
3 Planetary Orbits

There are four key pieces of evidence for the revolution of the Earth about
the sun (i.e. proving Copernicus was right), with just retrograde planetary
motions dating from before the time of Kepler.

1. Retrograde motions: apparent reversals of direction in the paths of planets.

Plot: inferior and superior planets and retrograde motions

2. Aberration of starlight: (James Bradley, 1729) the direction a telescope
points toward a star varies by a small angle θaberr on the celestial sphere,
mapping out an approximate circle over the year. The aberration is due to the
finite speed v⊕ in its revolution (plus the solar peculiar velocity component).

θaberr ≈
v⊕
c
∼ 20.49′′ (6)

so that v⊕ ∼ 29.8 km/sec. This diurnal variation (over the year) is most
distinctive for stars well out of the ecliptic.

∗ Note that the relevant angular scale is much larger than the sub-arcsecond
ones encountered in studying stellar proper motions.

Plot: Aberration of starlight

3. Stellar parallax: an additional diurnal variation is that nearby stars move
slightly against background distant (and therefore fainter on average) stars.

Plot: Parallactic orbits

Again, this effect is maximized for stars well out of the ecliptic, disappearing
for those stars in the ecliptic plane.

∗ Note that parallaxes are purely geometrical in space, so that the solar
peculiar velocity is immaterial to their determination.
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4. Doppler effect: A truly 20th century concept, this property is evinced in
stellar atomic absorption lines:

∆λ
λ0
≡ λ− λ0

λ0
=

v⊕
c
∼ 10−4 , (7)

again establishing that v⊕ ∼ 29.8 km/sec. Contrary to the previous two
indicators, this one is best sampled for stars near the ecliptic plane, where
the “radial” Doppler shift has maximum amplitude with a diurnal signal.

4 Newtonian Mechanics

There are four fundamental ingredients in the ensuing discussion of the
physics of celestial mechanics due to Newton, namely his three laws of motion C & O,

Sec. 2.2and his Universal Law of Gravitation.

• Newton’s First Law (Inertia): An object at rest will remain at rest, or an
object in motion will remain in motion in a straight line at a constant speed,
unless acted upon by an unbalanced force;

• Newton’s Second Law: the net force acting on an object is proportional to
the object’s mass m and its resultant acceleration:

F = ma ≡ m
dv
dt

; (8)

• Newton’s Third Law: for every action (force), there is an equal and oppo-
site reaction.

• To this we add the keystone of gravitational interactions in the cosmos,
Newton’s Universal Law of Gravitation: the gravitational force acting on a
mass m at a position vector r , exerted by a mass M at the origin is

Fgrav = −GMm
r2

r̂ , (9)

where G = 6.6726×10−8 dyne cm2 g−2 is the universal gravitation constant.
Here 1 dyne is the cgs unit of force, i.e. that required to accelerate one gram
at 1 cm sec−2.
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∗ The inverse square nature of this law is responsible for the elliptic na-
ture of celestial orbits, while the central nature of the vector force guarantees
conservation of angular momentum (invariance under rotations). These in-
gredients generate Kepler’s laws, as we shall see shortly.

As a step towards this goal, consider the example of a mass m � M in
circular orbit around mass M , i.e. at any time its velocity vector v is
perpendicular to its position vector r from M . As the orbit sweeps out an
angle dθ , so that v→ v′ = v + dv , then

dv = −r̂ v dθ , v = |v| , (10)

since |dv| = v dθ . As dt = rdθ/v , the equation for centripetal acceleration
follows:

dv
dt

= −v
2

r
r̂ . (11)

We note that forming a cross product of this equation with r yields the zero
vector, from which we deduce that r× v is a constant vector during orbit:

d
dt

(v × r) = �
���v × v

0
+

�
�

�
�dv

dt
× r

0

≡ 0 , (12)

i.e. angular momentum is conserved.

∗ This conservation law is true even of the mass is moving relativistically,
as might arise near a black hole, and is a direct consequence of the rotational
symmetry of a central force law.

Equating dv/dt and Fgrav/m quickly yields the result GM/r2 = v2/r .
Hence, since the speed is related to the circular orbital period P via v =
2πr/P , Kepler’s third law in the specific case of circular orbits is immediately
arrived at:

r3

P 2 =
GM
4π2 .

(13)
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e.g. As an example, we use this to estimate the mean Earth distance from
the sun. Using G = 6.6726 × 10−8 dyne cm2 g−2, the solar mass M� =
1.99× 1033 g, and the period P = 1 yr = 3.156× 107 sec, we have

r⊕ =

(
GM
4π2 P

2

)1/3

= 1.496× 1013 cm (14)

as the astronomical unit (AU). Hence, the light travel time to the Earth from
the sun is around 8 minutes.

∗ Note that astronomers do not use M� to determine the AU — instead,
they used time delays around the surface of the Earth for the Venus transit
of the sun to determine r⊕ and then infer the solar mass.

Kepler’s Third Law provides a powerful means of mass determination by
monitoring orbital dynamics in self-gravitating systems.

Plot: Mass determinations at the Galactic Centre: Nobel Prize 2020

e.g. Determination of typical satellite orbital periods around Earth:

Porbit ∼
(
GM⊕

4π2R3
⊕

)−1/2
=

(
6.67× 10−8 cm3 g−1 sec−2 (5.97× 1027g)

4π2 (6.38× 108cm)3

)−1/2
(15)

= 5074 seconds ≈ 85 minutes .

e.g. Orbital velocity of satellites around Earth:

vorbit =
2πR⊕
Porbit

=
2π (6.38× 108cm)

5074 sec
(16)

= 7.9 km/sec ≡ 17, 760 miles/hour .

Reading assignment: Example 2.2 from C & O. The gravity exerted by an
extended object is equivalent to that if all the mass is concentrated at its
center of mass. N. B. This couples to Green’s functions in the theory of
partial differential equations, solving Poisson’s equation for gravity.
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Stellar Passages Near the Galactic Centre

• Left Panel: passage of the star S2 in the epoch 1992-2002, which has a Keplerian period of 15 years,
imaged in IR using ESO’s VLT in Chile, capturing peribothron (pericentre) portion cleanly.

• Pericentre offset of 17.2 light hours (124 AU) rules out the presence of fermion balls and promotes
the existence of a central supermassive black hole (SMBH) of mass 3.7 x 106M!.

• Right Panel: enclosed mass distribution and the S2 data point favoring a SMBH for Sgr A*.

Schoedel et al. (2002, Nature 419, 694)



4.1 Potential and Kinetic Energies

Suppose we move a test mass (i.e. planet) from a radius ri to a radius C & O,
pp. 40–42rf > ri in a central gravitational potential. Then the work done is

∆U = Uf − Ui = −
∫ rf

ri

Fgrav.dr

=

∫ rf

ri

GMm
r2

dr (17)

= −GMm

(
1
rf
− 1
ri

)
.

Hence we identify

U = −GMm
r

(18)

as the gravitational potential energy. Since K = mv2/2 is the body’s kinetic
energy, the total energy is

E = U +K =
1
2
mv2 − GMm

r
. (19)

This quantity is conserved in orbital dynamics.

N. B. To escape a gravitational pull, we need E > 0 , which implies v >
vesc =

√
2GM/r . Hence, the escape velocity for rockets from Earth is

vesc =

√
2GM⊕
R⊕

= 11.2 km/sec . (20)

This is just a factor
√

2 larger than the orbital satellite speed.
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