• Photo-electric absorption is maximized in the ultra-violet and soft X-ray band. It has to be corrected for when performing X-ray spectroscopy in compact objects such as AGNs and neutron stars. The cross section for the PE effect above the threshold frequency ν_c scales roughly as $(\nu/\nu_c)^{-7/2}$.

* The severity of the source spectral attenuation below around 5 keV is used to measure the integrated **column density** $n_e d$ along the line of sight to the source at distance d.

• Since the direction that an ejected electron emerges depends on the photon polarization (i.e. the orientation of its electric field vector), the photo-electric effect can be used as a tool for **X-ray polarimetry**.

Plot: Photo-electron Ejection Dependence on Light Polarization

1.2 Compton Scattering

A second watershed development in quantum theory was the identification C & O, by Compton in 1922 of the coupling between wavelength changes and the scattering angle θ in the collision between a photon and an electron. C & O,

* the analytic relationship Compton identified is a direct consequence of light quantization as photons: $E_{\gamma} = hc/\lambda$.

Plot: Compton scattering

• If $E_{\gamma} = hc/\lambda = h\nu = p_{\gamma}c$ collides with an electron at rest, then conservation of (relativistic) energy and momentum gives

$$\Delta \lambda \equiv \lambda_f - \lambda_i = \frac{h}{m_e c} \left(1 - \cos \theta \right) \quad .$$
(4)

• This change in wavelength is a purely quantum phenomenon, known as the **Compton effect**. Its discovery provided a major impetus for the development of quantum theory.

Electron-photon Compton Scattering

• Here, $h/(m_e c) = 2.426 \times 10^{-10}$ cm is known as the **Compton wavelength** of the electron; it represents the quantum spatial scale of the electron.

* if we send $h \to 0$, so that quantum effects disappear, classical **Thomson** scattering still arises. This is realized in the long wavelength limit.

• The essentials of the Thomson process can be described using **Larmor** formalism for the radiation of accelerating charges. The power P per unit solid angle (averaged over all photon polarizations) is given by

$$\frac{dP}{d\Omega} = \frac{q^2}{8\pi c^3} \left(\dot{\mathbf{v}} \cdot \dot{\mathbf{v}} \right) \left\{ 1 + \cos^2 \theta \right\} \quad \Rightarrow \quad P = \frac{2}{3} \frac{q^2 |\dot{\mathbf{v}}|^2}{c^3} \quad . \tag{5}$$

Here θ is the scattering angle of the photon. This differential power must be divided by the **Poynting flux** $S = \{|\mathbf{E}|^2 + |\mathbf{B}|^2\}c/(8\pi) \equiv |\mathbf{E}|^2c/(4\pi)$ (light energy passing through unit area per unit time) to yield the **differential** cross section for scattering:

$$\frac{d\sigma}{d\Omega} = \frac{1}{S} \frac{dP}{d\Omega} = \frac{4\pi}{|\mathbf{E}|^2 c} \frac{dP}{d\Omega} \quad . \tag{6}$$

The mean electric field of the wave scales the electron acceleration through the Lorentz force, so that $m |\dot{\mathbf{v}}| = q |\mathbf{E}|$. One can then arrive at the **Thomson scattering cross section**. For unpolarized scattering, per unit solid angle, one has (for $q \to -e$)

$$\frac{d\sigma_{\rm T}}{d\Omega} = \frac{r_0^2}{2} \left\{ 1 + \cos^2 \theta \right\} \quad , \quad r_0 = \frac{e^2}{m_e c^2} = 2.82 \times 10^{-13} {\rm cm} \quad . \tag{7}$$

Here r_0 is the **classical electron radius**, and gives a measure of the "size" of the point charge in <u>classical</u> electromagnetic theory. Integrating over θ ,

$$\sigma_{\rm T} = \frac{8\pi}{3} \alpha_{\rm f}^2 \left(\frac{\hbar}{m_e c}\right)^2 = \frac{8\pi}{3} r_0^2 \quad . \tag{8}$$

Here $\alpha_{\rm f} = e^2/\hbar c \approx 1/137.08$ is the **fine structure constant**, the fundamental coupling for interactions in **quantum electrodynamics** (QED).

• For $\lambda_i \leq h/(m_e c)$, extreme changes in the wavelength occur. This corresponds to photon energies $E_{\gamma} = hc/\lambda \sim m_e c^2$, and electron recoil becomes significant in the so-called **Klein-Nishina limit**.

1.3 Cyclotron and Synchrotron Radiation

• Cyclotron motion in a uniform magnetic field is described by the Lorentz force, which distills to space and time contributions for four-momentum $p^{\mu} \equiv (E, \mathbf{p}) = (\gamma mc^2, \gamma m \mathbf{v})$

$$\frac{d}{dt}(\gamma m \mathbf{v}) = \frac{q}{c} \mathbf{v} \times \mathbf{B} \quad , \quad \frac{d}{dt}(\gamma m c^2) = q \mathbf{v}_{\perp} \cdot \mathbf{B} = 0 \quad . \tag{9}$$

No work is done on the charge, so γ remains constant in time, neglecting radiation reaction. The equation of motion can then be separated to isolate the pieces for components of velocity parallel ($\mathbf{v}_{\parallel} \propto \mathbf{B}$) and perpendicular (\mathbf{v}_{\perp}) to the field:

$$\frac{d\mathbf{v}_{\parallel}}{dt} = 0 \quad , \quad \frac{d\mathbf{v}_{\perp}}{dt} = \frac{q}{\gamma mc} \mathbf{v}_{\perp} \times \mathbf{B} \quad . \tag{10}$$

The first of these is most easily deduced by writing $\mathbf{v} = \mathbf{v}_{\parallel} + \mathbf{v}_{\perp}$, and expanding the cross product, noting the trivial result $\mathbf{v}_{\parallel} \times \mathbf{B} = \mathbf{0}$.

• It follows that \mathbf{v}_{\parallel} is constant, and therefore so also is $|\mathbf{v}_{\perp}|$, and the motion is helical. The frequency of the orbit or gyration is

$$\omega_{\rm B} = \frac{qB}{\gamma mc} \quad . \tag{11}$$

For a truly non-relativistic electron, <u>all</u> the radiation emerges at the cyclotron frequency. Yet, harmonics appear at the multiples $n\omega_{\rm B}$, for integers n = 2, 3..., and these are suppressed in their power to the order of $(v/c)^{2n}$.

Plot: Cyclotron Motion and Radiation

• For warm electrons, if $kT/m_ec^2 \sim v^2/c^2 \ll 1$, then the cyclotron fundamental is dominant, yet it is **Dopper broadened**. Eq. (11) would suggest that thermal motions might just redshift the fundamental at the $O(v^2/c^2)$ level, since $1/\gamma \approx 1 - v^2/(2c^2)$. Yet there is also blueshift+redshift in the \mathbf{v}_{\parallel} component for an isotropic thermal gas, and this is of O(v/c); this is what is dominant and defines the line broadening, with $\delta \nu / \nu \sim \sqrt{kT/m_ec^2}$.

Cyclotron and Synchrotron Radiation

 From Bekefi (1966): "Radiation Processes in Plasmas"

Fig. 6.2 Sketch of the spectrum of cyclotron radiation by a nearly nonrelativistic electron ($\beta_{\parallel} = 0$).

• Cyclotron radiation is elliptically polarized in general, but is circularly polarized when viewing perpendicular to the plane of gyration, i.e. along **B**.

• Total radiated power for acceleration is given by the Larmor formula in Eq. (5), but adapted for this problem, i.e., using $|\dot{\mathbf{v}}| = |\dot{\mathbf{v}}_{\perp}| = qB/\gamma m$:

$$P \equiv \frac{dE}{dt} = \frac{2}{3} \frac{q^2}{c^3} \gamma^4 \left(\dot{\mathbf{v}} \cdot \dot{\mathbf{v}} \right) = \frac{2}{3} \frac{q^4}{m^2 c^3} \gamma^2 B^2 \quad .$$
(12)

The extra factor of γ^4 is needed to describe the Doppler boosting of the radiated power (luminosity). Where does it come from? There are three contributions:

- the light frequency (and energy E) is blueshifted by γ ,
- the emitting time interval is shrunk by $1/\gamma$,
- the radiation is collimated (**beamed**) into a solid angle $\propto 1/\gamma^2$.

Clearly, for large enough γ , the radiation must rapidly cool the electrons and modify the helical motion: this we call **radiation reaction**.

• When the electron's motion is ultra-relativistic, with $\gamma \gg 1$, many cyclotron harmonics contribute, and the Doppler broadening is so substantial that the harmonics overlap. The result is a continuum spectrum for the process of **synchrotron radiation**.

• Synchrotron radiation is the principle emission mechanism from optically thin plasmas with non-thermal electrons present, likely accelerated by astrophysical shocks of magnetic reconnection. It is seen in radio waves, optical, X rays and gamma rays. Manifestations include solar coronal field loops, supernova remnants, and relativistic jets emanating from black holes.

* Often, these settings involve power-law distributions of electrons, and so the radiation evinces approximately a non-thermal power-law spectrum.

* Synchrotron radiation is highly polarized in general, though tangling of plasma magnetic fields can depolarize it significantly.

Synchrotron Beaming and Radio Sources

- Synchrotron radiation is highly beamed and highly polarized (linear);
- High efficiency makes it prime emission mechanism in many sources (e.g. pulsars, Crab PWN, Cassiopeia A SNR)

1.4 Bremsstrahlung Radiation

• In ionized gases, *free-free* collisional interactions accelerate charges. Classically, these must radiate, and we call this **bremsstrahlung** emission. It can occur between free electrons, or in collisions of fast electrons with nuclei.

• The momentum deflection is small for large **impact parameters** b or electron speeds v, and for electron-ion collisions scales as

$$|\Delta \mathbf{p}| \approx \frac{2Ze^2}{bv} \tag{13}$$

The scattering angle is $\theta_{\rm sc} \approx |\Delta \mathbf{p}|/p$ and the probability of scattering is given by the differential cross section

$$\frac{d\sigma}{d\Omega} \approx \left(\frac{2Ze^2}{mv^2}\right)^2 \frac{1}{\theta_{\rm sc}^4} \quad . \tag{14}$$

This is the famous Coulomb scattering result discovered experimentally by Sir Ernest Rutherford, which led to the identification of compact, positivelycharged nuclei in atoms. [Note the gravitational analog.]

Plot: Bremsstrahlung Collisional Geometry sketch

• Classically, bremsstrahlung is calculated as the radiative weighting of the Coulomb scattering process, and leads to flat spectra with temperatures tracing the gas temperature. The power dW per unit frequency interval $d\nu$ is

$$\frac{dW}{dV\,dt\,d\nu} \propto \frac{Z^2 n_e n_i}{\sqrt{kT}} \exp\left\{-\frac{h\nu}{kT}\right\} \quad , \tag{15}$$

in unit volume dV and unit time dt.

• In astrophysics, bremsstrahlung is responsible for diffuse X-ray emission in the Galactic Ridge region, and in clusters of galaxies, with temperatures sometimes exceeding 10^7 K.

* Gravitational analog: collisions between massive bodies lead to gravitational radiation, much weaker than its electromagnetic counterpart.

Bremsstrahlung: Classical and Quantum

- *Left*: classical bremsstrahlung between an electron and a nucleus.
- *Right*: the quantum view Feynman diagrams where the photon is emitted either <u>before</u> or <u>after</u> the Coulomb interaction.

2 Spectral Lines

We now draw these preliminary quantum concepts together to make a direct C & O, connection to solar and stellar spectroscopy. Sec. 5.1

The principal observation is that the solar spectrum is not a pure blackbody, but exhibits strong **absorption lines**.

Plot: Solar spectral lines

2.1 Kirchhoff's Laws

Kirchhoff summarized the production of spectral lines in stars via three succinct laws:

- *Hot dense* gas produces a continuous spectrum with no dark spectral lines;
- *Hot diffuse* gas produces bright spectral lines called **emission lines**;
- *Cool diffuse* gas in front of a source spectrum generates dark spectral lines (absorption spectrum).

The goal is to now ascertain a physical basis for the nature of these laws, and characteristics of such lines. The basis is quantum mechanical in origin.

* The third of these laws establishes that stellar interiors are much hotter than their surfaces, an essential input for the theory of stellar structure.

Fraunhofer Lines in the Solar Spectrum

- Right: Rainbow representation of solar spectrum with absorption lines: [Courtesy NOAO]
- Left: 2012 German commemorative stamp celebrating Fraunhofer's 1787 birth.

Spectra of Sun and Microwave Background

- *Left*: the solar spectrum in visible and IR (300-1000nm) as measured by Neckel & Labs (1984, Sol. Phys. 90, 205). The fitted solid curve is a blackbody at 5770°K, the effective temperature of the photosphere.
- *Right*: dB_v/dT spectrum of the cosmic microwave background (CMB) from COBE, with T=2.728±0.004°K Planck fit and 1 σ error bars. From Dixsen et al. (1996, ApJ 473, 576).

STRONG SOLAR LINES

Wavelength			Equivalent
(Å)	Name	Atom	Width (Å)
3859.922		Fe I	1.554
3886.294		Fe I	0.920
3905.532		Si I	0.816
3933.682	K	Ca II	20.253
3968.492	Η	Ca II	15.467
4045.825		Fe I	1.174
4101.748	h, H $_{\delta}$	ΗI	3.133
4226.740	g	Ca I	1.476
4340.475	$\mathrm{G}',\mathrm{H}_{\gamma}$	ΗI	2.855
4383.557	d .	Fe I	1.008
4404.761		Fe I	0.898
4861.342	F, H_{β}	ΗI	3.680
5167.327	b ₄	Mg I	0.935
5172.698	b_2	Mg I	1.259
5183.619	b ₁	Mg I	1.584
5889.973	D_2	Na I	0.752
5895.940	D ₁	Na I	0.564
6562.808	C, H_{α}	ΗI	4.020

Table 5.1 Wavelengths of the Strong Fraunhofer Lines. The atomic notation is explained in Section 8.1, and the equivalent width of a spectral line is defined in Section 9.4. (Data from Lang, *Astrophysical Formulae*, Second Edition, Springer-Verlag, New York, 1980.)