
3 The Bohr Atom

Profound developments were made in atomic physics around the end of the C & O,
Sec. 5.319th century and the beginning of the 20th century.

• Thomson discovered the electron in the 1880s;

• Atoms were demonstrated to be neutral, and so contained positive charge;

• Rutherford discovered in 1911, through α -particle scattering, that the
positive nucleus occupied only a very small fraction of the atomic volume.
For hydrogen, it was determined that mp ≈ 1836me .

In 1885, Balmer discovered an empirical relationship for atomic lines in hy-
drogen:

1
λ

= RH

(
1
4
− 1
n2

)
,

n = 3, 4, 5, . . . (16)

Here RH = 1.0968× 105 cm−1 is the Rydberg constant.

∗ n = 3→ Hα Balmer line;

∗ n = 4→ Hβ Balmer line, etc.

• Balmer predicted a more general relationship for non-optical lines:

1
λ

= RH

(
1
m2 −

1
n2

)
,

n = m+ 1,m+ 2,m+ 3, . . . (17)

• Today m = 1 denotes Lyman lines, typically in the UV, and m = 3
denotes the Paschen series (in IR).

• In classical electromagnetic theory, any orbital model of an e + p atom
is basically radiatively unstable: the orbiting electron is accelerating, and
radiates its energy in 10−12 seconds, generating a continuous spectrum.
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• In 1911, Niels Bohr postulated a semi-classical model of the atom in which
angular momentum was quantized:

L =
nh
2π

= nh̄ .

(18)

The electrostatic force in the atom is given by (in c.g.s.)

~F ≡ µ~a =
q1q2
r2

r̂ = −µv
2

r
r̂ (19)

where the charges can be expressed in units of the electric charge e = 4.803×
10−10 esu ≡ 1.602× 10−19 C.

Here µ = memp/(me+mp) ≈ me is the reduced mass. Hence, it follows that

v =
e√
µr

(20)

is the classical atomic orbital speed of the electron.

• Observe that the kinetic energy in such a model is K = µv2/2 = e2/(2r) ,
and the potential energy is U = −e2/r , so that the total energy is

Etot = K + U = − e
2

2r
= −K , (21)

and the bound electrostatic system obeys its own virial theorem!

Now we import Bohr’s idea of angular momentum quantization. L ≡ µvr is
set equal to nh̄ to yield

Etot = − e
2

2r
= −1

2
µv2 = −1

2
(nh̄)2

µr2
, (22)

implying

r = rn ≡
h̄2

µe2
n2 = a0 n

2 ,

(23)

where a0 = 5.29 × 10−9 cm is called the Bohr radius; it is the natural
atomic scale, and is approximately equal to the reduced electron Compton
wavelength divided by αf = e2/(h̄c) . Bohr atomic radii are quantized!
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• The total energy is then also quantized:

Etot = −µe
4

2h̄2
1
n2 ≈ −

13.6eV
n2 ;

(24)

the n = 1 case defines the binding energy 13.6eV of hydrogen.

• µe4/(2h̄2) is often referred to as the Rydberg energy, and is precisely the
cutoff energy for the photoelectric effect for hydrogen: i.e., photo-ionization
requires UV light.

∗ n is known as the principal quantum number in Bohr’s theory.

Transitions between levels n > m lead to photon energies hν = En − Em ,
or

1
λ

= RH

(
1
m2 −

1
n2

)
,

(25)

with

RH =
µe4

4πh̄3c
= 1.0968× 105cm−1 . (26)

Hence, we have recovered an expression for the Rydberg constant in terms
of fundamental constants.

• The excellent agreement between Bohr’s model and Balmer’s observations
was a strong vindication, despite Bohr’s ideas not being truly quantum.

• Kirchhoff’s laws II and III can now be understood as follows:

∗ II: emission lines: nhigh → nlow ;

∗ III: absorption lines: nlow → nhigh .

Plot: Bohr atomic transitions

• The impetus for a detailed quantum theory of atoms was mounting at the
time of Bohr’s enunciation of his model. The culmination was the concept
of wavefunctions and the Schrödinger model of hydrogen, a decade later.
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Bohr Atom Transitions

•  Energy level and wavelength 
diagrams for the hydrogen atom.

    Credits: Wikimedia commons + Science Direct



4 Quantum Concepts

The culmination of Bohr’s ideas was the theory of quantum mechanics, which C & O,
Sec. 5.4developed in the 1920s and 1930s. The evolution of thought concerning

light had moved from particulate nature to wave nature around Newton’s
time, and then back to particles with the developments by Einstein. This
established a wave-particle duality.

• In his Ph.D. thesis, de Broglie (1927) postulated that matter should also
possess such a wave-particle duality, with a particle having frequencies and
wavelengths:

ν =
E
h

, λ =
h
p

. (27)

The wave nature of matter was eventually verified experimentally by gener-
ating an interference pattern using an electron double-slit experiment similar
to the Young’s set-up for the photon wave property demonstration.

• The de Broglie wavelength λ is normally extraordinarily small due to
a particle’s mass. For elementary particles, λ represents the quantum scale
of them, and is only regularly sampled at extremely high densities, around
1/λ3 , which are typically around nuclear densities.

• Neutron stars are sufficiently dense to approach this regime. Taking their
scale to be that of a black hole, i.e. a radius around the Schwarzschild radius
RS = 2GM/c2 , then the ratio of their de Broglie wavelength (for v ≈ c ) to
their Schwarzschild radius is

λ
RS

=
hc

2GM2 (28)

which is typically much less than unity. Eq. (28) becomes unity when the
mass scale and length scale are approximately

MP =

√
h̄c
G

= 2.18×10−5 g , λP =

√
h̄G
c3

= 1.62×10−33 cm . (29)

These are the scales at which gravity and quantum mechanics come together, C & O,
p. 1234and define the Planck mass and Planck length, respectively.
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The simplest wave description of a particle in constant motion is a plane-
wave:

exp
{
i(~k.~x− ωt)

}
≡ exp

{
i
h̄

(~p.~x− Et)
}

. (30)

Quantum mechanics builds on this structure for bound systems such as the
hydrogen atom, via the Schrödinger dynamical equation.

∗ Such plane waves are the incoming states for particles in nuclear scatter-
ing theory calculations. They are also the initial and final states for free parti-
cles and photons in perturbation theory calculations of interactions in quan-
tum electrodynamics (QED) and quantum chromodynamics (QCD)
involving Feynman diagrams.

• The Fourier transform properties of plane waves immediately lead to Heisen-
berg’s Uncertainty Principle:

∆x∆p >∼
h̄
2

, ∆t∆E >∼
h̄
2

.

(31)

between conjugate variables. It is impossible to localize a particle of finite
momentum to a point in space, or vice versa.

∗ The quantization of energy levels in an atom ( ∆E = 0 ) leads to total
lack of localization in time, i.e. ∆t → ∞ ; precise energy states are stable
and of infinite duration.

∗ Excited energy states have a natural width or finite lifetime τ so that
∆E ∼ h̄/τ > 0 . These lifetimes are typically very short, � 1µ sec.

• Matter is described under quantum mechanics by probability distributions,
i.e. wavefunctions.

∗ This permits quantum mechanical tunneling through potential bar-
riers, for example repulsive nuclear ones, that are energetically impenetrable
in a classical description. This we will explore in our subsequent thermonu-
clear reaction studies of stellar cores.

[Reading Assignment: C & O pp. 135-6: spin and the Pauli exclusion prin-
ciple for fermions]
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