
• Solution of the Schrödinger equation for the hydrogen atom leads to the
same energy quantization as in the Bohr model, but with total angular mo-
mentum quantized according to

L = h̄
√
l(l + 1) , l = 0, 1, 2, 3, . . . (32)

and the azimuthal component of L quantized according to Lz = mlh̄ for
|ml| = 0, 1, . . . , l . There is a degeneracy of energy levels with l and ml .
Note also that l ≤ n− 1 bounds the angular momentum quantum number.

• Introducing an external magnetic field B defines a preferred direction,
breaking the isotropy symmetry and thereby splitting the energy degeneracy.
The fine structure of lines is described by the splitting

∆E ∼ ±eBh̄
2µc

, (33)

which applies to the atomic electrons. This effect is called the Zeeman
effect and is used to measure solar and stellar magnetic fields.

Plot: Zeeman Splitting of Atomic Lines

• Where does this energy splitting estimate come from? A semi-classical
treatment suffices to answer this. Energy differences can be obtained by
computing the work done by moving a charge a distance ∆r under the
Lorentz force:

|∆E| = ∆r · dp
dt

=
e
c

∆r ·
(
v ×B

)
→ eB |∆r| |v|

c
. (34)

The Bohr model of the atom can be used to estimate the kinetic energy of
the electron through µv2/2 ≈ |Etot| = µe4/(2h̄2) . Thus, one estimates the
orbital speed of a Schrödinger electron to be v/c ∼ e2/(h̄c) = αf ≈ 7.3×10−3 ,
which is non-relativistic. The displacement of a bound orbital electron is on
the scale of the Bohr radius a0 = h̄2/(µe2) . Accordingly,

|∆E| → eB |∆r| |v|
c
∼ eB a0 αf =

eBh̄
µc

. (35)

This derivation clearly connects to the physical elements of the Bohr atomic
model. Yet we note that a quick way to derive this estimate is just to multiply
the cyclotron frequency eB/µc by h̄ .
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Zeeman Effect: Line Splitting by B


•  Splitting of atomic lines by magnetic fields was first observed by 
P. Zeeman (1897) in Cadmium, shown here.  Credit: I. Suzuki




6. STELLAR SPECTRA AND
ATMOSPHERES

Matthew Baring – Lecture Notes for ASTR 350, Fall 2025

1 Spectral Classification

Spectral classification started as an organized taxonomy with the work at C & O,
Sec. 8.1Harvard of Pickering — stars were labelled by letters according to the strength

of their H absorption lines (AFGKM)

• Annie Jump Cannon (1901) revised this classification by sequencing them
according to temperature:

OBAFGKM (1)

∗ O stars: hot, blue, young and massive (labelled early-type)

∗ M stars: cool, red, old and less massive (labelled late-type)

Subdivisions are numbered: e.g. B1→ B9 .

Temperature strongly influences the state of atoms, whether they are ionized
or not, hence we expect a strong coupling between spectral type and line
characteristics. States critically depend on species, so line spectra give pow-
erful indicators of “real temperatures” as opposed to effective temperature.

• Ionization states are classified observationally via Roman numerals:

∗ H I = neutral hydrogen; H II = ionized hydrogen

∗ He I = neutral helium; He II = singly-ionized helium; He III = doubly-
ionized helium. e.g. Si IV, OVII, MgII
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2 Atom Excitation: the Boltzmann Equation

Spectral classification depends on (i) in what orbitals are electrons most likely
to reside? and (ii) what are the relative states of ionization?

• Answers are governed by statistical mechanics of thermal gases, which
indicate that the velocity distribution of a gas of non-relativistic particles of
mass m at temperature T is given by

nvdv = 4π n

(
m

2πkT

)3/2

exp

{
− mv2

2kT

}
v2 dv ,

(2)

where k is Boltzmann’s constant. This is the famous Maxwell-Boltzmann
distribution of statistical/thermal physics.

Plot: Maxwell-Boltzmann Distribution

The peak velocity is vpeak =
√

2kT/m and the rms value is vrms =
√

3kT/m .

v2rms = 〈v2〉 =

∫ ∞
0

v2 nv dv

/∫ ∞
0

nv dv =
3kT
m

. (3)

It then follows that the mean kinetic energy is 〈K〉 = mv2rms/2 = 3kT/2 ,
which is the ideal gas equation of state.

• Thermonuclear reaction rates in stellar interiors critically depend on such
distributions, in detailed balance similar to the atomic considerations below.

• In the atomic context, v represents atom speeds in a hot or cool gas, which
then impacts the distribution of electrons in atomic states via a collisional
excitation/de-excitation. In this way, the exponential in the M-B distribution
maps over to an exp(−E/kT ) factor that can apply to both the atom kinetic
energies and also the orbital excitation energies.
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Maxwell-Boltzmann Distributions


velocity


High T


Low T


vp    vrms




Let Ea and Eb be two energy levels of an atom, each with ga and gb degen- C & O,
pp. 209–12erate sub-states; i.e. ga,b ≥ 1 . If P (Ea) and P (Eb) are the probabilities of

finding e− in these respective energy levels, then statistical mechanics yields

Nb

Na
≡ P (Eb)

P (Ea)
=

gb
ga

exp

{
−Eb − Ea

kT

}
.

(4)

This is called the Boltzmann equation. The factor e−E/kT is called the
Boltzmann factor. Note that ga,b 6= 1 arises through spin and L and Lz
degeneracies in the solution of the Schrödinger equation.

Quantum Number Degeneracies for Hydrogen
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• e.g. Consider the hydrogen atom and excitations from the ground state
n = 1 , with g1 = 2(1)2 = 2 to the first excited state n = 2 with g2 =
2(2)2 = 8 . Here E1 = −13.6 eV and E2 = −13.6 eV/4 = −3.4 eV.

At what temperature does N2 = N1 ?

1 =
N2

N1
=

8
2

exp

{
−(−3.4eV)− (−13.6eV)

kT

}
, (5)

yielding T = 8.54× 104 K. This is clearly hotter than effective temperature
of sunlight, implying that most hydrogen atoms at the solar surface are in
the ground state.

∗ Yet hydrogen Balmer lines achieve maximum intensity at much lower
temperatures, around 104 K. Something else must be in play!

Plot: Boltzmann Equation for Hydrogen

• Now consider singly-ionized helium, which will require a significant tem-
perature to realize such a state. The Schrödinger equation applies to it, and
the solution scales like the hydrogen atom. Yet, now the nuclear charge is
Ze for Z = 2 , and µ ≈ me . The Bohr model tells us that E1 = −54.4 eV
and E2 = −54.4 eV/4 = −13.6 eV.

At what temperature does N2 = N1 now?

1 =
N2

N1
=

8
2

exp

{
−(−13.6eV)− (−54.4eV)

kT

}
, (6)

yielding T = 3.4× 105 K, i.e. 4 times larger than for the hydrogen example.
This case pertains to white dwarf stars, and again is much hotter than their
typical surface temperatures.
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Boltzmann and Saha Equations


•  Boltzmann excitation (green, 1-2) and Saha (neutral fraction, blue, I-II) ionization 
solutions for hydrogen for temperatures T in units of 104K.  Here ne=1014cm-3.


•  Combined (red) illustrates peak Balmer Hα line signal at T~104K.
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3 Ionization and the Saha Equation

Ionization balance also critically affects the strengths of atomic de-excitation C & O,
pp. 213–6lines, constraining the number of states available for de-excitation. Such

ionization balance also depends strongly on Boltzmann factors.

Let χi be the ionization energy for transitioning from ionization state i to
state i+ 1 . Thus, for HI → HII , χI = 13.6 eV.

• We define the partition function Zi to be the weighted sum of the
number of ways an atom or ion ionization state i can arrange its electrons
among excitation states. Boltzmann statistics then gives

Zi = g1 +
∞∑
j=2

gj e
−(Ei,j−Ei,1)/kT (7)

for the gi being the degeneracy factors ( g1 = 2 , g2 = 8 , etc.; gn = 2n2 ).

• The ratio of the number Ni+1 of atoms in ionization state i + 1 to the
number Ni in state i is given by detailed balance and is

Ni+1

Ni
=

2Zi+1

neZi

(
mekT
2πh̄2

)3/2

e−χi/kT .

(8)

This is the Saha Equation, derived in 1920. The factor of 2 accommodates
the two spin states of free electrons, and represents their partition function
(i.e. no bound states).
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