STABILIZED FINITE ELEMENT METHODS FOR INCOMPRESSIBLE FLOWS WITH EMPHASIS ON MOVING BOUNDARIES AND INTERFACES

A THESIS SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL OF THE UNIVERSITY OF MINNESOTA

BY

Marek Behr

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

October 1992

Copyright \bigodot 1992 by Marek Behr

Abstract

Two finite element formulations for incompressible fluid dynamics are presented. The space-time velocity-pressure formulation is used for flow problems involving moving boundaries and interfaces. The formulation is based on a time-discontinuous Galerkin method, supplemented with least-squares-type stabilization terms. The discussion centers on the application of the method to various problems with deforming domains. In particular, the formulation is employed to simulate three-dimensional sloshing in a storage tank subjected to external vibrations.

The stress-velocity-pressure formulation is developed, essentially for viscoelastic flows. Treatment of stress as a separate unknown allows for inclusion of complex constitutive relations. Least-squares-type stabilization terms provide, once more, robustness to otherwise potentially unstable formulation. The method is first tested on Newtonian fluid flows past a circular cylinder in two dimensions. Then, by using simple viscoelastic constitutive model, the formulation is applied to a standard test problem.

The strategies for the solution of large systems of equations arising from the finite element discretization of the above formulations are also discussed. Particular emphasis is placed on iterative methods and the implementations on massively parallel supercomputers, paving the way for solving very large-scale practical problems, including those in three dimensions.

Acknowledgments

This work is a result of four long years at the University of Minnesota, filled with joy of recreating a miniature copy of the physical world on a modest desktop. For that copy to bear even the slightest resemblance to the original, a large amount of guidance from my advisor Tayfun Tezduyar was clearly necessary. He shared his extensive knowledge and insight in all matters related to the finite element analysis with remarkable generosity. Equally welcome was the help and time he was willing to offer in many other aspects of life of his graduate students.

To the faculty of Aerospace Engineering and Mechanics Department, and especially to Professors Abraham Berman, Jack Moran, Thomas Lundgren, Roger Fosdick and Patarasp Sethna, I am indebted for introducing me to their fields of research. My gratitude goes also to Professors David Yuen, Jeffrey Derby and Henryk Stolarski who devoted their time to participate in my preliminary and final examining committees.

I would like to thank my fellow graduate students - James Liou, Deepak Ganjoo, Sanjay Mittal, Jay Le Beau, Steve Ray, Andrew Johnson, Shahrouz Aliabadi and Vinay Kalro for the many helpful discussions and arguments, and Dawn Hastreiter for much needed help with visualization tasks.

Application of the concepts contained in this thesis would be impossible without the facilities and support staff at the Minnesota Supercomputer Center and the Army High Performance Computing Research Center in Minneapolis, and the assistance from Thinking Machines Corporation, particularly John Kennedy.

My family and friends have supported me in these demanding years, not allowing me to sink too deeply into the alternate universe.

List of Figures

3.1	Numerical methods applicable to problems involving deforming do-	
	mains: author's decision tree (see text for explanation of terms)	11
3.2	Space-time discretization: concept of a space-time slab	14
3.3	Space-time discretization: deformed element	16
3.4	Mesh moving options at the free surface: prescribed direction (left),	
	normal direction (center) and local velocity direction (right)	22
3.5	Mesh moving options: movement with no remeshing	23
3.6	Mesh moving options: movement with discrete remeshing	24
3.7	Mesh moving options: movement with continuous remeshing	26
3.8	Fountain flow: domain description.	26
3.9	Fountain flow: finite element mesh at $t = 0.0, 1.0$ (top row), $t = 2.0, 3.0$	
	(middle row) and $t = 4.0, 5.0$ (bottom row).	28
3.10	Fountain flow: finite element mesh at $t = 6.0.$	29
3.11	Fountain flow: pressure field at $t = 0.0, 1.0$ (top row), $t = 2.0, 3.0$	
	(middle row) and $t = 4.0, 5.0$ (bottom row).	30
3.12	Fountain flow: pressure field at $t = 6.0.$	31
3.13	Parallel implementation: element-level (left) and equation-level (right)	
	data storage modes	37
4.1	Interpolation sets: bi-linear stress sub-elements, bi-quadratic velocity	
	element and bi-linear pressure element of Marchal and Crochet	44

4.2	Interpolation sets: discontinuous quadratic stress element, bi-quadra-	
	tic velocity element and discontinuous linear pressure element of Fortin	
	and Fortin.	44
4.3	Interpolation sets: equal-order bi-linear stress, velocity and pressure	
	element admissible by the stabilized formulation.	45
4.4	Strain stabilization: streamwise velocity for the "stick-slip" problem.	46
5.1	Typical finite element matrix: location of non-zero entries	50
5.2	Typical finite element matrix: skyline profile	51
5.3	Finite element matrix for an unstructured grid: skyline profile before	
	reordering	52
5.4	Finite element matrix for an unstructured grid: skyline profile after	
	reordering	53
6.1	Horizontally oscillating tank: domain description	62
6.2	Horizontally excited tank: time history of the wave height at the $x = 0$	
	wall	65
6.3	Horizontally excited tank: time history of the wave height at the $x =$	
	W wall	65
6.4	Horizontally excited tank: finite element mesh at $t = 314.77, 316.06$	
	(top row), $t = 317.34, 318.63$ (middle row), and $t = 319.91, 321.20$	
	(bottom row). \ldots	66
6.5	Horizontally excited tank: velocity field at $t = 314.77, 316.06$ (top	
	row), $t = 317.34, 318.63$ (middle row), and $t = 319.91, 321.20$ (bottom	
	row)	67
6.6	Vertically excited tank: time history of the wave height at the $(x, y) =$	
	(0,0) corner	72
6.7	Vertically excited tank: time history of the wave height at the $(x, y) =$	
	(W,0) corner.	72
6.8	Vertically excited tank: time history of the wave height at the $(x, y) =$	
	(0,H) corner.	73

6.9	Vertically excited tank: time history of the wave height at the $(x, y) =$	
	(W,H) corner	73
6.10	Vertically excited tank: time history of the wave height at point A1	74
6.11	Vertically excited tank: time history of the wave height at point A2	74
6.12	Vertically excited tank: free surface view and isolines at $t = 13.74$,	
	14.20, and 14.67 (from top to bottom). \ldots \ldots \ldots \ldots	75
6.13	Vertically excited tank: free surface view and isolines at $t = 15.13$,	
	15.60, and 16.06 (from top to bottom). \ldots \ldots \ldots \ldots	76
6.14	Vertically excited tank: free surface view and isolines at $t = 16.52$,	
	16.99, and 17.45 (from top to bottom). \ldots \ldots \ldots \ldots	77
6.15	Vertically excited tank: free surface view and isolines at $t = 71.29$,	
	71.76, and 72.22 (from top to bottom). \ldots \ldots \ldots	78
6.16	Vertically excited tank: free surface view and isolines at $t = 72.69$,	
	73.15, and 73.61 (from top to bottom). \ldots \ldots \ldots \ldots	79
6.17	Vertically excited tank: free surface view and isolines at $t = 74.08$,	
	74.54, and 75.00 (from top to bottom). \ldots \ldots \ldots	80
6.18	Flow past a circular cylinder: domain description	82
6.19	Flow past a circular cylinder: finite element mesh	82
6.20	Flow past a circular cylinder: extended finite element mesh. $\ . \ . \ .$	83
6.21	Flow past a circular cylinder at Reynolds number 1,000: vorticity field	
	at $t = 0, 25, 50, 75, 100, 125, 150$ and 175	85
6.22	Flow past a circular cylinder at Reynolds number 1,000: vorticity field	
	at $t = 221.7, 223.6, 225.9, and 227.7, \ldots \ldots \ldots \ldots \ldots$	86
6.23	Flow past a circular cylinder at Reynolds number 1,000: time history	
	of the drag coefficient. \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots	87
6.24	Flow past a circular cylinder at Reynolds number 1,000: time history	
	of the lift coefficient.	87
6.25	Flow past a circular cylinder at Reynolds number 2,000: vorticity field	
	at $t = 10, 20, 30, 40, 50, 60$ (left column), 70, 80, 90, 100, 110, and	
	120 (right column). \ldots	89

6.26	Flow past a circular cylinder at Reynolds number 2,000: vorticity field	
	at $t = 130, 140, 150, 160, 170, 180$ (left column), 190, 200, 210, 220,	
	230, and 240 (right column)	90
6.27	Flow past a circular cylinder at Reynolds number 2,000: time history	
	of the drag coefficient.	91
6.28	Flow past a circular cylinder at Reynolds number 2,000: time history	
	of the lift coefficient.	91
6.29	Flow past a circular cylinder at Reynolds number 4,000: vorticity field	
	at $t = 10, 20, 30, 40, 50, 60$ (left column), 70, 80, 90, 100, 110, and	
	120 (right column)	93
6.30	Flow past a circular cylinder at Reynolds number 4,000: vorticity field	
	at $t = 130, 140, 150$ (left column), 160, 170 and 180 (right column).	94
6.31	Flow past a circular cylinder at Reynolds number 4,000: time history	
	of the drag coefficient.	95
6.32	Flow past a circular cylinder at Reynolds number 4,000: time history	
	of the lift coefficient.	96
6.33	Flow past a circular cylinder at Reynolds number 10,000: vorticity	
	field at $t = 50, 55, 60, \text{ and } 65. \dots \dots$	98
6.34	Flow past a circular cylinder at Reynolds number 10,000: time history	
	of the drag coefficient.	99
6.35	Flow past a circular cylinder at Reynolds number 10,000: time history	
	of the lift coefficient.	99
6.36	Contraction of a viscoelastic fluid: domain description	100
6.37	Contraction of a viscoelastic fluid: finite element mesh	101
6.38	Contraction of a viscoelastic fluid: $De = 0.0$ case	103
6.39	Contraction of a viscoelastic fluid: $De = 0.8$ case	104
6.40	Contraction of a viscoelastic fluid: $De = 1.6$ case	105
6.41	Contraction of a viscoelastic fluid: $De = 3.2$ case	106
6.42	Contraction of a viscoelastic fluid: \mathbf{T}_{1xx} profiles along the $y = 3.0$ line	
	for (from top to bottom) $De = 0.0$, $De = 0.8$, $De = 1.6$ and $De = 3.2$.	107

List of Tables

6.1	Horizontally excited tank: parameters	63
6.2	Vertically excited tank: parameters	69

List of Boxes

5.1	GMRES algorithm:	$\operatorname{control}\operatorname{flow}\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots$	54
5.2	GMRES algorithm:	solution of the reduced system $\ldots \ldots \ldots$	55
5.3	GMRES algorithm:	modified control flow	57

Contents

A	bstra	nct	ii
A	ckno	wledgments	iii
Li	st of	Figures	iv
Li	st of	Tables	\mathbf{v}
\mathbf{Li}	st of	Boxes	vi
1	Inti	roduction	1
	1.1	Overview	3
2	\mathbf{Pro}	blem Statement	5
	2.1	Equations of Motion for Incompressible Fluid Flow	5
	2.2	Constitutive Relations	7
3	Spa	ce-Time Velocity-Pressure Formulation	10
	3.1	Background	10
	3.2	Variational Formulation	14
	3.3	Stabilization Details	17
		3.3.1 Parameter Design	19
		3.3.2 Low Order Elements	21
	3.4	Moving Boundary Treatment	22

		3.4.1	Mesh Moving Options	23
		3.4.2	Surface Tension	32
	3.5	Matrix	x Form	32
	3.6	Paralle	el Implementation	36
4	Stre	ess-Vel	ocity-Pressure Formulation	39
	4.1	Backgr	round	39
	4.2	Variat	ional Formulation	41
	4.3	Stabili	ization Details	43
		4.3.1	Parameter Design	47
5	Solu	ution N	Aethods	48
	5.1	Direct	Solution Techniques	48
	5.2	Iterati	ve Solution Techniques	52
		5.2.1	GMRES Algorithm	53
		5.2.2	Preconditioning	58
	5.3	Paralle	el Implementation	59
6	Nu	merical	l Examples	61
	6.1	Sloshir	ng in a Rectangular Tank	61
		6.1.1	Horizontal excitation	61
		6.1.2	Vertical excitation	68
	6.2	Flows	Past a Circular Cylinder	81
		6.2.1	Reynolds number 1,000	84
		6.2.2	Reynolds number 2,000	88
		6.2.3	Reynolds number $4,000 \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	92
		6.2.4	Reynolds number 10,000 \ldots	95
	6.3	Contra	action of a Viscoelastic Fluid	100
7	Cor	nclusion	ns	108
	7.1	Future	e Research Directions	110

Bibliography

112