6 Stellar Opacity

Collisional concepts that control stellar opacity can be paralleled to those
pertinent to atomic excitation and ionization just explored.

The cross section, or effective target area for atom or ion collisions is scaled
by the Bohr radius: ¢ = 2wa2. Atoms of speed v sweep out a volume
V = ovt in time ¢, and so encounter nV = nowvt target atoms for collisional
excitation or ionization. Here n is the number density of atoms.

e Thus the average distance traveled between collisions is

vt 1

=9 = e

; (20)

The distance [ is called the mean free path. Assuming the Bohr radius of
ap = 5.29 x 107 cm, we arrive at | = 1.9 x 1072 cm for a solar photospheric
density of n = p/my = 1.5 x 101" cm=3.

x This scale is much shorter than the temperature gradient scalelength
in the sun, so excitation/ionization considerations can assume isothermal
scenarios, i.e. or local thermodynamic equilibrium.

Now turn to radiation. At any given position, we expect the diminution of
intensity to be proportional to the density p of atoms along a path ds. This
coupling leads to the differential form

d]A = —/{,\pIA ds s (21)
where k) is called the (mass) absorption coefficient or opacity.

e The attenuation of a light beam can then be determined:

I, = ],\,Oexp{—/ mpds'} ) (22)
0

For a uniform opacity and density, this becomes a simple exponential depen-
dence on path length s, as we have already explored when considering ISM
and atmospheric extinction.
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Interactions between photons and matter
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e The optical depth is then defined to be the measure of exponential at-
tenuation:

T = / kapds . (23)
0

The optical depth can be viewed as the number of mean free paths along
a given path. Clearly, 7 > 1 conditions are quickly achieved as the solar
atmosphere is penetrated.

* The narrow band of surface layers where 7 < 1 define the region that
we probe spectroscopically: it is called the stellar photosphere.

e By analogy with the case of atomic collisions,

= L

1
| = op = 7o (24)

is the absorption mean free path.

In a stellar context, atmospheric opacity receives contributions from bound-
bound transitions, bound-free absorption (photo-ionization), free-free emission
(bremsstrahlung), and electron (Compton) scattering. We can write

K = Kpp+ Kof + Kff+ Kes (25)

These depend sensitively on the temperature, density and composition of a
stellar atmosphere.

Opacity in p-T Space for White Dwarfs

e Hence usually we employ an average opacity called the Rosseland Mean
Opacity to describe the effective absorption.

This mean is a strong function of temperature and density.

Rosseland Mean Opacity
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Opacity 1n p-T Space: White Dwarts

1 Ll
L g
&
8 ¥ -
X
°
- n
o
=
- conduction by _| . .
© Kot~ K¢ / degenerate electrons From: M. .HarW1t
@0 Astrophysical Concepts
1 | L. 1 | 1 1 i | 1
-4 -3 2 -1 0 | 2 3 4 5 6
log p (g cm3)

Fig. 8.3 Opacity as a function of density and temperature in a star of popula-
tion I composition. The diagram is divided into four regions characterized by
different mechanism of energy transport. The sources of opacity that dominate
these mechanisms are electron scattering, bound-free transitions, free-free
transitions, and the effective opacity that would describe the energy transport
by degenerate electrons. The dashed line shows where the degeneracy parameter
a (see equation 4-93) equals zero (after Hayashi, Hoshi, and Sugimoto, Ha62c).
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7 Radiative Transfer

Since only the outermost layers of the sun and stars in general are optically
thin, radiation transport in stellar interiors is generally diffusive on timescales
much longer than the free-streaming time, Ry /c ~ 2 sec.

Diffusion can be modeled by a random walk of photons out from the stellar
interior. The net displacement d in a large number N of randomly directed

steps 1; is
d= > 1 (26)

i=1,N

so that the magnitude can be obtained from

¢ =dd = > > Ll = NP+I*) costy |, (27)

i=1,N j=1,N i£j

if all the steps are of equal length |1;| = . Here cos6;; = 1,.1;/1? is the angle
between two vector steps. The sum over the angle cosines tends to zero as
N — oo, essentially an integral over angles of the cosine. Hence it follows
that the number N of steps to the surface and the optical depth 7, = d/I
satisfy

d=IVN , N=r1%. (28)

e Diffusion is an inefficient means of radiative transfer; convection plays an
important role in transporting nuclear energy out of the solar interior.

e From the phenomenon of limb darkening, namely that the solar ex-
tremeties appear darker than the center to an observer, one can deduce that
the temperature declines with distance from the center of the sun.

We can see typically about 7, = 2/3 deep into the sun. When this is line
of sight is tangential to the solar surface, i.e. at the solar limb, we can only
probe into comparatively shallow layers.

x The darker appearance implies a cooler temperature, and therefore we
infer that there is a negative temperature gradient with photospheric radius.
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8 Structure of Spectral Lines

The shape of a spectral line contains a wealth of information. It consists of
a core and two wings. If F. is the surrounding continuum flux level, then
the quantity 1 — F\/F, is referred to as the depth of the line. The effective
strength of the line is called the equivalent width W of the line:

o FC_F)\
W—/Td)\ . (29)

This is to be distinguished from the full width at half-maximum (FWHM),
which is the width where it is at least half as deep as the maximum depth,
i.e. side-to-side width, denoted by (AX);/,.

Typical Spectral Line Shape

There are three main mechanisms for broadening spectral lines; natural
broadening, Doppler broadening and pressure broadening.

e Natural broadening: spectral lines are not infinitely sharp due to the
quantum nature of energy states. Heisenberg’s uncertainty principle yields
an energy uncertainty AE =~ h/At in an atomic state that lives for time
At . Energy levels are fuzzy.

Hence, if an atomic electron transitions between states ¢ — f, which have
respective decay times of At; and Aty , then the natural width of the line is

A1 1

which can be derived using dE/d\ oc A72.

x e.g. The lifetime of the first and second excited states of hydrogen is less
than about At ~ 107®sec. Hence the natural broadening of the H, Balmer
line at A = 6563 A is around A\~ 4.57 x 10~* A.
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e Let us consider a classical model for natural line widths. We assume that
electrons are accelerating in their atomic orbitals, and therefore must radiate.
The Larmor power (discussed in Thomson scattering) for an acceleration v
can be used to identify a radiative lifetime:

2
_2€%v me|v|? 3m.c® [ |v]

In a classical orbit decay, the lifetime will roughly satisfy 7.q [V| ~ |v|. This
then establishes the classical radiation timescale for an electron Tpaq — 7ol :
2¢* _ 2n

_ — ~ o4 1
Tag = 3 ® = 3¢ 6.27 x 107** sec . (32)

This clearly indicates that purely classical atoms are radiatively unstable.

e Consider now a 1D simple harmonic oscillator with a natural oscillation
frequency wy = 27m1y. We will incorporate the small damping influence
of radiation reaction, assuming that wyrq < 1. Distilling the equation of
motion to one dimension, the x-direction, radiation reaction generates

P i rude =0 (33)
N——

For small damping, the underbraced term (not derived here) can be neglected,

and the solution is approximately sinusoidal, with # ~ —w2z. In general,

substituting a trial solution z o< e®*, we have

2
a = tiwy — % +0(7%) . (34)

Due to the presence of negative real components in the exponential, this
modified SHO solution is a weakly damped oscillator:

z(t) = xoe’rt/Z coswel = %{eFt/2+iwot+eFt/Ziwot} ’ (35)
where the damping width or inverse decay time is
I = wirg = 270 (36)
0Tc 3% -

15

Lang,
pp. 2001



To derive the power spectrum of the radiation, we form the Fourier transform
of the acceleration:

R T [ ix w? w?
a(w) = %/0 E(t) edt = 4_71(-){w + wo + /2 T —wo+il'/2 7
(37)
where the oscillator is switched on only at times ¢ > 0. This transform
becomes very large (resonant) near w = “+wy, producing a spectral line.
Since we can restrict considerations to w > 0, we can neglect the first term,
so that the Fourier power in Larmor formalism is encapsulated in

2 efa(w))? ToWo ? Wi
Pl = 5L o (me) s )

This is a Lorentz profile for the resonance, and is the characteristic form
of line profiles when damping/decay of states is involved.

e Since Aw =T, the FWHM in wavelength for the line is

AN = 27rc% ~ 2meTy = 4% ro ~ 118 x 1072em ,  (39)
0
so that the natural line width in this classical electromagnetic description
of a radiating oscillator model for atoms is intrinsically small.

If, instead, we insert the Bohr model value wy = AE/h into Eq. (36), we do
not actually change the value of AX. This achromatic result for natural line
wavelength widths is a failing of the classical picture. However, using the fact
that AE ~ €?/(2ag) so that wy ~ azc/(2a0) = aie/(2ry) , with ag = r9/a?,
we do discern that the semi-classical lifetime of excited atomic states is
27 3T ¢ 127 7 187 _ _

TSC]NT:W—ST—OZQ—EFOZQ—?TC1%2.35X109SGC1 s (40)
orders of magnitude larger than the purely classical result. Yet, still the atom
is radiatively unstable!
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