
5 Binary Orbits

It is appropriate now to define a center of mass (CM) formalism for use in C & O,
pp. 44–47binary gravitational systems. The center of mass position vector is

R =

∑
i

mi ri∑
i

mi

(21)

Let us focus on the two-body case and set the CM to be the origin: R = 0

m1r1 +m2r2
m1 +m2

= 0 . (22)

Under gravitational interaction, Newton’s Third Law indicates this CM po-
sition is fixed at all times.

Plot: Binary orbits

If r is the displacement vector between the two masses, namely r = r2− r1 ,

r1 = − µ
m1

r ; r2 =
µ
m2

r , (23)

for

µ =
m1m2

m1 +m2
(24)

as the reduced mass. Note the harmonic mean identity

1
µ

=
1
m1

+
1
m2

. (25)

Setting M = m1+m2 as the total mass, then two time derivatives of Eq. (22)
yields the result (for momentum P )

dP
dt

= M
d2R
dt2

= 0 , (26)

i.e. the total force on the self-gravitating system is zero, and as a whole it
moves with a state of inertia.
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The total energy distills into a simple form. Setting v = dr/dt , v = |v| ,
and r = |r1 − r2| , then using Eq. (23)

miv
2
i

2
=

µ2

2mi
v2 (27)

for i = 1, 2 , and

E =
1
2
m1|v1|2 +

1
2
m2|v2|2 −

Gm1m2

|r1 − r2|
(28)

=
1
2
µv2 − GMµ

r
.

This is a conveniently elegant form. The force equation is similarly compact
for the binary system:

µ
d2r
dt2

= −GMµ
r2

r̂ , (29)

as is the total orbital angular momentum

L = m1 r1 × v1 +m2 r2 × v2

(30)
= µ r× v = r× p .

It is left to the student to derive these last two results in entirety.

• Just as before when exploring circular orbits, it is easy to demonstrate
that angular momentum is conserved for the two-body motion:

dL
dt

= µ
dr
dt
× v + µ r× d2r

dt2
= 0 . (31)

Also, given the constancy of L , the trivial identities r · L = 0 = v · L
establish that the motion is in a plane perpendicular to L .

• These three equations for energy, force and angular momentum clearly
indicate that the two-body problem can be reduced to an equivalent one
body one, with the total mass M masquerading as the central mass, the
separation vector r acting as space coordinate, and the reduced mass µ
taking on the role of the test body mass.
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6 Derivation of Kepler’s Laws

With all the necessary formalism prepared, we can now proceed to the deriva- C & O,
Sec. 2.3tion of Kepler’s laws as consequences of Newton’s law of gravitation.

6.1 Kepler’s First Law

This is the most involved of the proofs, and starts by taking the dot product Shu,
pp. 465of the force equation (29) with the velocity v = dr/dt :

v .
d2r
dt2

= −GM
r2

v . r̂ = −GM
r2

dr
dt

, (32)

since v = r̂ dr/dt + vθ , with vθ.r̂ = 0 . The left side is just half the time
derivative of v.v = v2 , leading to the conservation of energy per unit mass:

1
µ
dE
dt
≡ d

dt

{
1
2
v2 − GM

r

}
= 0 .

(33)

Now we set v2 = v2r + v2θ = (dr/dt)2 + r2(dθ/dt)2 and note that the spe-
cific orbital angular momentum J is a constant of the motion (the focus of
Kepler’s 2nd law below):

J ≡ L
µ

= |r× vθ| = r2
dθ
dt

, (34)

where L is the orbital angular momentum in Eq. (30). Equation (33) inte-
grates trivially to generate the first order ODE

1
2

(
dr
dt

)2

+
J 2

2r2
− GM

r
=

E
µ

,

(35)

where E < 0 is the total energy, a constant of the motion.
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This can be solved for dr/dt and the time eliminated using the angular
momentum equation; the result is an equation (with two branches) for the
locus of motion:

1
r2
dr
dθ

= ±

√
2E
J 2µ

+
2GM
J 2r

− 1
r2

. (36)

The substitution w = 1/r−GM/J 2 facilitates solution. One can then write

1
r2
dr
dθ
≡ −dw

dθ
= ±

√
α2 − w2 , α2 =

2E
J 2µ

+

(
GM
J 2

)2

. (37)

Setting α = GMe/J 2 with the eccentricity given by Eq. (40) below, the
differential equation attains inverse trigonometric form when inverted to find
θ(w) . The solution is simply

w = α cos(θ − θ0) =
GM
J 2 e cos(θ − θ0) ≡

1
r
− GM
J 2 , (38)

for a constant of integration θ0 , which can be set to zero WLOG. The solution
yields the polar equation for an ellipse (for either branch):

r =
a(1− e2)
1 + e cos θ

. (39)

The constants of eccentricity and semi-major axis can now be expressed in
terms of the conserved quantities of energy and angular momentum:

e =

√
1 +

2EJ 2

G2M2µ
, a = −GMµ

2E
. (40)

Note that e < 1 and a > 0 since the total energy is negative.

So we can encapsulate the results as follows: Kepler’s First Law states that
in a binary system, both objects orbit about the center of mass in ellipses,
with the center of mass occupying one focus of each ellipse.

∗ This implies that the sun “wobbles” a little (actually slightly more than
its radius), mostly due to the pull of Jupiter.

∗ The bound orbit solution in Eqs. (39) and (40) can readily be adapted
to the case of hyperbolic unbound trajectories such as arise for interstellar
neutrals incident upon the heliosphere.
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6.2 Kepler’s Second Law

The total orbital angular momentum in Eq. (30) is conserved in a central C & O,
pp. 47 – 49force scenario:

dL
dt

=
����

��
(
dr
dt
× p

) 0

+
�
���

��
(
r× dp

dt

) 0

≡ 0 , (41)

since both terms are identically zero. This leads directly to Kepler’s second
law. The area element inside a curve in 2D polar coordinates can be obtained
by approximating a sector with a triangle, and is dA = (r2/2)dθ . Hence,
the rate at which areas are swept out is

dA
dt

=
1
2
r2
dθ
dt

=
1
2
r vθ . (42)

The second equality comes from the polar coordinate form for velocity:

v = vr + vθ =
dr
dt

r̂ + r
dθ
dt
θ̂ . (43)

The orthogonality of r and vθ then implies that rvθ = |r×v| = |L|/µ , the
angular momentum per unit reduced mass.

Plot: Velocity vector geometry

Hence the conservation of angular momentum immediately leads to Kepler’s
Second Law: the radius vector of an orbiting body under the influence of
a central gravitational force sweeps out equal areas in equal times, i.e.,

dA
dt

=
L
2µ

=
J
2

= const. , L = |L| .

(44)

• Introducing a third body, even though it might be co-planar, would intro-
duce an extra force vector and thereby break the rotation symmetry of the
two-body system, so that angular momentum exchange between it and the
binary can arise. This too is the essence of tidal interactions.
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• At perihelion and aphelion, the velocities are purely tangential (circular)
so that their values lead to the determination of L in terms of a and e :

L = µrpvp = µrava ⇒ vp
va

=
ra
rp

=
1 + e
1− e . (45)

Insertion into the energy equation

1
2
µv2p −G

Mµ
a(1− e) =

1
2
µv2a −G

Mµ
a(1 + e)

(46)

which rearranges to

1
2
µv2p

{
1−

(
1− e
1 + e

)2
}

=
GMµ
a

(
1

1− e −
1

1 + e

)
. (47)

Multiplying by µr2p = µa2(1− e)2 to generate a result ∝ L2 then yields

L = µ
√
GMa(1− e2) , (48)

so that for fixed a , the angular momentum is maximized for circular orbits.
While this demonstrates the facility of considering orbits at perihelion and
aphelion, this result could be simply obtained directly from Eq. (40).
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