
2 General Relativity and Black Holes

• Black holes are a prediction of Einstein’s Theory of General Relativity,
and as such date from circa 1916. They are defined as a compact star from C& O

Sec. 17.1which nothing, not even light cannot escape, due to the pull of gravity.

• As such, the concept of a black hole pre-dates Einstein, and was originally
proposed in the context of Newtonian gravity by George Mitchell in 1783.

2.1 Gravitational Time Dilation and Light Bending

• From this principle the phenomenon of the gravitational redshift of
light can quickly be deduced. Consider a photon emitted at the top of an C & O,

pp. 617-22elevator of height h . If the elevator is accelerated upwards at g , then it will
have moved a distance s = gt2/2 when the photon strikes the elevator floor
in a time t ≈ h/c . The speed of the elevator will then be v = gt ≈ gh/c .

Plot: Equivalence Principle for Vertically Traveling Light

The Doppler shift (in this case a blueshift) of the light would then satisfy

∆ν
ν

=
v
c

=
gh
c2

=
∆φ
c2

, (12)

where ∆φ = gh is the equivalent gravitational potential the photon traverses
in its elevator journey. From the Equivalence Principal, one infers that a light
will change its frequency according to ∆ν/ν = −gh/c2 when emerging from
a deep gravitational potential gh , i.e. light is redshifted by gravity. Thus,
for photons, the quanta of light, gravity does work on their energy.

• An equivalent statement of this phenomenon is that a gravitational field
induces time dilation according to an observer at infinity, described by
∆t/t = ∆φ/c2 . In other words, clocks tick slower in a gravitational field.
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Gravitational Time Dilation

• Elevator equivalence principle gedanken experiment for time dilation and 
gravitational redshift. From Carroll & Ostlie, An Introduction to Modern Astrophysics.



• A beautiful illustration of time dilation is manifested in Shapiro delay,
which is the net time delay measured from a star that is eclipsed by another.
This was done for the case of the edge-on binary pulsar J0737-3039A/B,
where pulsation delay can be cleanly measured.

∗ The J0737-3039A/B case not only vindicates gravitational time dilation,
but enables measurement of a number of orbital general relativistic parame-
ters and the respective stellar masses to impressive precision.

Plot: Shapiro Delay Signal from PSR J0737-3039A/B

• Now consider a photon traversing the same accelerating elevator, but this
time from side to side. By a similar analysis, the time of flight across the
elevator is w/c and the elevator will have moved a vertical distance s =
gt2/2 ≈ g(w/c)2/2 when the photon hits the far side of the wall. The photon
is then perceived to have followed a curved path with an angular deflection

∆θ ≈ s
w
≈ gw

2c2
(13)

from a horizontal trajectory.

Plot: Equivalence Principle for Horizontally Traveling Light

The Equivalence Principle then indicates gravitational light bending. Us-
ing g = GM/r2 for the field at a distance r from mass M , we have

∆θ ∼ GM
rc2

≡ RS

2r
(14)

as the bending of light, setting w → 2r . Here RS = 2GM/c2 is the gravita-
tional radius, widely known as the Schwarzschild radius. This marks the
departure of spacetime from a Euclidean/Minkowskian genre.

Plot: Light bending Geometry
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Binary Pulsar J0737-3039A/B �
General Relativistic Shapiro Delay

Lyne et al.
(Science 2004)



Gravitational Light Bending

• Elevator equivalence principle gedanken experiment for gravitational light bending. 
From Carroll & Ostlie, An Introduction to Modern Astrophysics.



Gravitational Light Bending Geometry



• The bending of light was a core prediction of Einstein’s theory of General
Relativity (GR). The principle test was to measure deflections of starlight in
occultations by the sun. The only way to do this was during a solar eclipse
by the moon, so it was first done in 1919. GR theory was vindicated nicely.

Plot: Light Deflection Tests of General Relativity

2.2 Precession of the Perihelion of Mercury

Since light trajectories are curved in the neighborhood of massive stars, and
the Equivalence Principle states that it should travel at the same speed c and
in a straight line in the local inertial (free falling) frame, then spacetime must
be distorted near masses. In terms of stellar or planetary orbital dynamics,
GR introduces departures from the inverse square force law of Newton:

V (r) = −GM
r

{
1 + ε(~r, t)

}
. (15)

This automatically implies that ellipses are no longer exact solutions to the
orbital motion. The cumulative influence, when ε = O(RS/r) is small, is an
epicyclic motion with a gradual precession of the orbital periastron.

• This provided a second observational test of Einstein’s theory, via the
precession of the perihelion of Mercury. The evolving pseudo-ellipse is

r =
a(1− e2)

1 + e cos(φ− φp)
, φp = φp(t) ≈ ∆φp

t
P

. (16)

The gravitational modification to the orbital dynamics is then

∆φp =
6π

1− e2
GM�
ac2

(17)

per orbit. For Mercury, this prediction is 43 seconds of arc per century, a
small correction to Newtonian orbits.

• To test one must allow for a Newtonian tidal term in the orbital dynamics
due to the oblateness of the sun, that is 532”/century. Einstein was again
proven correct, for Mercury, Venus and Earth!

Plot: Precession of Planetary Perihelia
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Stellar Light Deflection near Solar Limb
• Table 8.1 of Weinberg Gravitation and Cosmology



Precession of Planetary Perihelia

• Rates of precession of the perihelia of Mercury, Venus, Earth and Icarus,* after 
subtraction of multi-body contributions within the solar system to Newtonian 
orbital dynamics.  Here L=a(1-e2).  From Weinberg Gravitation and Cosmology.

– * Icarus is an Apollo asteroid (one with a perihelion < 1 AU) with a period of 1.12 years.
• The measured precession confirmed Einstein’s theory to very good precision.



2.3 Einstein’s Field Equations: Schwarzschild Metric

The complete mathematical theory that describes general relativity is encap- C & O,
Sec. 17.2sulated in Einstein’s field equations:

Gµν =
8πG
c4

T µν . (18)

Here Gµν describes spacetime distortion via the second order derivative of
the metric tensor gµν , and T µν represents the energy/momentum stress
tensor (matter + light + E/M fields). This is a matrix system of 16 partial
differential equations.

• Mass/gravity therefore distorts spacetime, and produces curved geodesics
i.e. non-rectilinear light paths.

• Apart from gravitational redshift/time dilation already mentioned, mass
increases the volume in a local inertial frame and generates angular distortion.
Both are germane to cosmology.

• Shortly after the publication of Einstein’s theory, Karl Schwarzschild de-
rived (1916) the solution of the field equations in the case of a spherically-
symmetric potential (isotropy) that is time-independent. In spherical polar
coordinates for an observer at infinity, the Schwarzschild metric is

c2dτ 2 = gµν dxµdxν ≡ B(r) c2dt2 − dr2

B(r)
− r2

(
dθ2 + sin2 θ dφ2

)
(19)

where the last two terms are the angular portion, and

B(r) = 1− 2GM
rc2

≡ 1− RS

r
, RS =

2GM
c2

. (20)

Here RS is the Schwarschild radius that defines a coordinate singularity
as identified by an observer at infinity. The proper time τ is the clock
according to an inertial or free-falling observer approaching the mass.

∗ For finite dt , we have dτ → ∞ as r → RS , which is also known as
the event horizon. This means that we at infinity perceive that an object
falling into a black hole never actually gets there, but for the object, it takes
a finite amount of time to cross the event horizon.
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2.4 Black Holes

• An object whose entire physical extent is interior to its Schwarzschild C & O,
Sec. 17.3radius is defined to be a black hole.

• The key marker of the physical conditions governing a black hole is that
the escape speed vesc of a particle is comparable to the speed of light:

vesc
c
∼

√
GM
r c2

∼ 1 ⇒ r ∼ GM
c2

. (21)

This result [obtainable purely from dimensional analysis] is independent of
particle mass and approximately defines the Schwarzschild radius.

• The presence of a black hole is normally inferred from its pull and/or
interaction with its environs (e.g. the Galactic Centre)

Plot: Mass determinations at the Galactic Centre

∗ Dynamical data are particularly useful for identifying candidate black
holes in the Milky Way. The principal technique is using Kepler’s Third Law
and line spectroscopy to determine radial (line-of-sight) velocities v1r of the
BH companion. This gives a mass function (for circular, e = 0 , orbits):

f(m1) =
m3

1

(m2 +m1)
2 sin3 i =

P
2πG

v32r . (22)

for an orbit inclined at angle i to the plane of the sky.

Plot: Table of Galactic Black Hole Candidates

• Key astrophysical signatures of black holes are (i) observational: X-ray
and γ-ray emission, rapid variability; (ii) physical: accretion disks, and jets.

∗ efficient energy conversion via tapping of E = mc2 .

• The best imaging observation to date of a black hole’s environs is the
central SMBH of M87 by the Event Horizon Telescope (EHT).
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Stellar Passages Near the Galactic Centre
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5x105

106

2x106

5x106

107

2x107

0.001 0.01 0.1 1 10

_=1.8 cusp

S2 peri passage 2002
(124AU, 2100 Rs)

S0=2.6x106M
lcluster=3.9x106M  pc-3

l0=1.0x1017M  pc-3

radius from SgrA* (pc)

en
cl

os
ed

 m
as

s 
(s

ol
ar

 m
as

se
s) �

�

�

•  Left Panel: passage of the star S2 in the epoch 1992-2002, which has a Keplerian period of 15 years, 
imaged in IR using ESO’s VLT in Chile, capturing peribothron (pericentre) portion cleanly.	


•  Pericentre offset of 17.2 light hours (124 AU) rules out the presence of fermion balls and promotes 
the existence of a central supermassive black hole (SMBH) of mass 3.7 x 106M.	


•  Right Panel: enclosed mass distribution and the S2 data point favoring a SMBH for Sgr A*.	


Schoedel et al. (2002, Nature 419, 694)	




Black Hole Masses in Binaries

•  Dynamical estimates of Galactic black hole masses (highlighted M1 column) – cases 
confirmed by radio and optical observations of the orbiting companion.	


•  From McClintock and Remillard (2004) in "Compact Stellar X-ray Sources," eds. 
W.H.G. Lewin & M. van der Klis, Cambridge University Press. [astro-ph/0306213]	


4.1 Introduction 5

Table 4.2. Confirmed black hole binaries: X–ray and optical data

Source f(M)a Ma
1 f(HFQPO) f(LFQPO) Radiob Ec

max References
(M!) (M!) (Hz) (Hz) (MeV)

0422+32 1.19±0.02 3.2–13.2 – 0.035–32 P 0.8,1–2: 1,2,3,4,5
0538–641 2.3±0.3 5.9–9.2 – 0.46 – 0.05 6,7
0540–697 0.14±0.05 4.0–10.0: – 0.075 – 0.02 8,7
0620–003 2.72±0.06 3.3–12.9 – – P,J? 0.03: 9,10,11,11a
1009–45 3.17±0.12 6.3–8.0 – 0.04–0.3 –d 0.40, 1: 12,4,13
1118+480 6.1±0.3 6.5–7.2 – 0.07–0.15 P 0.15 14,15,16,17

1124–684 3.01±0.15 6.5–8.2 – 3.0-8.4 P 0.50 18,19,20,21
1543–475 0.25±0.01 7.4–11.4e – 7 – f 0.20 22,4
1550–564 6.86±0.71 8.4–10.8 92,184,276 0.1-10 P,J 0.20 23,24,25,26,27
1655–40 2.73±0.09 6.0–6.6 300,450 0.1–28 P,J 0.80 28,29,30,31,54
1659–487 > 2.0g – – 0.09–7.4 P 0.45, 1: 32,33,4,13
1705–250 4.86±0.13 5.6–8.3 – – –d 0.1 34,35

1819.3–2525 3.13±0.13 6.8–7.4 – – P,J 0.02 36,37
1859+226 7.4±1.1 7.6–12: 190 0.5–10 P,J? 0.2 38,39,40,41
1915+105 9.5±3.0 10.0–18.0: 41,67,113,168 0.001-10 P,J 0.5, 1: 42,43,44,4,13
1956+350 0.244±0.005 6.9–13.2 – 0.035–12 P,J 2–5 45,46,47,48,49
2000+251 5.01±0.12 7.1–7.8 – 2.4–2.6 P 0.3 18,50,51
2023+338 6.08±0.06 10.1–13.4 – – P 0.4 52,53

a Orosz et al. 2002b, except for 1659–487; colon denotes uncertain value.
b Radio properties: ‘P’ - persistent over 10 or more days and/or inverted spectrum; ‘J’ -

relativistic jet detected.
c Maximum energy reported; colon denotes uncertain value.
d No observations made.
e Orosz, private communication.
f Very faint (e.g., see IAUC 7925).
g For preferred period, P = 1.76 days, f(M) = 5.8 ± 0.5 M!; Hynes et al. 2003.
REFERENCES: 1van der Hooft et al. 1999; 2Vikhlinin et al. 1992; 3Shrader et al. 1994; 4Grove
et al. 1998; 5van Dijk et al. 1995; 6Boyd et al. 2000; 7Nowak et al. 2001; 8Ebisawa et al. 1989;
9Owen et al. 1976; 10Kuulkers et al. 1999; 11Coe et al. 1976; 11a Marsh et al. 1994; 12van der
Hooft et al. 1996; 13Ling et al. 2000; 14Wood et al. 2000; 15Revnivtsev et al. 2000b; 16Fender et
al. 2001; 17McClintock et al. 2001a; 18Rutledge et al. 1999; 19Belloni et al. 1997; 20Ball et al.
1995; 21Sunyaev et al. 1992; 22This work; 23Remillard et al. 2002b; 24Corbel et al. 2001; 25Wu
et al. 2002; 26Corbel et al. 2003; 27Sobczak et al. 2000b; 28Remillard et al. 1999; 29Strohmayer
2001a; 30Hjellming & Rupen 1995; 31Hannikainen et al. 2000; 32Revnivtsev et al. 2001; 33Corbel
et al. 2000; 34Wilson & Rothschild 1983; 35Cooke et al. 1984; 36Hjellming et al. 2000;
37Wijnands & van der Klis 2000; 38Cui et al. 2000a; 39Markwardt 2001; 40Brocksopp et al. 2002;
41Dal Fiume et al. 1999; 42Morgan et al. 1997; 43Strohmayer 2001b; 44Mirabel & Rodriguez
1994; 45Vikhlinin et al. 1994; 46Cui et al. 1997b; 47Stirling et al. 2001; 48Ling et al. 1987;
49McConnell et al. 2002; 50Hjellming et al. 1988; 51Sunyaev et al. 1988; 52Han & Hjellming
1992; 53Sunyaev et al. 1991b; 54Tomsick et al. 1999.

of the latter. The binary inclination angle can be constrained in several ways; com-
monly, one models the photometric variations associated with the gravitationally-
distorted secondary star that is seen to rotate once per binary orbit in the plane of
the sky (e.g., Greene, Bailyn, & Orosz 2001). Mass estimates for the known BHBs
are given in the third column of Table 4.2. In an astrophysical environment, a BH
is completely specified in general relativity by two numbers, its mass and its specific
angular momentum or spin, a = J/cM1, where J is the BH angular momentum and c



M87 SMBH Image
Event Horizon Telescope (EHT)

Credit: EHT Collaboration




