
• Giant molecular clouds (GMCs) are enormous complexes of dust and
gas, typically with radii r ∼ 50 pc, with T ∼ 20−30 K and number densities
n ∼ 100−300 cm−3. Residing within such clouds are cores (draw schematic)
of radii r ∼ 0.1− 1 pc and T ∼ 100− 200 K and n ∼ 107 − 109 cm−3.

Plot: Orion and Monoceros Molecular Clouds

∗ The existence of fragmentation into such cores, with masses typically
around 10− 1000M� , indicates that they are the sites of star formation.

∗ Thousands of GMCs are known in our galaxy, mostly in the spiral arms.

1.1 Gravitational Collapse: Jeans Criterion

If molecular clouds are the sites for star formation, what conditions must C & O,
Sec. 12.2guarantee collapse? Obviously, gravity must outweigh kinetic motions. In

the following, neglect rotation and the influence of magnetic fields.

• The gravitational potential of a spherical cloud of uniform density and
mass Mc and radius rc is

U ∼ −3
5
GM2

c

rc
, (1)

and this must exceed twice the virial kinetic temperature K = 3NkT/2 to
seed collapse. Here N = Mc/µmH . Hence 2K < |U | and the criterion is

3MckT
µmH

<
3
5
GM2

c

rc
. (2)

If we set rc = (3Mc/4πρc)
1/3 , then we arrive at the Jeans criterion

Mc > MJ =

(
5kT
GµmH

)3/2 (
3

4πρc

)1/2

(3)

where MJ is called the Jeans mass, or equivalently

rc > RJ =

(
15kT

4πGµmHρc

)1/2

(4)

where RJ is called the Jeans length.
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∗ e.g. For diffuse hydrogen clouds of T ∼ 50 K and n ∼ 500 cm−3, we
have MJ ∼ 1500M� , in excess of the 1− 100M� masses in such clouds; i.e.
they are stable against gravitational collapse.

∗ e.g. Contrast with cores of GMCs, where T ∼ 150 K but the densities are
much higher, n ∼ 108 cm−3. These have MJ ∼ 20M� , implying that GMC
cores are unstable to collapse, suggesting them as sites of star formation.

Plot: Orion and Monoceros Star Associations

∗ There is also frequent physical association between GMCs and young O
and B main-sequence stars, again indicating a star formation connection.

∗ Note that the existence of multiple cores in GMCs suggests that stars
should commonly form in groups, as is observed.

• Just as in structure formation calculations in the early universe, here there
is a power spectrum of density perturbations with collapse seeded once the
Jeans criterion is met.

Now we estimate the collapse timescale for cores of clouds, assuming that
pressure gradients don’t influence the infall (i.e. |dP/dr| � GMcρc/r

2
c ). For

optically thin clouds, the temperature remains nearly constant, so that the
collapse is isothermal. Newton’s law for this hydrodynamic system is

d2r
dt2

= −GM
r2 , (5)

cancelling out mass/density factors and letting r denote the time-dependent
radius of the cloud, initially rc .

Since mass shells do not cross during collapse in this simplified scenario (i.e.,
there is hydrodynamic turbulence), the enclosed mass is a constant of the
motion, so we can set M = Mc = 4πρcr

3
c/3 . Multiplying by dr/dt leads to

a perfect derivative, so that the ODE integrates to

dr
dt
· d

2r
dt2

= −GM
r2 ·

dr
dt

⇒ 1
2

(
dr
dt

)2

=
4π
3
Gρcr

3
c

(
1
r
− 1
rc

)
. (6)
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Orion-Monoceros Molecular Cloud Complex


•  Left panel: CO map.  Right panel: schematic highlighting cloud cores.

•  From: R. Maddalena et al. (1986, ApJ 303, 375)




Here we set dr/dt = 0 initially, i.e. at r = rc . Then setting θ = r/rc , and

tff =

√
3π
32

1
Gρc

, (7)

we solve
dθ
dt

= − π
2tff

√
1
θ
− 1 (8)

via the substitution θ = cos2 ζ to yield (plot ρ = ρ(t) )

−2 sin ζ cos ζ
dζ
dt

= − π
2tff

sin ζ
cos ζ

⇒ π
2tff

dt = (1 + cos 2ζ) dζ (9)

which integrates to

ζ +
1
2

sin 2ζ =
πt
2tff

. (10)

This cycloidal solution has an analogy of bouncing closed universes in a closed
Newtonian cosmology.

• Since initially ζ = 0 corresponding to θ = 1 , the radius of the sphere
reaches zero when ζ = π/2 , so that tff is the free-fall timescale. This could
be established using dimensional analysis only under isothermal assumptions.

• e.g. For cores of GMCs at n ∼ 108 cm−3 that satisfy the Jeans criterion,
ρc ∼ 2 × 10−16 g cm−3, and we arrive at tff ∼ 5000 years; once collapse
starts, it is very quick, i.e. inevitable.

• More massive clouds collapse faster, for given radius.

• Now let us explore the impact of temperature evolution. If the collapse is
truly adiabatic, then T ∝ ργ−1 , where γ = CP/CV is the ratio of specific
heats. We thus deduce that as collapse proceeds and the density rises, so
does T , providing hydrodynamic pressure support. Then, using Eq. (3),

MJ ∝ ρ(3γ−4)/2 , (11)

i.e. MJ ∝ ρ1/2 for γ = 5/3 . Hence the Jeans mass increases during collapse
to infinity for an ideal gas.
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Obviously, this is an oversimplification, since it would imply all collapses
would cease due to pressure support if they evolve into an adiabatic phase.

The physical resolution of this paradox is that the heating during collapse is
curtailed when the gas becomes dense enough to become radiative, so that
the effective γ approaches 4/3 , pressure is relieved and the Jeans mass again
becomes independent of density.

Plot: Jeans Mass Evolution during Free-Fall

• Essentially the fragmented mass corresponds to the minimum mass at the
point when the collapse transitions from isothermal to adiabatically radiative
character, bypassing an adiabatic, but non-radiative phase that would halt
collapse. We can estimate this minimum mass as follows.

• The energy liberated in the collapse is clearly ∆E ≈ 3GM2
J /(10RJ) . Av-

eraging this over the collapse time tff =
√

3π/(32GρJ) ∝ R
3/2
J /M

1/2
J gives a

gravitational luminosity (which could be tapped by radiative processes) of

Lff ∼
∆E
tff
∼ GM2

J

RJ

M
1/2
J

R
3/2
J

= G3/2

(
MJ

RJ

)5/2

. (12)

This can be set equal to a radiative luminosity of 4πR2
JσT

4 times a radiative
efficiency factor ε , signalling the epoch when adiabatic evolution starts, i.e.
the minimum mass is achieved.

G3/2

(
MJ

RJ

)5/2

∼ Lff ∼ Lrad ≈ 4πεM2
J σT

4

(
MJ

RJ

)−2

. (13)

Eqs. (3) and (4) can effect elimination of RJ via MJ/RJ = 5kT/(GµmH) ,
yielding an estimate to the minimum Jeans mass realized in collapses:

MJ|min = 0.03T 1/4M� , (14)

for temperatures in Kelvin and ε = 1 and µ = 1 .

∗ This sets the rough lower bound to the mass scale for protostar forma-
tion: with T ∼ 10 K we get MJ|min ∼ 0.05M� . No main sequence stars are
observed with lower masses!

5



Milt) 

µ.,. 0( f 0 

1/.1401/f -r1v£ C•O( 1~ e. 
'O ucr.s '" ~.t.tvtf. t 

t 



1.2 Pre-Main Sequence Stars

• Collapse starts slowly with a rising temperature and luminosity and then
enters a phase where it accelerates at virtually constant luminosity; i.e., C & O,

Sec. 12.3Te ∝ R−1/2 approximately. Gravitational potential energy seeds the heating.

Plot: Cloud Collapse Evolution and Timelines

• After ∼ 105 years (i.e. roughly a Kelvin-Helmholtz timescale) for a solar
mass protostar, the Hayashi track on the H-R diagram is followed, when
the effective T is constant, L and R decline. The path of the track is
influenced by cloud rotation and magnetic field pressure buoyancy.

• A well-defined and highly-convective core develops in this epoch, and the
protostar has almost reached the ZAMS.

Plot: Hayashi Pre-Main Sequence Tracks and Timelines

• Note: More massive clouds collapse faster.

[Reading Assignment: Hayashi and pre-main sequence tracks, Sec. 12.3]

• The power spectrum of GMC masses in a turbulent ISM indicates a pre-
dominance of lower masses, dictating that most stars form as dwarfs.

Plot: Initial Mass Function (IMF)

• Few stars are massive, generally O and B spectral types. As they are hot,
they possess plenty of ionizing UV radiation.
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Cloud Collapse Evolution


•  Pre-Hayashi phase evolutionary tracks in the Hertzsprung-Russell diagram for the collapse and early 
pre-main sequence evolution of 0.05, 0.1, 0.5,1, 2 and 10 M! cloud fragments (full lines). Dashed lines 
indicate isochrones for the collapse tracks, labeled with the respective ages. Zero age is defined here as 
the moment when the respective cloud fragment becomes optically thick and the interior is thermally 
locked as the first photosphere forms.  From Wuchterl & Tscharnuter (A&A 398, 1081, 2013).
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Hayashi Pre-Main 
Sequence Tracks


•  Left: Theoretical Hayashi evolution tracks for 
proto-stars of different masses.  Convection is 
prolific during the horizontal branch 
“isoluminosity” Teff~R-1/2 condensing phase. 


•  Right: Table of contraction times (in Myr) for 
different mass stars.  


•  Bernasconi & Maeder (A&A 307, 829, 1996).
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Stellar Initial Mass Function


•  Left: Model IMFs including the original power-law one due to Salpeter (1955).  Others address the 
turn down near the brown dwarf boundary (BDB), and are normalized to unit area.


•  Right: observational IMFs near and slightly below the BDB from several star forming regions.

•  From S. Offner et al., Protostars and Planets VI (2014, 914, 53). 





