
11. COMPACT OBJECTS I

Matthew Baring – Lecture Notes for ASTR 350, Fall 2021

1 White Dwarfs

Bessel (1844) concluded after an extensive campaign of observation of Sirius, C & O,
Sec. 16.1that it’s proper motion was not in a straight line, but had a sinusoidal wobble.

He inferred that Sirius was a binary system, with a period of 50 years and
that the companion was faint; it was called the pup to the Dog Star.

∗ In 1862, Alvan Clark discovered the companion and found it to be 1000
times fainter than Sirius A; it was named Sirius B, and had a dynamical
mass of around M� . Clark’s observations were made at apastron, when
visual binaries are their most detectable.

∗ Near the next apastron, in 1915, Adams was able to perform spec-
troscopy on Sirius B. Contrary to expectations that it would be a cool, red
star, it was found to be a hot, blue star.

• We now know that Sirius B has an effective temperature of 27, 000 K in the
UV. The Stefan-Boltzmann law yields a radius of 5.5 × 108cm ≈ 0.008R� ,
smaller than that of the Earth. Hence, ρWD ∼ 106ρ� ∼ 106 g cm−3.

Plot: White Dwarfs on the H-R Diagram

• Such a compact object is known as a white dwarf. Its immense gravity
broadens hydrogen absorption lines dramatically.

∗ They are typically underluminous and emit predominantly in the UV,
which explains why they were detected only in the 20th Century.
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Sirius B: First Known White Dwarf 



• Conditions in the interior can be estimated as follows. The hydrostatic
pressure required to support the star against gravity is (for M ∼M� )

Pc ≈
2π
3
GM2

R4 ≈ 3.8× 1023 dyne cm−2 ∼ 108Pc,� . (1)

Using the ideal gas equation, one arrives at a central temperature of T =
P/(Nk) = (P/k)× 4πR3mH/(3Mµ) ∼ 108 K for M ∼M� .

∗ In reality, their central temperatures are a factor of a few smaller; i.e.
thermal gas pressure cannot support the star against the pull of gravity.

• Such temperatures would lead to prolific pp chain activity if hydrogen
dominated the white dwarf core. The underluminous nature of these stars
suggests that hydrogen fusion cannot be proceeding in their cores.

∗ This implies that their centers must consist of largely C and O.

Plot: Global Properties of Compact Stars

1.1 Degenerate Electrons in White Dwarfs

White dwarfs are supported by electron degeneracy pressure. As the
temperature becomes comparatively small, the proportion of available quan- C & O,

Sec. 16.3tum states that are filled increases. When the kinetic energy drops to low
values, then the gas no longer remains classical, but follows a Fermi-Dirac
distribution:

n(ε) =
1

exp{(ε− εF )/kT}+ 1
(2)

Plot: Fermi-Dirac Distribution

• The density of states d3p in momentum space is specified by quantum
statistics. At absolute degeneracy, since λ = 2πh̄/p is the de Broglie wave-
length, then d3p/(2πh̄)3 is a number of states per unit volume:

n =
2

(2πh̄)3

∫ pF

0

4πp2 dp ⇒ pF = h̄
(
3π2n

)1/3
, (3)

for the Fermi momentum pF of particles with 2 spin states.
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Table 1: Global Properties of Compact Stars

Massa Radiusb Mean density Surface Potential

Object (M) (R) (g cm−3) (GM/Rc2)

Sun M� R� 1 10−6

White Dwarf <∼ 1.4M� ∼ 10−2R� ∼ 106 ∼ 10−4

Neutron star ∼ 1 − 3M� ∼ 105R� ∼ 1015 ∼ 0.1

Black hole arbitrary 2GM/c2 ∼M/R3 ∼ 1

Notes: a M� ≈ 1.989 × 1033 g. b R� ≈ 6.960 × 1010 cm.
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Fermi-Dirac Distribution Function

•  The Fermi-Dirac distribution for the 
occupation number n as a function of 
the fermion energy ε, scaled by the 
chemical potential μ (from Kittel, 
Introduction to Solid State Physics 
[4th ed., 1971]. )

•  As kT -> 0, the distribution 
approaches the degenerate step 
function form, with n non-zero only 
when ε<μ.

•  At high T, distribution approaches 
the Maxwell-Boltzmann form.



• Since the Pauli exclusion principle prohibits electrons being in the same
state, as the thermal momentum drops to zero, a “repulsive” force sets in
. . . this is a fermionic degeneracy pressure.

• At T = 0 K, all the ground states are occupied and none of the excited
states are, and the gas is said to be completely degenerate. The distribu-
tion becomes a step function, being zero above the Fermi energy:

εF =
p2
F

2m
=

h̄2

2m

(
3π2n

)2/3

.

(4)

Here m and n are the mass and number density of the fermions. For
electrons, ne = Zρ/(AmH) for complete ionization.

• The effective criterion for degeneracy is kT <∼ εF . Setting n = ne in
Eq. (4), this translates to

T

ρ2/3
<∼

h̄2

3mek

[
3π2

mH

Z
A

]2/3

= 1.3× 105 K cm2 g−2/3 . (5)

For the central temperature and radius obtained above for Sirius B, namely
T ∼ 108 K and ρ ∼ 106 g cm−3, it can be deduced to be degenerate.

• Carroll & Ostlie use a heuristic argument to estimate the degeneracy pres-
sure P . However, it can be simply obtained. Thermodynamics establishes
P = −∂U/∂V for energy U per particle and volume V = 1/n per particle.
At zero temperature, for a non-relativistic gas

U =
〈p2〉
2m

=
1

2m

∫ pF

0

p2 d3p

/∫ pF

0

d3p =
3p2

F

10m
=

3εF
5

. (6)

Hence, the degenerate, non-relativistic equation of state (EOS) is

P =
3
5
n2 ∂εF

∂n
=

(3π2)2/3

5
h̄2

me
n5/3
e . (7)

For Sirius B, this computes (for Z/A = 0.5 for massive nuclei) to 2× 1023

dyne cm−2, i.e. approximately that required for hydrostatic equilibrium.

• Clearly, electron degeneracy pressure is the prime candidate for support of
white dwarfs against gravitational collapse.
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1.2 White Dwarf Mass-Radius Relation

Considering hydrostatic equilibrium, one can equate the gravitational and C & O,
Sec. 16.4degeneracy pressures:

P ∼ h̄2

me

(
ρ
mp

)5/3

∼ h̄2

me

(
M

R3mp

Z
A

)5/3

∼ GM2

R4 . (8)

Inverting this leads to a relationship between the mass and the radius:

Mwd R
3
wd ∝

1
m5

p

(
h̄2

Gme

)3

≈ 0.45M�

(
109cm

)3

,

(9)

assuming that most of the star is degenerate, i.e. that CO or other nuclear
burning does not ensue.

• Counter-intuitive character: white dwarfs of greater mass are smaller! In-
creased gravity requires higher pressure → greater density → smaller radius.

Plot: Mass-Radius Relation

• Density concentration at the center alters the scaling coefficient in Eq. (9)
and so a precise solution for a polytrope is needed.

• The mass-radius relation does depend on the mean molecular weight µ→
A/Z , and therefore the white dwarf composition. This induces a natural
spread in the Hertzsprung-Russell diagram that leads to some uncertainty in
SN Ia being precise standard candles for cosmology.

Plot: White Dwarf Masses and Radii from Gaia Observations
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White Dwarf Mass-Radius Relation: 
Hipparcos Update

•  Provencal et al. (ApJ 494, 759, 1998)

M!

0.01R!

Fe C



White Dwarf Mass-Radius Relation: 
Gaia Update

•  Tremblay et al. (MNRAS 465, 2849, 
2017).  ESA astrometry probe Gaia 
improves parallax determination by over 
an order of magnitude (Data release 1).

•  This permits refined distance and 
luminosity determinations => more 
accurate radius measurements relative to 
Hipparcos (1990s).

•  Spectroscopy and binary dynamics give 
M/R so that mass estimates improve too.

•  Solid circles are directly-observed WDs, 
open circles are WDs in wide binaries. 
Colors match those of model curves. 

•  Gaia, launched in December 2013, will 
collect data on around 500,000 WDs and 
a billion MS stars.  DR 2 in April 2018.




