e Solution of the Schrodinger equation for the hydrogen atom leads to the
same energy quantization as in the Bohr model, but with total angular mo-
mentum quantized according to

L =nmJ/l(l+1) , 1=0,1,2,3,... (32)

and the azimuthal component of L quantized according to L, = m;h for
|my| = 0,1,...,1. There is a degeneracy of energy levels with [ and m;.
Note also that [ < n — 1 bounds the angular momentum quantum number.

e Introducing an external magnetic field B defines a preferred direction,
breaking the isotropy symmetry and thereby splitting the energy degeneracy.
The fine structure of lines is described by the splitting

eBh

AE ~ +—-—

e (33)

which applies to the atomic electrons. This effect is called the Zeeman
effect and is used to measure solar and stellar magnetic fields.

Zeeman Splitting of Atomic Lines

e Where does this energy splitting estimate come from? A semi-classical
treatment suffices to answer this. Energy differences can be obtained by
computing the work done by moving a charge a distance Ar under the
Lorentz force:

AB| = ar-® — Car(vxB) SoeBlan M
dt c c
The Bohr model of the atom can be used to estimate the kinetic energy of
the electron through puv?/2 ~ |Ey| = pe*/(2h*). Thus, one estimates the
orbital speed of a Schrodinger electron to be v/c ~ €*/(hc) = a; & 7.3x1073
which is non-relativistic. The displacement of a bound orbital electron is on
the scale of the Bohr radius ag = h*/(ue?). Accordingly,

AE| = eBlA Y < eBaga, = B (35)

c e

This derivation clearly connects to the physical elements of the Bohr atomic
model. Yet we note that a quick way to derive this estimate is just to multiply
the cyclotron frequency eB/uc by h.
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Zeeman Effect: Line Splitting by B
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« Splitting of atomic lines by magnetic fields was first observed by
P. Zeeman (1897) in Cadmium, shown here. Credit: 1. Suzuki




6. STELLAR SPECTRA AND
ATMOSPHERES

Matthew Baring — Lecture Notes for ASTR 350, Fall 2025

1 Spectral Classification

Spectral classification started as an organized taxonomy with the work at
Harvard of Pickering — stars were labelled by letters according to the strength
of their H absorption lines (AFGKM)

e Annie Jump Cannon (1901) revised this classification by sequencing them

according to temperature:
OBAFGKM (1)

« O stars: hot, blue, young and massive (labelled early-type)
x M stars: cool, red, old and less massive (labelled late-type)
Subdivisions are numbered: e.g. Bl — B9.

Temperature strongly influences the state of atoms, whether they are ionized
or not, hence we expect a strong coupling between spectral type and line
characteristics. States critically depend on species, so line spectra give pow-
erful indicators of “real temperatures” as opposed to effective temperature.

e Jonization states are classified observationally via Roman numerals:
x H I = neutral hydrogen; H II = ionized hydrogen

x He I = neutral helium; He II = singly-ionized helium; He I1I = doubly-
ionized helium. e.g. Si IV, OVII, MglI

1

C & O,
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2 Atom Excitation: the Boltzmann Equation
Spectral classification depends on (i) in what orbitals are electrons most likely
to reside? and (ii) what are the relative states of ionization?

e Answers are governed by statistical mechanics of thermal gases, which
indicate that the velocity distribution of a gas of non-relativistic particles of
mass m at temperature 7' is given by

3/2 2
— _m_ _mv_ 2
n,dv = 4nn (27rkT) exp{ QkT} vidv o
2

where k is Boltzmann’s constant. This is the famous Maxwell-Boltzmann
distribution of statistical/thermal physics.

Maxwell-Boltzmann Distribution

The peak velocity is Vpeax = /2k7T/m and the rms value is vyms = +/3kT/m .

2. = (V) = v® n, dv n,dv = 3T (3)
rms 0 0 m

It then follows that the mean kinetic energy is (K) = muv? /2 = 3kT/2,
which is the ideal gas equation of state.

e Thermonuclear reaction rates in stellar interiors critically depend on such
distributions, in detailed balance similar to the atomic considerations below.

e In the atomic context, v represents atom speeds in a hot or cool gas, which
then impacts the distribution of electrons in atomic states via a collisional
excitation/de-excitation. In this way, the exponential in the M-B distribution
maps over to an exp(—F/kT') factor that can apply to both the atom kinetic
energies and also the orbital excitation energies.



Maxwell-Boltzmann Distributions

1.2

1.0

0.8

0.6

04}

0.2

T [ A —

velocity ‘




Let E, and Ej, be two energy levels of an atom, each with g, and ¢, degen-
erate sub-states; i.e. g, > 1. If P(E,) and P(E}) are the probabilities of
finding e~ in these respective energy levels, then statistical mechanics yields

(4)

This is called the Boltzmann equation. The factor e #/*T is called the
Boltzmann factor. Note that g,; # 1 arises through spin and L and L,
degeneracies in the solution of the Schrodinger equation.

Ground States s1 Energy F1
n £ my M (eV)
1" -0 0 +1/2 —13.6
1.8 0 —1/2 —13.6
First Excited States so | Energy Fo
n £ my il (eV)
. 0 +1/2 —3.40
LI | 0 —1/2 —3.40
2" .4 1 +1/2 —3.40
2 1 1 —1/2 —3.40
2 1 0 +1/2 —3.40
7 0 —1/2 —3.40
2 1 -1 +1/2 —3.40
2 1 -1 —1/2 —3.40

Quantum Number Degeneracies for Hydrogen

C & O,
pp. 209-12



e c.g. Consider the hydrogen atom and excitations from the ground state
n =1, with g = 2(1)®> = 2 to the first excited state n = 2 with g, =
2(2)2 =8. Here E; = —13.6eV and Fy = —13.6eV/4 = —3.4¢eV.

At what temperature does No = N; 7

Ny 8 —3.4eV) — (—13.6eV
1 = N = §exp{—( )kT( )} , (5)

yielding 7' = 8.54 x 10* K. This is clearly hotter than effective temperature
of sunlight, implying that most hydrogen atoms at the solar surface are in
the ground state.

* Yet hydrogen Balmer lines achieve maximum intensity at much lower
temperatures, around 10* K. Something else must be in play!

Boltzmann Equation for Hydrogen

e Now consider singly-ionized helium, which will require a significant tem-
perature to realize such a state. The Schrodinger equation applies to it, and
the solution scales like the hydrogen atom. Yet, now the nuclear charge is
Ze for Z =2, and p =~ m,. The Bohr model tells us that F; = —54.4¢eV
and Fy = —54.4eV/4 = —13.6eV.

At what temperature does Ny = N; now?

L N 8 {_(—13.6eV)—(—54.4eV)} | (©)

N, 2P kT
yielding T = 3.4 x 10°K, i.e. 4 times larger than for the hydrogen example.
This case pertains to white dwarf stars, and again is much hotter than their
typical surface temperatures.



Boltzmann and Saha Equations
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* Boltzmann excitation (green, 1-2) and Saha (neutral fraction, blue, I-II) 1onization
solutions for hydrogen for temperatures T in units of 10*K. Here n.=10"cm™.

« Combined (red) illustrates peak Balmer H_ line signal at T~10*K.




3 Ionization and the Saha Equation

Ionization balance also critically affects the strengths of atomic de-excitation
lines, constraining the number of states available for de-excitation. Such
ionization balance also depends strongly on Boltzmann factors.

Let x; be the ionization energy for transitioning from ionization state i to
state 1+ 1. Thus, for HI — HII, x; = 13.6¢eV.

e We define the partition function Z; to be the weighted sum of the
number of ways an atom or ion ionization state ¢ can arrange its electrons
among excitation states. Boltzmann statistics then gives

Zi = g1+ Zgj e~ (Bij—Ei1)/kT (7)
=2

for the g; being the degeneracy factors (g, =2, go = 8, etc.; g, = 2n?).

e The ratio of the number N;,; of atoms in ionization state ¢ + 1 to the
number N; in state i is given by detailed balance and is

3/2
Nigwn  2Zip (mekT>/ o~ Xi/KT

N, = nZ; \ 27R?

(8)

This is the Saha Equation, derived in 1920. The factor of 2 accommodates
the two spin states of free electrons, and represents their partition function
(i.e. no bound states).

C & O,
pp. 2136





