
• At perihelion and aphelion, the velocities are purely tangential (circular)
so that their values lead to the determination of L in terms of a and e :

L = µrpvp = µrava ⇒ vp
va

=
ra
rp

=
1 + e
1− e . (45)

Insertion into the energy equation

1
2
µv2p −G

Mµ
a(1− e) =

1
2
µv2a −G

Mµ
a(1 + e)

(46)

which rearranges to

1
2
µv2p

{
1−

(
1− e
1 + e

)2
}

=
GMµ
a

(
1

1− e −
1

1 + e

)
. (47)

Eliminating vp then yields the result

L = µ
√
GMa(1− e2) , (48)

so that for fixed a , the angular momentum is maximized for circular orbits.
While this demonstrates the facility of considering orbits at perihelion and
aphelion, this result could be simply obtained directly from Eq. (40).

6.3 Kepler’s Third Law

This law follows immediately from his second law, i.e. by integrating Eq. (44)
over an entire period P , for which the time integration is trivial. Since the
area of the ellipse is πab = πa2

√
1− e2 , this can be equated to LP/(2µ)

using Eq. (48) to yield

a3

P 2 =
GM
4π2

(49)

as the general form of Kepler’s Third Law for e 6= 0 . Here M = m1+m2 ,
so that the total mass of the system determines the period.

∗ This law is used ubiquitously in astrophysics as a means of mass deter-
mination; for example black holes.
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2. BINARY STARS, EXOPLANETS
AND THE VIRIAL THEOREM

Matthew Baring – Lecture Notes for ASTR 350, Fall 2021

1 Binary Stars

Binary stellar systems are another showcase for the application of Kepler’s C & O,
Chap. 7laws. We identify 4 main classes of binaries:

• Visual binaries — we can see both members moving in ellipses; resolved
at most or all times.

• Astrometric binaries — we can see one very bright member and can in-
fer the presence of the other companion (faint star) from the bright one’s
elliptical orbit.

• Eclipsing binaries — one companion passes in front of and behind the
other: orbital plane is approximately along the line of sight.

• Spectroscopic binaries — spectra of two discernible binary stars periodi-
cally redshift and blueshift according to orbital phase.

∗ These last two cases constitute the principal tools astronomers use for
searching for extrasolar planets.

Plot: Astrometric and eclipsing binaries
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1.1 Mass Determination Using Visual Binaries

The goal here is to discern how knowledge of elliptical orbits for both mem- C & O,
Sec. 7.2bers can constrain their masses. In CM coordinates, m1~r1 +m2~r2 = ~0 . The

ellipses then establish
m1a1 = m2a2 . (1)

If d is the (unknown) distance to the binary, then the angles subtended by
a1 and a2 are

α1 =
a1
d

, α2 =
a2
d

, (2)

which leads to the determination of the mass ratio:

m2

m1
=

α1

α2
. (3)

• If the plane of the orbit is tipped by an inclination angle i from the plane
of the sky, then the projected angles are α̃i (measured quantities), so that

m2

m1
=

α1

α2
=

α̃1/ cos i
α̃2/ cos i

=
α̃1

α̃2
, (4)

i.e., orbital inclination effects cancel and do not affect the mass ratio de-
termination.

• This cancellation does not occur when applying Kepler’s Third Law:

P 2 =
4π2a3

G(m1 +m2)
, a = a1 + a2 . (5)

Each star has the same period P in its orbit, so if this is measured and
the distance d to the source is known, then we know a1 , a2 and a (for
cos i = 1 ), and hence m1 +m2 , i.e., the total mass.

• Information on m1 +m2 and m1/m2 yields each mass separately.

• In general, we do not know cos i , though eclipsing constrains it to values
much less than unity, for which orbital parameters are not as well determined.
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• For α̃ = α̃1 + α̃2 , Kepler III gives

m1 +m2 =
4π2

G
(αd)3

P 2 =
4π2

G

(
d

cos i

)3
α̃3

P 2 . (6)

Information on cos i can be obtained by probing the offset of the focus of
the projected ellipse from dynamical determinations for the true ellipse.

∗ Tipping of the ellipse around the semi-major axis can confuse the picture.

Plot: Binary orbit projections

1.2 Spectroscopic and Eclipsing Binaries

• Adding information concerning spectral lines or from eclipses can constrain C & O,
Sec. 7.3the system further, deducing individual masses, and perhaps even radii and

effective temperatures.

• Doppler effect probes radial (line of sight; LOS) velocity, i.e., v1r = v1 sin i
and v2r = v2 sin i .

∗ This works best for orbital planes perpendicular to the sky, i.e. along
the LOS.

• For circular orbits, regardless of the value of cos i , the spectroscopic veloc-
ity curves are sinusoidal in time (since dθ/dt = const.), with the amplitude
for both stars modulated by sin i .

• Eccentric orbits ( e 6= 0 ) will skew and distort the velocity time profiles:
sinusoidal signatures in θ map over to distinctive curves in t due to the
transcendental relationship between θ and t .

∗ the distortion depends on sin i and the orientation of the semi-major
axis ⇒ a wealth of information can be gleaned from the light curves.

Plot: Radial velocity curves
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Binary Orbit Projections

• An elliptical orbit projected onto the plane of the sky is an ellipse.  The foci of the 
projected true ellipse are offset along the major axis from the foci of the observed ellipse.

• The inclination angle i can be determined using precise orbital timing.  A prime
application is star S2 around the supermassive black hole Sgr A* at the Galactic centre.

Inclination angle to sky plane



Spectroscopic Binaries


Graphics courtesy of  

Caltech Astronomy




• In practice, tidal interactions tend to circularize the orbits, so that often
e ≈ 0 . Then

v1 =
2πa1
P

, v2 =
2πa2
P

(7)

and
m1

m2
=

a2
a1

=
v2
v1

=
v2r/ sin i
v1r/ sin i

=
v2r
v1r

(8)

where subscripts r denote radial velocities. Hence, the mass ratio is deter-
mined by Doppler spectroscopic observables. Working with Kepler III then
gives

a = a1 + a2 =
P
2π

(v1 + v2) (9)

so that

m1 +m2 =
4π2a3

GP 2 ≡
P

2πG
(v1 + v2)

3

(10)

=
P

2πG
(v1r + v2r)

3

sin3 i
=

P
2πG

v31r
sin3 i

(
1 +

m1

m2

)3

.

Hence,

m3
2

(m1 +m2)
2 sin3 i =

P
2πG

v31r .

(11)

The L.H.S. of this equation is know as the mass function, and the R.H.S.
comprises observables, even in cases where one companion is too faint to be
observed (so-called single-line spectroscopic binaries).

• Often, the mass function is used to establish a lower bound on m2 (using
sin i = 1 ), if the mass ratio cannot be determined.

∗ This approach is particularly useful for identifying candidate black holes.

Plot: Table of Galactic Black Hole Candidates

• Dynamical estimates of single-line spectroscopic binaries can rule out neu-
tron stars or white dwarfs as companions because of high inferred masses.
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Black Hole Masses in Binaries


•  Dynamical estimates of Galactic black hole masses (highlighted M1 column) – cases 
confirmed by radio and optical observations of the orbiting companion.

•  From McClintock and Remillard (2004) in "Compact Stellar X-ray Sources," eds. 
W.H.G. Lewin & M. van der Klis, Cambridge University Press. [astro-ph/0306213]



• Information on sin i is available in eclipsing systems:

∗ deep eclipses have flat bottoms, implying sin i ≈ 1 ;

∗ particle eclipses have no flat bottoms and smoother onsets, implying
0.8 <∼ sin i <∼ 0.9 .

Plot: Eclipse time profiles

• The duration of eclipses, coupled with dynamical information on vi , lead
to determinations of the radius of the obscured companion, and also the
obscuring companion:

rs =
v
2

(tb − ta)
(12)

rl =
v
2

(tc − ta) = rs +
v
2

(tc − tb)

for the radii rs and rl for the smaller and larger binary member, respectively.

∗ Given flux measurements and spectroscopic T , this can be used to de-
termine stellar distances via the Stefan-Boltzmann law.

[Reading Assignment: C & O: pp. 192–193 on temperature properties and
distance inferences from brightness measurements]
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Eclipsing Binaries

Light curve depends on 

orbital inclination and phase


Graphics courtesy of  
NASA GSFC and 
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