
1. CELESTIAL MECHANICS

Matthew Baring – Lecture Notes for ASTR 350, Fall 2021

1 Kepler’s Laws (1609)

Celestial mechanics within and outside the solar system are governed by three C & O,
Sec. 2.1key Kepler’s Laws of orbital motion:

• I. Planets move about the sun in elliptical orbits with the sun at one focus.

• II. The radius vector of a planet sweeps out equal areas in equal times.

• III. If a is the semi-major axis, and P is the orbital period, then

a3

P 2 = constant (1)

Plot: Equal area elliptical diagram

Plot: Kepler III: observational evidence

Q. Why are these laws valid?

A. Conservation of energy and angular momentum in an inverse square (grav-
itational) 2 body force law.
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N.B. Three body Newtonian perturbations (e.g. due to remote planets or
planetary oblateness) and general relativistic (GR) perturbations destroy the
1/r2 force law symmetry and introduce 1/r3 corrections.

∗ e.g. 1: solar oblateness: effect on Mercury’s orbit

∗ e.g. 2: presence of Jupiter perturbs Mercury’s orbit

∗ e.g. 3: GR corrections due to solar mass precesses end point of semi-
major axis (perihelion); a classic test of Einstein’s theory circa 1920.

2 Conic Sections

An exploration of the properties of the ellipse, a conic section, provides back-
ground to observational measurements of orbital motions.

An ellipse, defined by |r + r′| = constant, possesses a semi-major axis of
length a , a semi-minor axis of length b , a principal focus at F (e.g., where C & O,

pp. 28–31the sun is located), and alternate focus F ′ , and has an eccentricity e .

Plot: Ellipse: shape and definitions

In general, 0 < e < 1 for an ellipse, with e = 0 for a circle, and e <∼ 1 for
a cigar-shaped form.

[Handout: Derivation of Cartesian Form for Ellipse]

• Converting to polar coordinates, y = r sin θ and x = ae+r cos θ about the
principal focus F . Inserting these into the Cartesian form for the equation
of an ellipse yields

x2

a2
+

y2

a2(1− e2) =
(ae+ r cos θ)2

a2
+

r2 sin2 θ
a2(1− e2) = 1

(2)

e2 +
2er
a

cos θ +
(
r
a

)2

cos2 θ +
r2(1− cos2 θ)
a2(1− e2) = 1 .
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Setting χ = r/[a(1− e2)] , this develops into the quadratic (do this)

χ2(1− e2 cos2 θ) + 2eχ cos θ − 1 = 0 (3)

after some cancellation, whose positive solution yields

r =
a(1− e2)
1 + e cos θ

.

(4)

Note that e→ 1 yields a parabola with r ∝ 1/(1 + cos θ) .

∗ Hyperbolae are defined by |r − r′| = constant. The e > 1 branch of
solutions corresponds to the hyperbola: r = a(e2 − 1)/(1 + e cos θ) .

Plot: Conic sections

Physical interpretation of these conic sections in the context of orbital mo-
tions are as follows:

∗ elliptical orbits correspond to bound orbits, such as for satellites, comets,
binary stars, and stars in proximity to the Galactic Center.

∗ parabolic orbits are marginally bound/unbound,

∗ hyperbolic trajectories correspond to unbound orbits, applicable to rock-
ets that escape the Earth’s gravity, and non-capturing stellar collisions.

Plot: Planetary orbits

• e.g. Mars on 8/27/2003, achieved its nearest approach to Earth in around
60,000 years. For Mars, a = 1.5237 AU and e = 0.0934 , establishing radii
to perihelion and aphelion (from the sun) of

rp = a(1− e) = 1.3814 AU
(5)

ra = a(1 + e) = 1.6660 AU

This yields around a 20% change in radius from the sun during its orbit.
However, since the Earth is at 1 AU, the mean distance between Mars and
Earth is typically around 2.5 – 3 AU, but the closest approach corresponds
to 0.38 AU. i.e. Mars was very bright on 8/27/2003 !
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3 Planetary Orbits

There are four key pieces of evidence for the revolution of the Earth about
the sun (i.e. proving Copernicus was right), with just retrograde planetary
motions dating from before the time of Kepler.

1. Retrograde motions: apparent reversals of direction in the paths of planets.

Plot: inferior and superior planets and retrograde motions

2. Aberration of starlight: (James Bradley, 1729) the direction a telescope
points toward a star varies by a small angle θaberr on the celestial sphere,
mapping out an approximate circle over the year. The aberration is due to the
finite speed v⊕ in its revolution (plus the solar peculiar velocity component).

θaberr ≈
v⊕
c
∼ 20.49′′ (6)

so that v⊕ ∼ 29.8 km/sec. This diurnal variation (over the year) is most
distinctive for stars well out of the ecliptic.

∗ Note that the relevant angular scale is much larger than the sub-arcsecond
ones encountered in studying stellar proper motions.

Plot: Aberration of starlight

3. Stellar parallax: an additional diurnal variation is that nearby stars move
slightly against background distant (and therefore fainter on average) stars.

Plot: Parallactic orbits

Again, this effect is maximized for stars well out of the ecliptic, disappearing
for those stars in the ecliptic plane.

∗ Note that parallaxes are purely geometrical in space, so that the solar
peculiar velocity is immaterial to their determination.
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Cartesian Form for Equation of an Ellipse

The ellipse possesses a semi-major axis of length a , a semi-minor axis of
length b , and has an eccentricity e .

In general, 0 < e < 1 for an ellipse, with e = 0 for a circle, and e <∼ 1 for
a cigar-shaped form.

• A formal definition of an ellipse is that the radial distances drawn to a
point P (x, y) on its periphery from the two foci sum to a constant:

r + r′ = constant = 2a . (1)

In Cartesian coordinates, this can be written√
(x + ae)2 + y2 +

√
(x− ae)2 + y2 = 2a , (2)

which can be algebraically manipulated by completing the squares. To effi-
ciently arrive at the familiar form, first multiply Eq. (2) by the difference of
the two squares it contains. After slight rearrangement, this yields√

(x + ae)2 + y2 −
√

(x− ae)2 + y2 = 2ex . (3)

A sum and difference of Eqs. (2) and (3) then yields the compact symmetric
forms √

(x± ae)2 + y2 = a± ex . (4)

The product of these can then by substituted into the square of either Eq. (2)
or Eq. (3) to derive the simple form

2
{
x2 + a2e2 + y2

}
+ 2

(
a2 − e2x2

)
= 4a2 , (5)

which then trivially rearranges to

x2

a2
+

y2

a2(1 − e2)
= 1 . (6)

At x = 0 , y = b and we deduce that b2 = a2(1 − e2) . Hence

x2

a2
+

y2

b2
= 1

(7)

is the familiar Cartesian form for the ellipse.

Handout:




