236/00/$ – see front matter © 2001 Elsevier Science Ltd. All rights reserved. PII: S0166-2236(00)01740-9
Hair bundles relative to an overlying gelatinous flap, the tectorial membrane. Red arrows show the direction of motion for excitation, which bends the hair bundle towards its taller edge and opens the mechanotransducer channels. This allows entry of K+ ions and depolarizes the hair cell. Hair cells can also mechanically amplify the sound energy, thus greatly improving cochlear sensitivity. A ubiquitous amplification mechanism might involve the mechanotransducer channels generating force as they open and shut, which is transmitted back to the hair bundle to reinforce its vibration. An additional mechanism exists only in mammals where the outer hair cells contract in response to excitatory stimuli, generating force as they open and shut, which is transmitted back to the hair bundle to reinforce its vibration. An additional mechanism exists only in mammals where the outer hair cells contract in response to excitatory stimuli, generating force as they open and shut, which is transmitted back to the hair bundle to reinforce its vibration.

Vertebrate hair cells have shown that the hair bundles can make active movements too, but neither the mechanism nor the role of these movements is fully understood. It has been proposed that they might increase auditory sensitivity by amplifying the hair bundle vibrations to incoming sounds. Active bundle movements might also be the origin of otoacoustic emissions, in which the ear spontaneously radiates sound energy. The fact that such emissions occur in all vertebrates studied, including mammals, might indicate a common mechanism of hair cell amplification across the vertebrate kingdom. The active bundle movements are intimately related to adaptation of the mechanotransducer channels. These channels are permeable to most cations but have a particularly high selectivity for Ca2+ (Refs 1,2,16,17), which is important for regulating both adaptation and the active movements. This review focuses on recent evidence in support of force-generation by the hair bundle, its link to adaptation and its potential role in cochlear amplification.

Hair bundle structure and mechanics

The hair bundle is composed of between 20 and 300 modified microvilli or stereocilia arranged in rows of increasing height (Fig. 2). An extracellular matrix of fine links interconnects the stereocilia so that when the tip of the bundle is deflected, each stereocilium pivots around its base and the ensemble moves as a whole. One category of links, the tip links, has been suggested to transmit force to the mechanotransducer channels. The exact location of these channels in relation to the links is still debatable, but most evidence places them towards the tips of the stereocilia. An alternative suggestion is that the channel lies in a contact region just below the stereociliary tips, a region where short lateral connections can be seen between the membranes of adjacent stereocilia. Either way, the mechanotransducer channels respond to stereociliary shearing, deflection towards the tallest row of stereocilia results in opening of the channels and deflection towards the shortest row results in closing of the channels.

The compliance of the hair bundle, similar to the compliance of a spring, represents the amount of deformation induced by a given force. Motion of the bundle resulting from the force of the acoustic stimulus is shaped by the bundle's compliance, which has a passive component attributable to the flexibility of the stereociliary ankles and the interstereociliary connections. It also has an active component known as the 'gating compliance' linked to the opening and closing of the transducer channels. Thus, molecular rearrangements of the channel during activation can exert force on the bundle via the interstereociliary connections and, in turn, influence its motion. Consequently, bundle compliance behaves in a non-linear way, increasing as the transducer channel open, reaching a maximum when the probability of opening of the channels is about 0.5 and then decreasing again at larger open probabilities. An important repercussion of these findings is that factors influencing channel activation might also move the hair bundle.

Two components of transducer adaptation

The hair cell is exquisitely sensitive to mechanical stimuli, with displacements of approximately 100 nm at the tip of the bundle being sufficient to open all the transducer channels. In hair cells, as in other sensory receptors, an adaptation mechanism is required to maintain the channels within a narrow operating range and optimize their sensitivity to incoming stimuli. If the bundle is pushed towards its taller edge, the channels first open, allowing an influx of K+ and Ca2+ ions, and then almost...
Family of mechanotransducer currents recorded from a voltage-clamped turtle hair cell in response to apposition of the stereocilia towards their tips and the narrowing at their bases. Scale bar on a turtle hair cell, showing the increase in height of the stereocilia across the bundle, the close approach of the stereocilia towards their tips and the narrowing at their bases. Scale bar, 1 μm. (b) Mechanosensitivity of an auditory hair cell. (a) Scanning electron micrograph of a hair bundle on a turtle hair cell, showing the increase in height of the stereocilia across the bundle, the close approach of the stereocilia towards their tips and the narrowing at their bases. Scale bar, 1 μm. (b) Family of mechanotransducer currents recorded from a voltage-clamped turtle hair cell in response to step displacements of the hair bundle. Positive deflections towards the tallest stereociliary row evoke a transducer current for large displacements. The fast adaptation rate is closely followed by a slow process that extends over tens or hundreds of milliseconds. The evoked movements fall into two categories with different time scales: fast responses that occur within a few milliseconds and slow responses that occur over tens of milliseconds. The slower type of movement might again involve the myosin-based motor proposed to regulate tip link tension and thus secondary to adaptation of Ca2+ influx. The evoked movements fall into two categories with different time scales matching those of fast and slow adaptation. One includes fast responses that occur within a few milliseconds, the other embraces slower deflections extending over tens or hundreds of milliseconds. The slower type of movement might again involve the myosin-based motor proposed to regulate tip link tension and thus secondary to adaptation of Ca2+ influx. The evoked movements fall into two categories with different time scales matching those of fast and slow adaptation. One includes fast responses that occur within a few milliseconds, the other embraces slower deflections extending over tens or hundreds of milliseconds. The slower type of movement might again involve the myosin-based motor proposed to regulate tip link tension and thus secondary to adaptation of Ca2+ influx. The evoked movements fall into two categories with different time scales matching those of fast and slow adaptation. One includes fast responses that occur within a few milliseconds, the other embraces slower deflections extending over tens or hundreds of milliseconds. The slower type of movement might again involve the myosin-based motor proposed to regulate tip link tension and thus secondary to adaptation of Ca2+ influx. The evoked movements fall into two categories with different time scales matching those of fast and slow adaptation. One includes fast responses that occur within a few milliseconds, the other embraces slower deflections extending over tens or hundreds of milliseconds. The slower type of movement might again involve the myosin-based motor proposed to regulate tip link tension and thus secondary to adaptation of Ca2+ influx.
channels intracellularly, closing them in a manner that produces sufficient force to return the bundle back towards its original resting position. Ca²⁺ entry is then reduced, permitting the channels to open again. This is a negative feedback mechanism, with the bundle generating force to oppose its initial deflection. Feedback processes are often encountered in control of biological systems and can provide both under-damped resonance and amplification, dictated by the feedback parameters. Thus, depending on the amount of Ca²⁺ entering the stereocilia and the bundle stiffness, oscillations at a specific frequency might be produced. This mechanism might underlie the damped oscillatory transducer currents and oscillating hair-bundle motion previously observed in turtle hair cells. Such oscillations might be important for amplifying the hair bundle vibrations set up by sound, especially near threshold. How Ca²⁺ interacts with the mechanotransducer channel is unknown, but theoretical analysis has shown that its feedback action can explain the resonance in the transducer current.

Frequency selectivity

A fundamental property of the cochlea is its frequency selectivity: each hair cell responds best to a narrow range of sound frequencies. To play a role in this process, feedback via the mechanotransducer channels might need to operate at different rates in

Fig. 3. Interstereociliary connections. (a) Field-emission scanning electron micrograph and (b) transmission electron micrograph of stereocilia from guinea pig cochlear outer hair cells. (c) Diagram of a pair of stereocilia showing the structures relevant to mechanotransduction and adaptation. Note the tip links (black arrows in (a) and (b)), lateral links (white arrowheads in (a) and (b)), the electron-dense plaque at the upper insertion of the tip link and the contact region (white square bracket, (b)) between the stereocilia. Scale bars, 0.1 µm. The stereocilia are filled with actin filaments that flex where their rootlets enter the actin meshwork of the cuticular plate. The mechanotransducer channel is thought to be located near the tip of the stereocilium, and to be opened by force transmitted by the tip link or by interstereociliary connections in the contact region. The channels are located in the general area indicated in (c). Myosin II has been immunolocalized in the stereocilia and might be concentrated in the electron-dense regions at either end of the tip link. A theory of slow adaptation suggests that the plaque is a ‘myosin motor’ that climbs the actin filaments to tension the tip links, the activity of the motor being regulated by binding of Ca²⁺ ions that enter via mechanotransducer channels.

Fig. 4. A scheme for Ca²⁺ interaction with the mechanotransducer channel. (a) Deflection of the hair bundle extends the gating spring (G) causing the channel to go from closed (C) to open (O) configuration. Ca²⁺ entering the stereocilium through the open channel binds at the inner face of the channel and shuts it. Note that this generates force by increasing the tension in the gating spring. (b) A simple kinetic scheme for the mechanotransducer channel. Force applied to the channel converts it from closed (C) to open (O), allowing influx of Ca²⁺, which binds to the channel (OCa) and then rapidly closes it (CaC). It is assumed that the equilibrium constant K₁(x) is much larger than K₂(x) so that the equilibrium for the Ca²⁺-bound channel is towards the closed state. Other kinetic schemes for the mechanotransducer channel include extra closed states, or binding of multiple Ca²⁺ ions.
Fig. 5. Adaptation and hair bundle movements in turtle hair cells. (a) The hair bundle was stimulated with a fine glass fiber producing an adapting mechanotransducer current (middle) and displacement of the bundle (bottom). The stiffness of the fiber was less than that of the bundle so the stimulus (top) approximated a force step of 28 pN. The displacement of the bundle was measured by projecting its image onto a pair of photodiodes and determining the movement from the change in the photocurrent. The bundle initially moved in the positive direction, but then recoiled with a time course identical to that of adaptation of the current. This rapid transient in the displacement record indicates the active mechanical response. (b) Reducing Ca²⁺ concentration from 2.8 mM to 50.0 µM slowed both the current adaptation and the bundle recoil. At the end of the force step, overshoots in the current and movement were caused by resetting of the adaptation on return to the resting position. The results show how active bundle motion is linked to the opening and closing of the mechanotransducer channels.

Fig. 6. Tonotopic variations of adaptation rate in auditory hair cells. (a) Mechanotransducer currents from hair cells near the low-frequency end and the high-frequency end of the turtle cochlea. The currents in the cell tuned to the higher frequency were larger (implying a greater number of mechanotransducer channels) and adapt more rapidly. The numbers in parentheses give the positions of the hair cells, expressed as the functional distance along the cochlea for the low frequency end. In the turtle, and in other vertebrates, the position of the cell in the cochlea specifies the sound frequency to which it is most sensitive. (b) The time constant of adaptation for low frequency end. In the turtle cochlea, there is also evidence that adaptation and active bundle movements are faster in hair cells tuned to high frequencies (Fig. 6), which can be partly explained by an increase in the number of mechanotransducer channels per stereocilium. But the properties of individual channels, such as their Ca²⁺ permeability or the speed with which they respond to changes in internal Ca²⁺, might also vary. As yet, the molecular identity of the mechanotransducer channels is unknown. However, recent characterization of Ca²⁺-activated K⁺ (BK) channels, which underlie electrical tuning in lower vertebrate hair cells, indicates a variation in channel structure with resonant frequency. Such variation results in differences in both Ca²⁺ sensitivity and kinetics among channel isoforms. Therefore, it would not be surprising to find multiple variants of the mechanotransducer channels that are differentially distributed along the cochlea.

Amplification in the mammalian cochlea

The mammalian cochlea encodes a much wider frequency range than the auditory organs of lower vertebrates. It also contains inner and outer hair cells with distinct roles. Both types of hair cell convert bundle deflections into receptor potentials but outer hair cells also have a motor function and can undergo rapid length changes that might amplify the vibrations of the basilar membrane. This motility is thought to involve a novel motor protein, recently identified as prestin. It has been suggested that voltage-dependent changes in the shape of the motor protein, which is present at high density in the lateral membrane of the hair cell, alter the surface area and thus the length of the cell. Discovery of the specialized form of force production by outer hair cells has meant that less attention has been paid to the stereociliary bundle as a possible source of mechanical amplification in mammals. Furthermore, it has proved difficult to study mechanotransduction in the adult mammalian cochlea, and there is no evidence so far for active bundle movements in outer hair cells. However, recordings in neonatal preparations have shown that the mechanotransducer currents in neonatal mammalian hair cells possess properties similar to those in lower vertebrates, and exhibit both adaptation and gating compliance. If the technical difficulties of measuring transduction in adult mammalian preparations can be overcome, it is probable that active bundle movements will be found there too.

Why have mammals added the extra process of somatic motility? It might be that the bundle-based
mechanism found in lower vertebrates cannot deliver sufficient force to overcome the viscous damping at the higher frequencies used by mammals, and needs to be boosted by larger movements of the outer hair cells themselves. Some insight into this might be gained by calculating the forces generated by the two processes. The peak force produced by electrically stimulating isolated outer hair cells has been estimated as up to 100 pN per millivolt change in membrane potential [66,67]. Maximum receptor potentials of 5–10 mV have been recorded from outer hair cells [68,69], indicating a force caused by somatic shortening of 1000 pN (1 pN is 10–12 Newtons, which is about half the force generated by a single muscle myosin II head [70]). To calculate the force contributed by the mechanotransducer channels requires knowledge of the gating force per channel and the number of channels. Assuming a gating force [71] of the order of 0.5 pN, and 200 channels per hair cell [72], this sets an upper limit to the hair bundle force of 100 pN. Thus, the force generated by somatic contractility could be ten times that caused by active hair-bundle motion. However, these calculations rely upon extrapolations from lower vertebrate measurements for the number and properties of mechanotransducer channels. They also give no due as to how efficiently either force generator influences cochlear micromechanics.

In order to determine the contribution of active bundle movements to cochlear amplification, several key issues need to be resolved. One is the molecular nature of the mechanotransducer channel, its interactions with Ca2+ and whether its characteristics or numbers vary with position along the cochlea. The recent cloning of a Drosophila mechanosensitive channel [72] will probably lead us closer to the identification of a vertebrate homologue in hair cells. It also remains to be determined whether the active movements observed in the hair bundles of lower vertebrates can be detected in mammalian hair cells, especially in the adult cochlea. Nevertheless, it is clear from work on the former that the evolutionary substrate exists for fast mechanical amplification by active bundle motion, raising the possibility that it might be an important component of the cochlear amplifier.

Acknowledgements
The authors’ research was supported by NIH grants DC01362 to RF and DC 03896 to AJR, and grants from the Wellcome Trust and Deafness to CMH. We thank A. Crawford who participated in the experiment in Fig. 5, D.N. Furness and M.G. Evans for their comments on the manuscript, and C. Dizak for her help with the illustrations.

References
1 Corey, D.P. and Hudspeth, A.J. (1979) Ionic basis of the receptor potential in a vertebrate hair cell. Nature 281, 675–677
3 Crawford, A.C. et al. (1989) Activation and adaptation of mechanotransduction currents in turtle hair cells. J. Physiol. 409, 405–434
34 Wu, Y-C. et al. (1999) Two components of transducer adaptation in auditory hair cells. J. Neurophysiol. 82, 2171–2181
42 Jaramillo, F. et al. (1990) Calcium ions promote rapid mechanically evoked movements of hair bundles. In The Mechanics and Biophysics of Hearing (Dallam, P. et al., eds), pp. 26–33, Springer Verlag
46 Murray, J.D. (1989) Mathematical Biology, Springer Verlag
51 Tintley, L.G. and Saunders, J.C. (1983) Actin filaments, stereocilia and hair cells of the bird cochlea. I. Length, width and distribution of stereocilia on each hair cell are related to the position of the hair cell on the cochlea. J. Cell Biol. 96, 807–821
53 Hackney, C.M. et al. (1993) The functional morphology of stereociliary bundles on turtle cochlear hair cells. Hear. Res. 69, 163–175
57 Rosenblatt, K.P. et al. (1997) Distribution of Ca2+-activated K+ channel isoforms along the tonotopic gradient of the chick cochlea. Neuron 19, 1061–1075
64 Hoyt, J.R. et al. (1997) Mechano-electrical transduction and adaptation in hair cells of the mouse utricle, a low frequency vestibular organ. J. Neurosci. 15, 8739–8748

Calling all personal subscribers!

Remember: as an individual subscriber to Trends in Neurosciences, you automatically receive **FREE online access**!

Just follow this simple step-by-step guide...

1. Go to www.trends.com
2. Go to ‘Individual Print Subscribers’ section and click 'claim online access'.
3. Go to the journal list and click ‘Trends in Neurosciences’.
4. Enter your subscription key (on the address label of your print copy that arrives through the post).
5. Click ‘Submit’ and you’re in!

http://tins.trends.com