
6 Stellar Opacity

Collisional concepts that control stellar opacity can be paralleled to those C & O,
Sec. 9.2pertinent to atomic excitation and ionization just explored.

The cross section, or effective target area for atom or ion collisions is scaled
by the Bohr radius: σ = 2πa2

0 . Atoms of speed v sweep out a volume
V = σvt in time t , and so encounter nV = nσvt target atoms for collisional
excitation or ionization. Here n is the number density of atoms.

• Thus the average distance traveled between collisions is

l =
vt
nV

=
1
nσ

; (20)

The distance l is called the mean free path. Assuming the Bohr radius of
a0 = 5.29× 10−9 cm, we arrive at l = 1.9× 10−2 cm for a solar photospheric
density of n = ρ/mH = 1.5× 1017 cm−3.

∗ This scale is much shorter than the temperature gradient scalelength
in the sun, so excitation/ionization considerations can assume isothermal
scenarios, i.e. or local thermodynamic equilibrium.

Now turn to radiation. At any given position, we expect the diminution of
intensity to be proportional to the density ρ of atoms along a path ds . This
coupling leads to the differential form

dIλ = −κλρIλ ds , (21)

where κλ is called the (mass) absorption coefficient or opacity.

• The attenuation of a light beam can then be determined:

Iλ = Iλ,0 exp

{
−
∫ s

0

κλρ ds
′
}

. (22)

For a uniform opacity and density, this becomes a simple exponential depen-
dence on path length s , as we have already explored when considering ISM
and atmospheric extinction.
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• The optical depth is then defined to be the measure of exponential at-
tenuation:

τλ =

∫ s

0

κλρ ds
′ . (23)

The optical depth can be viewed as the number of mean free paths along
a given path. Clearly, τ > 1 conditions are quickly achieved as the solar
atmosphere is penetrated.

∗ The narrow band of surface layers where τ <∼ 1 define the region that
we probe spectroscopically: it is called the stellar photosphere.

• By analogy with the case of atomic collisions,

l =
1
κλρ

≡ 1
nσ

(24)

is the absorption mean free path.

In a stellar context, atmospheric opacity receives contributions from bound-
bound transitions, bound-free absorption (photo-ionization), free-free emission
(bremsstrahlung), and electron (Compton) scattering. We can write

κ = κbb + κbf + κff + κes (25)

These depend sensitively on the temperature, density and composition of a
stellar atmosphere.

Plot: Opacity in ρ -T Space for White Dwarfs

• Hence usually we employ an average opacity called the Rosseland Mean C & O,
pp. 249–50Opacity to describe the effective absorption.

This mean is a strong function of temperature and density.

Plot: Rosseland Mean Opacity
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7 Radiative Transfer

Since only the outermost layers of the sun and stars in general are optically C & O,
pp. 252–4thin, radiation transport in stellar interiors is generally diffusive on timescales

much longer than the free-streaming time, R�/c ∼ 2 sec.

Diffusion can be modeled by a random walk of photons out from the stellar
interior. The net displacement d in a large number N of randomly directed
steps li is

d =
∑
i=1,N

li (26)

so that the magnitude can be obtained from

d2 = d.d =
∑
i=1,N

∑
j=1,N

li.lj ≡ Nl2 + l2
∑
i 6=j

cos θij , (27)

if all the steps are of equal length |li| = l . Here cos θij = li.lj/l
2 is the angle

between two vector steps. The sum over the angle cosines tends to zero as
N → ∞ , essentially an integral over angles of the cosine. Hence it follows
that the number N of steps to the surface and the optical depth τλ = d/l
satisfy

d = l
√
N , N = τ 2

λ . (28)

• Diffusion is an inefficient means of radiative transfer; convection plays an
important role in transporting nuclear energy out of the solar interior.

• From the phenomenon of limb darkening, namely that the solar ex-
tremeties appear darker than the center to an observer, one can deduce that
the temperature declines with distance from the center of the sun.

We can see typically about τλ = 2/3 deep into the sun. When this is line
of sight is tangential to the solar surface, i.e. at the solar limb, we can only
probe into comparatively shallow layers.

∗ The darker appearance implies a cooler temperature, and therefore we
infer that there is a negative temperature gradient with photospheric radius.
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8 Structure of Spectral Lines

The shape of a spectral line contains a wealth of information. It consists of C & O,
Sec. 9.5a core and two wings. If Fc is the surrounding continuum flux level, then

the quantity 1−Fλ/Fc is referred to as the depth of the line. The effective
strength of the line is called the equivalent width W of the line:

W =

∫
Fc − Fλ
Fc

dλ . (29)

This is to be distinguished from the full width at half-maximum (FWHM),
which is the width where it is at least half as deep as the maximum depth,
i.e. side-to-side width, denoted by (∆λ)1/2 .

Plot: Typical Spectral Line Shape

There are three main mechanisms for broadening spectral lines; natural
broadening, Doppler broadening and pressure broadening.

• Natural broadening: spectral lines are not infinitely sharp due to the
quantum nature of energy states. Heisenberg’s uncertainty principle yields
an energy uncertainty ∆E ≈ h̄/∆t in an atomic state that lives for time
∆t . Energy levels are fuzzy.

Hence, if an atomic electron transitions between states i → f , which have
respective decay times of ∆ti and ∆tf , then the natural width of the line is

∆λ ≈ λ2

2πc

(
1

∆ti
+

1
∆tf

)
, (30)

which can be derived using dE/dλ ∝ λ−2 .

∗ e.g. The lifetime of the first and second excited states of hydrogen is less
than about ∆t ∼ 10−8 sec. Hence the natural broadening of the Hα Balmer
line at λ = 6563 Å is around ∆λ ≈ 4.57× 10−4 Å.
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Spectral Line Equivalent Width

Figure 9.18 of  Carroll & Ostlie, Modern Astrophysics.
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• Let us consider a classical model for natural line widths. We assume that
electrons are accelerating in their atomic orbitals, and therefore must radiate.
The Larmor power (discussed in Thomson scattering) for an acceleration v̇
can be used to identify a radiative lifetime:

P =
2
3
e2|v̇|2
c3 ⇒ τrad ∼

me|v|2
2P

∼ 3mec
3

2e2

(
|v|
|v̇|

)2

. (31)

In a classical orbit decay, the lifetime will roughly satisfy τrad |v̇| ∼ |v| . This
then establishes the classical radiation timescale for an electron τrad → τcl :

τcl =
2e2

3mec
3 ≡

2r0

3c
≈ 6.27× 10−24 sec−1 . (32)

This clearly indicates that purely classical atoms are radiatively unstable.

• Consider now a 1D simple harmonic oscillator with a natural oscillation
frequency ω0 ≡ 2πν0 . We will incorporate the small damping influence Lang,

pp. 200–1of radiation reaction, assuming that ω0τcl � 1 . Distilling the equation of
motion to one dimension, the x -direction, radiation reaction generates

− τcl
dẍ
dt︸ ︷︷ ︸+ẍ+ ω2

0x = 0 . (33)

For small damping, the underbraced term (not derived here) can be neglected,
and the solution is approximately sinusoidal, with ẍ ≈ −ω2

0x . In general,
substituting a trial solution x ∝ eαt , we have

α = ±iω0 −
ω2

0τcl

2
+O(τ 2) . (34)

Due to the presence of negative real components in the exponential, this
modified SHO solution is a weakly damped oscillator:

x(t) = x0e
−Γt/2 cosω0t =

x0

2

{
e−Γt/2+iω0t + e−Γt/2−iω0t

}
, (35)

where the damping width or inverse decay time is

Γ = ω2
0τcl =

2
3
r0

c
ω2

0 . (36)
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To derive the power spectrum of the radiation, we form the Fourier transform
of the acceleration:

â(ω) =
1

2π

∫ ∞
0

ẍ(t) eiωtdt =
ix0

4π

{
ω2

ω + ω0 + iΓ/2
+

ω2

ω − ω0 + iΓ/2

}
,

(37)
where the oscillator is switched on only at times t ≥ 0 . This transform
becomes very large (resonant) near ω = ±ω0 , producing a spectral line.
Since we can restrict considerations to ω > 0 , we can neglect the first term,
so that the Fourier power in Larmor formalism is encapsulated in

P (ω) =
2
3
e2|â(ω)|2

c3 ∝
(
x0ω0

4π

)2
ω2

0

(ω − ω0)2 + (Γ/2)2 . (38)

This is a Lorentz profile for the resonance, and is the characteristic form
of line profiles when damping/decay of states is involved.

• Since ∆ω = Γ , the FWHM in wavelength for the line is

∆λ = 2πc
∆ω
ω2

0

≈ 2πcτcl =
4π
3
r0 ≈ 1.18× 10−12 cm , (39)

so that the natural line width in this classical electromagnetic description
of a radiating oscillator model for atoms is intrinsically small.

If, instead, we insert the Bohr model value ω0 = ∆E/h̄ into Eq. (36), we do
not actually change the value of ∆λ . This achromatic result for natural line
wavelength widths is a failing of the classical picture. However, using the fact
that ∆E ∼ e2/(2a0) so that ω0 ∼ αfc/(2a0) = α3

f c/(2r0) , with a0 = r0/α
2
f ,

we do discern that the semi-classical lifetime of excited atomic states is

τscl ∼
2π
Γ

=
3π
ω2

0

c
r0

=
12π
α6

f

r0

c
=

18π
α6

f

τcl ≈ 2.35× 10−9 sec−1 , (40)

orders of magnitude larger than the purely classical result. Yet, still the atom
is radiatively unstable!
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