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2 The Chandrasekhar Mass Limit

For the non-relativistic mass-radius relations, in principle the star can be
infinitely massive and arbitrarily small. What happens as Mwd increases?

Relativistic effects limit the mass a white dwarf can possess. The equation of
state P ∝ n

5/3
e in Eq. (7) is no longer viable. We can use the pressure integral

to determine that P = nepv/3 for v ≤ c . Asserting that ∆x ∼ n
−1/3
e , we

can use Heisenberg’s uncertainty principle to establish

p ∼ h̄
∆x

≈ h̄n1/3
e . (10)

This can be arbitrarily high. The deduced non-relativistic speed would be
v = p/me ≈ h̄n1/3

e /me , leading to the equation of state in Eq. (7).

• When the electron density exceeds around (mec/h̄)3 (the inverse of the
cube of the Compton wavelength), the degenerate electrons are relativistic,
and we set v ∼ c . It then follows that

P =
1
3
nepFc =

(3π2)1/3

4
h̄c n4/3

e , (11)

a truly relativistic equation of state. For µc = A/Z as the mean molecular
weight of the WD core, we can write this in polytropic form:

P = K ρΓ , K =
(3π2)1/3

4
h̄c

(µcmp)
4/3 , (12)

with Γ = 4/3 . K is now specified for the relativistic case ne
>∼ λ–−3

C only. We
can ascertain the general pressure scale, noting that for hydrogen, ρ ∼ 106 g
cm−3 gives ne ∼ 6× 1029 cm3. Accordingly,

P =
1.23× 1023

µ4/3
c

(
ρ

106 g cm−3

)4/3

dyne cm−2 . (13)

This is a bit lower than the scale for the non-relativistic degenerate electron
gas, implying that the relativistic EOS only arises in white dwarfs at densities
a fair bit higher than ρ ∼ 106 g cm−3, i.e. generally in the stellar interior.
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The gravitational pressure GM2/R4 in Eq. (1) intrinsically scales as M2/3 ρ4/3

also (since R ∝ (M/ρ)1/3) . Hence balance can only be achieved if the degen-
eracy pressure is sufficiently great, or equivalently if the white dwarf mass is
sufficiently small. This leads to

Mwd
<∼ MCh ∼

(
Z
Amp

)2 (
h̄c
G

)3/2

,

(14)

or an exact result of MCh = 1.44M� . This is the famous Chandrasekhar
mass limit of white dwarfs, discovered by Chandrasekhar in 1931. It as-
sumes Z/A = 0.5 for C+O, and is independent of the electron mass.

Plot: White Dwarf Mass and Radius Dependence on Density

∗ Note that (h̄c/G)1/2 ≈ 2.18× 10−5 g is the Planck mass.

• This fundamental mass can be increased somewhat by permitting the star
to rotate as a Maclaurin spheroid: angular momentum provides additional
support against the pull of gravity.

Plot: Rotational Increase of White Dwarf Mass Limit

• Note also that magnetic fields can increase the buoyancy of outer layers of
white dwarfs by a few percent, although not leading to appreciable increases
in masses. WD fields can be measured via the Zeeman effect on hydrogen
line splitting and also frequency shift (when B >∼ 1 MGauss).

∗ Observations of this are easiest in white dwarfs of stronger magnetiza-
tion, leading to a population range of 104 <∼ B <∼ 109 Gauss for 600 WDs
in the Sloan Digital Sky Survey (SDSS). The highest of these are larger
than flux freezing arguments indicate, suggesting that some dynamo action
in enhancing B is at play during dwarf formation.

Plot: White Dwarf Magnetic Fields
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White dwarf mass and radius 
dependence on mass density rc

• Dependence of stellar mass M and radius R on central density rc.

Rwd(rc)

Mwd(rc)

log10rc106g cm-3

104km

Mch=1.44M⦿

rc-1/6

rc-1/3rc1/2



Rotational increase of White Dwarf Mass 
beyond the Chandrasekhar Limit


•  Mass increase of Chandrasekhar white dwarfs that are Maclaurin spheroids of oblateness 
eccentricity e, that is uniquely coupled to the rotation parameter  Ω/[2πGρ]1/2 . 


•  Only eccentricities less than e=0.8216 (blue dot) are secularly stable (heavy curve), and 
this ultimately limits the mass enhancement to 2.45M! for a C/O white dwarf.


M/M! 



White Dwarf Magnetic Fields


•  Left panel: Optical spectra for six WDs with Hα and Hβ lines split by the Zeeman effect, 
which is used to measure B.  Curves are wavelength variations of split lines as a function 
of field strength (right axis). Fig. 1 from Vanlandingham et al. (2005, AJ 130, 734).


•  Right panel: Magnetic field distribution of ~600 magnetic white dwarfs in the Sloan 
Digital Sky Survey (SDSS).  Black histogram is for isolated WDs, and blue is for polars. 
Fig. 8 from Ferrario, de Martino & Gaensicke (2015, SSRv 191, 111). 




3 White Dwarf Cooling

Because there is no normal thermonuclear burning in their interiors, white
dwarfs essentially cool via surface thermal radiation without altering their C & O,

Sec. 16.5radius; the hydrostatic balance is not altered during their luminous lifetimes.

In conventional thermonuclear reactions, the thermal energy of the gas over-
comes nuclear Coulomb repulsions via quantum tunneling to seed nuclear
transitions that are predominantly exothermic. This is true for main se-
quence stars, and for primordial nucleosynthesis.

• In condensed, white dwarf interiors, the finite value of the zero-point Fermi
energy εF at T ≈ 0 can also permit nuclear reactions; these are termed
pyconuclear reactions, and their burning rate is slow.

∗ derived from the Greek word pyknos, which means dense.

∗ an example is the familiar hydrogen fusion reaction p+p→ D+e+ +ν .

In the layers below the nondegenerate photosphere and crust, heat is trans-
ported by electron conduction, since such conductivity is high when the
electrons are degenerate. The efficiency of this is high, so that the stellar
interior is effectively isothermal. [Sketch this.]

• Convection is not important in white dwarfs. The outer non-degenerate
layers are in “radiative equilibrium,” with energy flux mediated by pho-
ton diffusion instead of electron conduction. The governing heat transport
equation is

L = −4πr2 c
3κρ

d
dr

(
aT 4

)
. (15)

Here κ(r) is the opacity, in units of cm2 g−1, of the outer layers. The
quantity 1/κρ is an estimate of the diffusive mean free path. At typical white
dwarf near-surface temperatures, opacity is governed by Compton scattering,
photoelectric/ionization events and bremsstrahlung. The photo-ionization
contribution is dominant, and so one can adopt Kramer’s opacity

κ ∝ κ0ρ T
−7/2 , (16)
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to describe the diffusion. The temperature dependence traces the rough fre-
quency dependence of the photo-ionization cross sections. Kramer’s opac-
ity is similar to the Rosseland mean opacity.

Using the Stefan-Boltzmann law, the heat transport equation is readily con-
verted into an equation for the temperature gradient:

dT
dr

= − 3
4ac

κρ
T 3

L
4πr2 . (17)

As temperature declines outward from the degeneracy interface, the rate
of decline drops precipitously with radius. Accordingly, the non-degenerate
surface layers are extremely thin, with a large mean temperature gradient.

The radial gradient of the blackbody flux is sufficiently small that it is ap-
proximately constant on the diffusion length scale. Hence one can infer that

L ∝ 1
κ
∝ T 7/2 . (18)

This then tells us that the temperature gradient in Eq. (17) is mostly de-
scribed by the steep density gradient in the outer non-degenerate near-surface
layers. Detailed derivations of the equation of state and the hydrostatic bal-
ance in the surface layers yield the couplings

ρ ∝ T 13/4 and P ∝ T 17/4 . (19)

The radial dependence can then be found using Eq. (17).

The full crustal solution can then be expressed using the temperature Tc of
the crust/degenerate interior interface, i.e. the core temperature. This
then gives a white dwarf luminosity of

Lwd ∼ C T 7/2
c , C = 7.3× 105

(
Mwd

M�

)
µ
Z

. (20)

Here C has units of erg sec−1 K−7/2. Since the thermal energy of the stellar
interior is

U =
Mwd

AmH

3
2
kTc , (21)
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then a rough estimate of the cooling timescale (the high conductivity redis-
tributes the thermal energy rapidly through the star) is

τc ∼
U
Lwd

=
3Mwdk

2AmHCT
5/2
c

. (22)

Note that since C ∝Mwd , this timescale is roughly independent of the white
dwarf mass!

• Solving the cooling equation −dU/dt = Lwd then gives

Tc(t) =
T0

(1 + t/τ0)2/5 , Lwd(t) =
L0

(1 + t/τ0)7/5 (23)

for the evolution of the core temperature and the WD luminosity, where

τ0 =
3Mwdk

5AmHCT
5/2
0

. (24)

Furthermore, since all white dwarfs start with similar central temperatures,
this cooling curve is more or less a standard “decay,” with τ0 ∼ 1.5×108 years.

• Deviations from the standard cooling curve are expected, and are observed,
at late stages of evolution (typically ∼ 5×109 years) due to crystallization.

∗ Cooling lowers Twd to the point where dense C and O form a lattice
structure, from inside first, where P is high, progressing towards the outside.
This structure is like diamond formation under extreme pressure.

∗ Crystallization is a phase transition that releases latent heat – conse-
quently slowing the cooling, and generating a “bump” in the cooling curve.

Plot: White Dwarf Specific Heat Capacity

• The robustness of the cooling curve leads to a usefulness of white dwarfs
as age calibrators in the universe.

Plot: White Dwarf Luminosity Distribution

The Milky Way white dwarf population suggests an age of >∼ 9.0 ± 1.8 ×
109 years. To this must be added the contribution for main sequence evolution
prior to the white dwarf phase.
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Specific Heat Capacity: Debye Regime


•  Specific heat capacity as a function of temperature – schematic 
diagram for ions only.  At high temperature, the lattice melts, forming 
an ideal gas with cV=3k/2.  At modest temperatures, crystallization 
results, and cV increases to 3k.  When T < 𝛩D, collective influences on D, collective influences on 
vibrational modes (Debye screening) lower cV ∝T3.    


Crystallization epoch

Young WD

Old WD

Debye 

regime




White Dwarf Luminosity Function �
        (Isern, Artigas & García-Berro, EPJ 43, 05002, 2013)  


!  Large survey data for the white dwarf luminosity function. Models for curves 
comprise different Galactic disk descriptions and star formation rates. 


2Mbol/7-7.0





