
2 Extrasolar Planets

A classic 21st Century application of our binary system understanding is in
the study of extrasolar planets, also called exoplanets. This field has
become possible with enhanced technologies on two fronts.

[Reading Assignment: C & O: Section 7.4]

• The first technical advance was in the ability to measure Doppler shift
velocities in spectral lines at the precision of better than 10 metres/sec. If
one applies Kepler III to Jupiter, one arrives at a perihelion speed of vJ ∼
13 km/sec, i.e. around 2πaJ/PJ . The center of mass considerations then
simply yield the corresponding value for the sun about Jupiter:

v� ≈
mJ

M�
vJ ∼ 12.5 metres/sec . (13)

This sets the Doppler precision scale to infer the presence of Jupiters around
nearby stars using state of the art spectrometers.

∗ Sub-Jupiter objects (Neptunes) were beginning to be detected by this
Doppler technique by 2003-2004.

Plot: µ Arae Velocity Curves from La Silla and AAT - a Neptune

• The main complementary technique ushered in by the Kepler mission in
2008 was that of photometric transit determination using eclipsing of stars
by planets. Advances were forged by the ability to measure photometric
decrements on the order of 1% or less. This can be employed in conjunction
with the Doppler approach.

Plot: Kepler candidate exoplanet census, circa 2011

• Outline experimental sequence of ground-based, Kepler and SIM using
handouts. Eclipse studies and interferometry.
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 μ Arae Velocity Variations 


•  Left panel: Measurements of the radial velocity of the star μ Arae obtained by HARPS (ESO 3.6m telescope at La 
Silla - green triangles), CORALIE (Euler 1.2m telescope, La Silla - red dots) and UCLES (Anglo-Australian 
Telescope - blue circles).  Best fit solid line assumes the existence of two planets and a long-period companion. 
The width of the line implies the existence of a short period planet. Data shown span July 1998 to August 2004.	



•  Right Panel: The HARPS radial velocity measurements phase-folded with the orbital period of the short period 
(9.5 days) exoplanet.  The semi-amplitude of the curve is less than 5 metre/sec, which at this 9.5 day period 
implies a minimum mass for the sub-Jupiter planet of 14 times that of the Earth.	



Courtesy: ESO Public Image Archives	





Extrasolar Planets: Kepler Census

•  Lissauer et al. (2011, ApJS 197, 8) lists over 1200 candidate planets from 
Kepler mission transits, emphasizing the prevalence of multi-planet systems.

•  Period range is a few months down to a fraction of a day;
•  Radius range is from Jupiters down to sub-Earth scale!



Multi-Planet Systems 
According to Kepler	



•  Lissauer et al. (2011, ApJS 197, 8): 
multi-planet systems are common.	



•  4-6 planets (above); 3-4 planets (RHS)	


•  Planet size α dot size; colors correlate 

with size and temperature.	





3 Virial Theorem

For larger ensembles of stars, global averages can be described using an energy C & O,
Sec. 2.4theorem, called the virial theorem. It is applicable to solar systems, open

and globular clusters, galaxies, clusters of galaxies and gas therein.

• It provides a means for estimating total mass content using determinations
of the kinetic energy content. A key example is the inference of dark matter
from galactic rotation curves.

• First, in two body systems, we have

E =
1
2
µv2p −G

Mµ
rp

, rp = a(1− e) , v2p =
GM
a

(
1 + e
1− e

)
, (14)

which leads to

E =
GMµ
a

{
1
2

1 + e
1− e −

1
1− e

}
= −GMµ

2a
= −Gm1m2

2a
. (15)

Therefore,

E =
1
2
〈U〉 , 〈U〉 = −Gm1m2

a
.

(16)

This is the 2-body virial theorem, and 〈U〉 is the time-averaged potential
energy of the system (proof left to the reader).

∗ An example of this pertains to near-Earth orbit satellites, where the
factor of 2 defines the added kinetic energy required for rockets to escape
Earth’s gravity relative to those that place satellites in orbit.
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To prove the general virial theorem, we form the following momentum
moment of particle positions:

Q =
∑
i

pi · ri . (17)

The time derivative of this can simply be recast as

dQ
dt

=
d
dt

∑
i

mi
dri
dt
· ri =

1
2
d2I
dt2

, I =
∑
i

mir
2
i . (18)

Here I is the moment of inertia of the multi-body system. This differential
equation can be formed in an alternative way by retaining the differentiation
of momentum so as to capture the force Fi = dpi/dt explicitly:

dQ
dt
≡ 1

2
d2I
dt2

=
∑
i

pi ·
dri
dt

+
∑
i

dpi

dt
· ri . (19)

The first term on the right is just twice the kinetic energy K :∑
i

pi ·
dri
dt

=
∑
i

mi vi · vi = 2K . (20)

Accordingly, we have formulated an energy equation, where the force term
connects to the gravitational potential energy of the system, and the moment
of inertia second derivative term describes the redistribution of rotational
kinetic energy in the ensemble of bodies.

Defining Fij = −Fji as the gravitational force on body i due to body j ,
then one can manipulate the force contribution using a double summation
trick as follows:∑

i

Fi · ri =
∑
i

(∑
j 6=i

Fij

)
· ri ≡

1
2

∑
i

(∑
j 6=i

[
Fij − Fji

])
· ri (21)

Performing a simple index relabeling i↔ j on the second term on the RHS
establishes ∑

i

Fi · ri =
1
2

∑
i

∑
j 6=i

Fij ·
[
ri − rj

]
. (22)
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Now, the gravitational force law can be inserted,

Fij = − Gmimj

|ri − rj|3
[
ri − rj

]
, (23)

so that ∑
i

Fi · ri = −1
2

∑
i

∑
j 6=i

Gmimj

|ri − rj|
= U , (24)

the total potential energy. Observe that the factor of 1/2 disappears
here since each i, j pair is counted twice.

Collecting results, we have determined that

1
2
d2I
dt2

= U + 2K . (25)

For ensembles that are in kinetic equilibrium on long times (static), such as
globular clusters, stars themselves, or gas at the centers of clusters of galaxies,
the time derivative on the LHS is extremely small and may be neglected. The
same can be applied for periodic systems if the equation is integrated over a
multiple of the system period. The upshot is then that long term ensemble
averages obey

〈U〉 = −2〈K〉 ⇒ 〈E〉 ≡ 〈K〉+ 〈U〉 =
1
2
〈U〉 ,

(26)

which is the generalized virial theorem for self-gravitating ensembles of
bodies or gas particles.

• Its principal use is to forge a direct correlation between the kinetic “tem-
perature” of such a system, i.e. 〈K〉 , an observable, and the total gravitating
mass of the ensemble, assuming that its mean radial extent is measurable.
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4. PHOTOMETRIC CONCEPTS
AND RADIATION

Matthew Baring – Lecture Notes for ASTR 350, Fall 2021

1 Magnitudes

The awareness that some stars are brighter than others dates back to the C & O,
Sec. 3.2Greeks, who devised an apparent magnitude scale:

∗ m = 1 (bright) ⇒ 6 (faint)

• In the 19th century, astronomical developments enabled determination
that such a range corresponded to a factor of 100 in brightness or flux F .

∗ F = energy in photons/area/time at detector.

• The flux differs from luminosity L , which is the total radiated power of
a star or source (i.e. the wattage of the light bulb!):

∗ L = energy in photons/time.

Hence, the inverse square law of photon dilution establishes

F =
L

4πd2
(1)

for a source at distance d from Earth.
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Accordingly,

F� =
L�

4π(1AU)2
= 1.36× 106erg sec−1cm−2 (2)

is the solar flux at Earth and is called the solar constant.

∗ Note the cgs to SI unit conversion: 1 erg = 1 g cm2 sec−2 = 10−7 kg m2

sec−2 = 10−7 Joules.

The flux and luminosity both depend on the waveband under consideration.

• Observational equivalents of F and L are the apparent magnitude m
and the absolute magnitude M . Using the Greek scale as a guideline led
astronomers to the definitions

F ∝ 10−2m/5 and L ∝ 10−2m/5 d2 ∝ 10−2M/5 (3)

The constants of proportionality were “benchmarked” by setting m = M for
sources at a distance of d = 10 pc, a typical distance scale for nearby stars.
Hence,

m−M = 5 log10

(
d

10 pc

)
,

(4)

and we call this quantity a source’s distance modulus.

∗ Observe that for the sun, the brightest object in the sky, a complete
outlier with m� = −26.81 , however its absolute magnitude is M� = 4.76 ,
typical of other main sequence stars.

• It is appropriate to now define the distance scale of a parsec, abbreviated
pc. It is the distance at which 1 AU on the sky subtends 1 arcsec, i.e. the
distance at which the parallax of a star is π = 1 ”:

1pc =
1.496× 1013cm
π/180/3600

= 3.09× 1018cm = 3.26 lt yr. (5)

Plot: Stellar parallax

2



Earth 

··:-... · .. : .· /• 

·':fat ·· -- -- -~~ - . . ---- . 

. ··•·••••·••· .. •{f::···· •'•' ....... : . . ·· .. 
. · ~ ': '• 

Figure 3.2 Stellar parallax: d == l/p" pc. 
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