
3 Stellar Energy Sources

There are several possible sources of energy that could fuel the radiative
power of the sun: rotational energy (angular momentum), gravitational C & O,

Sec. 10.3potential energy, magnetic or electrical energy, chemical energy or nuclear
energy. Generally, rotational, electromagnetic and chemical energy can be
quickly ruled out as being insufficient, though we note that rotational energy
powers pulsars, and magnetic energy can power magnetars.

3.1 Gravitational Potential

• Consider gravitational energy. For mass element dM within a star located
at radius r from the center, the contribution to the potential energy is

dUg = −GM(r)dM
r

, (17)

where M(r) is the enclosed mass satisfying Eq. (6). Also, dM = 4πr2ρ dr ,
so that we can integrate to yield

Ug = −4πG

∫ R

0

M(r)ρ(r) r dr . (18)

If we approximate the star as one of uniform density, then its mass is M =
4πρR3/3 and also M(r) = 4πρr3/3 . Inserted into Eq. (18), these yield

Ug = −3
5
GM2

R
, (19)

a result that will be modified by the density distribution within the star.

∗ |Ug| increases for mass concentration near the center, the case for col-
lapsing pre-supernova cores.

∗ Given that the kinetic energies of elements of the stellar interior satisfy
the virial theorem, the available energy is the negative of the total mechanical
energy, i.e. ∆Eg = 3GM2/(10R) .
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• For the sun this value is 1.1× 1048 ergs, which incidentally is considerably
less than the total energy liberated in a supernova. Assuming a constant solar
luminosity throughout its life, we quickly obtain a gravitational lifetime for
the sun:

tKH =
∆Eg
L�

∼ 9.1× 106years . (20)

This is know as the Kelvin-Helmholtz timescale. Since it is much shorter
than known geological lower bounds to the solar age, we conclude that the
sun is not powered by gravity.

3.2 Nuclear Timescales

Consider now nuclear energy. Nuclear constituents are protons and neutrons.
Hydrogen is most abundant in the universe. If neutrons are to form in the C & O,

pp. 298–9nucleus, the nuclear proton must absorb an electron in a nuclear interaction
(involving production of neutrinos). The essential reaction is

p+ e → n (21)

with a mass balance differential

∆m = mp +me −mn

= 1.672623× 10−24g + 9.109390× 10−28g − 1.674929× 10−24g

= −1.3951× 10−27g . (22)

This clearly suggests that it is not energetically favorable to produce neutrons
(i.e., free neutrons should decay)!

• However, this does not take into account the binding energy of nucleons in
close proximity. We can assess this by comparing the helium mass with that
of hydrogen.

• First define the atomic mass unit: 1u = 1.660540× 10−24 g as one twelfth
of the mass of isotopic carbon 12. Note that 1 u = 931.49432 MeV/c2.
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• In these units, we have mH = 1.007825 u and mHe = 4.002603 u, less than
4mH = 4.031280 u. Hence

∆m = 4mH −mHe = 0.028677 u ⇒ ∆m
4mH

≈ 0.007 . (23)

It is concluded that the binding energy of helium is around 26.71 MeV, or
almost 7 MeV per nucleon. This far exceeds atomic binding energies.

• We can now calculate a nuclear burning lifetime for the sun assuming this
efficiency of 0.7%. Assuming a sun composed entirely of hydrogen, and that
10% of this can undergo nuclear fusion to helium, we have

Enucl = 0.1× 0.007×M�c2 = 1.3× 1051 ergs . (24)

so that the nuclear timescale is

tnucl =
Enucl

L�
∼ 1010 years . (25)

This is long enough to account for geological ages for the solar system.

3.3 Thermonuclear Reaction Rates

Now we turn our attention to the probabilities of nuclear reactions. Since
nuclei are positively-charged, there is a strong Coulomb repulsive force that C & O,

pp. 302–6inhibits reactions. This must be overcome before an even stronger nuclear
attractive force dominates on short length scales, namely 10−13 cm.

Plot: Nuclear Potential Energy Profile

A rough classical estimate of a sufficient temperature in a stellar interior to
surmount the Coulomb barrier can be found by equating the kinetic energy
to the Coulomb potential: for µ ∼ mp/2 as the reduced mass,

1
2
µv2 ∼ 3

2
kTcl ∼

Z1Z2e
2

r
≡ Uc , (26)

where the scale r is the nuclear radius of 10−13 cm. This then establishes
that T ∼ 1010 K is needed, much higher than that of the solar center.
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Coulomb Barrier 
and �

Nuclear Potential

•  The effective potential V(r) governing the radial motion of one nucleus relative to another 
(Fig. 3.4 of Shapiro & Teukolsky). The short range attractive nuclear force dominates at 
r<Rn.  At larger distances, the potential is dominated by the repulsive Coulomb force. 

•  The classical turning point for an orbit is at r = b = Z1Z2e2/E for a CM energy E. 

Coulomb

Nuclear well

L from Schrödinger eqn.



• This classical calculation doesn’t account for quantum tunnelling through
the Coulomb barrier. Heisenberg’s uncertainty principle yields ∆x∆px >∼
h̄/2 , so that penetration on scales ∆x can be achieved by particles of mo-
menta h̄/∆x . Nucleons are not confined to points in space.

• This coupling is manifested in the de Broglie wavelength λ = h/p , which
can be ported into the energy equation just above:

p2

2µ
=

h2

2µλ2
∼ 3

2
kTq ∼

Z1Z2e
2

λ
. (27)

This can be solved for λ to yield 1/λ ∼ µZ1Z2e
2/(2π2h̄2) , and therefore

kTq =
µZ2

1Z
2
2e

4

3π2 h̄2
≈ 2Z2

1Z
2
2

3π2
µ
me

χH , χH = 13.6 eV, (28)

i.e., a value of Tq ∼ 107 K. This value can easily explain nuclear burning in
the solar interior. Here µ is the reduced mass (≈ mp/2 for pp collisions).

• The fact that the classical and quantum values are so disparate emphasizes
the fact that the nuclear reactions are inherently quantum, and moreover,
should be very sensitive to T :

∗ The temperatures in stellar interiors may sample the exponential tails
of Maxwell-Boltzmann distributions nv of nuclear speeds.

• To determine the behavior of the rates, we note that the cross section
σ(v) must be integrated over all v , with the probability of interaction being
proportional to v . If nv is the MB distribution of target nuclei, and n is
the number density of “projectile” nuclei, then the rate of reaction is

dn
dt

=

∫ ∞
0

nnv σ(v) v dv . (29)

The most influential factor in this integral is the cross section. Crudely taking
it to be the effective target area of interaction, we might expect

σ(v) ∝ πλ2 ∝
(
h
p

)2

∝ 1
E

(30)
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in the nonrelativistic limit. However this is too small (∼ 10−26 cm2) and
ignores tunnelling. Quantum tunnelling turns out to depend exponentially
on the Coulomb barrier height Uc and the projectile energy E = µv2/2 :

σ(v) ∝ e−2π
2Uc/E ∝ exp

{
−
(
Ec
E

)1/2
}

, Ec =
2π2µZ2

1Z
2
2e

4

h̄2
(31)

for a Coulomb potential Uc ∼ Z1Z2e
2/λ with λ = h/p , i.e., Uc ∝

√
E .

• It follows that the reaction rate assumes the form

dn
dt
∝
∫ ∞
0

s(v) exp

{
−
(
Ec
E

)1/2

− E
kT

}
dv (32)

for thermal nuclei. Here s(v) = v3σ(v) exp{(Ec/E)1/2} is a slowly-varying
function of speed v .

Plot: The Gamow Peak

∗ The convolution of the strong rise of the cross section with energy and the
exponential decline of the MB distribution yields a strongly-peaked integrand
(denoted the Gamow peak). This occurs at EG ∼ E

1/3
c (kT )2/3 .

• The total rate depends sensitively on temperature. Integration by the
method of steepest descents would then yield a rate proportional to

exp

{
−
(
Ec
kT

)1/3
}

(33)

Clearly, Ec depends on the composition of the gas. Yet, we can quickly write
it down for hydrogen: Ec = 2π2α2

fmpc
2 ≈ 1 MeV, where αf = e2/h̄c .

∗ For the central temperature of the sun, then the Gamow peak is in the
5–10 keV range, and kT � Ec underpinning the temperature sensitivity of
the rate. This is true also in M ∼ 10M� main sequence stars.

∗ Nuclear interaction rates are complicated by energy resonances, and
electron screening of nuclear charges in atoms heavier than hydrogen.
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Nuclear Interaction Gamow Peak

•  The Gamow peak arises from the competition between the Maxwell-
Boltzmann exponential e-E/kT and the Coulomb barrier penetration 
factor exp(-bE1/2) in thermonuclear interactions.
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