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ALGORISTICS FOR SINGLE-MACHINE SEQUENCING
WITH PRECEDENCE CONSTRAINTS*

THOMAS E. MORTON} aND BALA GANGA DHARANY

Although Horn, Sidney and Lawler have considered the problem of minimizing weighted
mean flow time for n jobs with precedence constraints on one machine, practical exact
algorithms for the general case remain elusive. Two relatively sophisticated heuristics are
presented which are computationally attractive. Each is optimal on large subclasses of
problems; computational study demonstrates each to be extremely close to optimal in
general. Such heuristics are dubbed “algoristics”. The first-come first-served heuristic serves
as a benchmark. Finally, a simple “myopic” heuristic produces about 80% of the savings of
the algoristics; it possesses the advantages of a dispatching rule. A standard branch and
bound procedure has also been computed for a large subset of problems for comparison
purposes. Planning horizon results are also derived.

1. Introduction

Consider the following problem. A set of jobs 1, 2,...,4, ..., n with processing
times #, and weights w, are to be processed sequentially without pre-emption on a
single machine. If job j is sequenced in position 7, use the notation i=[;]. A
precedence constraint j < k is read “j must precede k™ or alternatively “it must be
true that [ /] < [k]”. Then the problem is to choose the sequence to minimize weighted
mean flow time subject to a number of such precedence constraints:

n (/1
min Fw= 2 W[j] 2 t[k]
[j1=1 [k]=1

s.t. precedence constraints.

(In this paper, when the “cost” of a particular schedule is referred to, F,, is intended.)
If i <, iis said to be a predecessor of j, j to be a successor of i. The relation is
transitive. If for no job k is it true that in addition i < k <j then i is a direct
predecessor of j, j is a direct successor of i, written i<<j or j»i. A set of n jobs for
which each job has at most one direct predecessor is referred to as a branching tree. A
graph shows the jobs as nodes and the relation “direct successor” as connecting
arrows, which by convention proceed from left to right. The graph of a branching tree
actually resembles one or more “trees” branching out from left to right. A set of jobs
for which each job has at most one direct successor is referred to as an assembly tree;
its graph is one or more “trees” branching out from right to left.

Define a set of generators as any subset of n jobs. The initial set of a given set of
generators is the set plus all predecessors of any generator. A final set is a set of
generators and all successors. A simple initial set or a simple final set has a single
generator. The processing time per unit value or normalized processing time is defined as
z=1/w.

A subset of jobs which is known to be scheduled as a block in the unknown larger
schedule, and for which the interval sequence within the block has been specified, can
be aggregated into a single composite job, with appropriate composite processing time,
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weight, normalized processing time, and precedences. All are easily specified:

ExaMpPLE. Job Set to be Aggregated.

=2l Wya=2Wy Z4=1,/w,.
A A

Predecessors of the composite job are simply the set union of predecessors of the
original set, less members of the composition, similarly for successors. Determination
of the direct predecessors and successors requires an algorithm. (See the Appendix.)
In the sequel we shall primarily be interested in aggregating simple initial sets, or in
aggregating pairs of jobs which are direct predecessor and successor of each other.

With the machinery these definitions provide, historical results for the problem are
summarized.

THEOREM (SMITH [8]). With no precedence constraints, an optimal solution is
obtained for any sequence for which

ISz <t S gy

THEOREM (HORN [3]). For branching trees the single component initial set with
minimal z, may be scheduled first.

THEOREM (SIDNEY [7]). For assembly trees the single component initial set with
minimal z, may be scheduled first.

By symmetry, the corresponding result for assembly trees is to find the equivalent
final set with maximal z, to be scheduled last. Baker [1, pp. 88 to 92] notes that “The
problem of calculating . . . efficiently is still a significant one, and the computational
aspects . . . of (Horn’s) solution procedure have not been thoroughly investigated.”

Recently Lawler [4] has given an algorithm which is O(n log n) for the more general
case in which precedence constraints are “series parallel”.

THEOREM (SIDNEY [7]). For the general case, the initial set S* with minimal z, may
be scheduled first.

In discussing Sidney’s result Baker essentially notes that the problems in imple-
menting the Theorem are that there are up to 2" initial sets to check, and that no
efficient procedure exists for scheduling the jobs within the optimal ‘initial set.

Lawler [4] has recently given an algorithm for finding $* which is polynomial in the
number of jobs n. However, the power of the polynomlal may be arbitrarily large,
depending on the range of the z,.

In §2 several results are developed on the optimal aggregation of pairs of jobs,
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which lead to an algoristic which can be shown to be optimal for branching and
assembly trees. Several variants of the procedure are developed and advantages and
disadvantages are discussed.

In §3 an algoristic is produced from the Sidney result by the simple expedient of
restricting the search for minimal z, to be over simple initial sets. The resulting
procedure is optimal for assembly trees. The algoristic is easier to program and faster
in computation than the algoristic just discussed. A mirror image algoristic, which
does not in general yield the same solution, is easily produced by considering only
simple final sets. Since both procedures can share the same precedence matrix and
most of the same logic, it seems reasonable to run both in practice and pick the better
result.

In addition, there are two simple heuristics which merit consideration. A dispatch
rule is a sequencing procedure which is simple enough that a dynamically arriving job
may simply be inserted appropriately into a previously optimal schedule. In practice a
manager may be willing to sacrifice a fair amount of theoretical efficiency for the ease
and robustness of a dispatch rule. In the present problem, there are two dispatch rules
of obvious interest. The first is first-come first served (FCFS): process next the feasible
job with lowest index. This is the simplest possible procedure; its performance can
serve as a benchmark. The second dispatch rule is the myopic rule: choose the next
feasible job with smallest z;.

In §4, computational results are presented for the four scheduling procedures
mentioned: (i) FCFS, (i) myopic, (iii) tree-optimal, (iv) Sidney-type, for 375 test
problems. Problems ranged in size from 10 to 50 jobs, and in density of the
precedence matrix from 5% to 30%. Other parameters were generated randomly. For
165 of the problems a branch and bound procedure was also utilized to find optimal
answers for comparative purposes. However, the latter procedure was terminated after
1000 branches.

To summarize the results, branch and bound performed better than the best
algoristic in only 3 of the 165 problems, with a maximum improvement of 7/10 of 1%.
The difference in performance between the two algoristics was about 1/10 of 1% in
favor of the tree-optimal procedure. The simple heuristics cost 31% and 6% respec-
tively more than the best algoristic on average. The performance of the myopic
procedure deteriorated somewhat with problem size.

Finally in §5, appropriate regeneration sets are identified so that the planning
horizon theory due to Lundin and Morton [3], and Morton [4] may be directly
applied.

2. The Tree-Optimal Algoristic

First some further definitions are needed. Let N = {all jobs}. Define:

J* by zpp = min;c v {2},

J** by Zjwe = maijN{z 1

k* by zk. = max,  +{Z},

k** by zjpes = min {2},

n* = (k| k<<j*)l,

n** = |(k | k)],
That is to say, j* and j** are the jobs minimizing and maximizing z; over all jobs, k*
and k** are the direct predecessor and direct successor maximizing or minimizing z,
respectively, and n* and n** are the number of direct predecessors of j* and direct
successors of j** respectively. (In the next event of ties, all results below apply to each
possible index (j*, j**, k*, k**).)
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LEMMA 1. For at least one optimal sequence
@) [j*1= 1 =[k] for some k< *,
(b) [j**]+ 1 =[] for some k> j**.

Proor. Consider a supposedly optimal solution which violates the first half of the
lemma. Now if job j* is moved to the earliest feasible point in the sequence, mean
flow time cannot be increased. Similarly for j**.

LeMMA 2. If i<<j and an optimal sequence is known to exist with [i]=[j] — | then i
and j can be aggregated.

Now if a rule could be found for choosing K or k optimally, an exact algorithm
could be constructed. Failing this, the following heuristic choice suggests itself. k* is a
“good” choice for k, since it would be intuitive to schedule the largest z, as late as
possible. Similarly k** is a “good” choice for k.

Tree-Optimal Algoristic

[a—

. Update j*, j**, n*, n**, k* k**; if there remains a single job, go to 9.

2. If j* has no predecessors, schedule it first; remove it from the current set of
jobs; go to 1.

3. If j** has no successors, schedule it last; remove it from the current set of jobs,
go to 1.

4. If j* has a single direct predecessor, go to 5, otherwise to 6.

5. Combine k* and j*; go to 1.

6. If j** has direct successor go to 7, otherwise to 8.

7. Combine j** and k**; go to 1.

8. If n* < n** go to 5, otherwise to 7.

9. Reconstruct the job sequence by disaggregating jobs in reverse order.

ProrosITION 1. The Tree-Optimal Algoristic provides an optimal solution for
branching tree or assembly tree structures; in fact, an optimal solution is provided if step
8 is never executed. '

3. The Sidney-Type Algoristic

As mentioned in the introduction, the main problems in implementing Sidney’s
decomposition principle are:

1. Identifying the optimal initial set S*;

2. Scheduling the members of S*.

In general neither task is computationally appealing, even given Lawler’s [4] result for
the first problem. Furthermore, the second problem can in general be shown equiva-
lent to integer programming problems which are NP-complete, and for which it is
generally believed that polynomial bound algorithms do not exist.

A heuristic for approximately solving problem 1 is to reduce the search for minimal
z, to simple initial sets, that is, initial sets with one generator. Sidney suggests as an
improvement that this generator be fixed, and then the second generator added giving
the greatest improvement, and then the third, etc. (Stop at any time no improvement
is possible.) _

Turning to the problem of scheduling the members of S*, it is tempting to treat
these members as a sub-problem, find the optimal initial set for that, and eventually
recursively determine a single job to be scheduled first. Unfortunately the optimal
initial set of S* is S* itself, so that proper subsets are not obtained. Note also,
however, that one of the generators of S* must be scheduled last. If k is scheduled
last, then S* — {k} will be guaranteed to have a strictly smaller optimal initial set.
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Another advantage in the first problem of restricting attention to simple initial sets,
is that there is a single generator, and thus a unique choice of the job to be scheduled
last. For more complicated initial sets, one obvious heuristic would be to delete each
possible generator as the last element in turn. For each subproblem thus created find
ths “best” initial set. Of these possible inital sets, choose that with smallest z, and
proceed.

An especially simple heuristic results when attention is restricted to simple initial
sets.

Sidney-Type Algoristic
1. Set the current job set at all unscheduled jobs.
2. If the set is empty, terminate.
3. Find the simple initial set with minimal z,.
4. If the resulting set has more than one element, go to 5; otherwise schedule the

job and go to 1.
5. Set the current job set to the current initial set less its generator; go to 3.

PROPOSITION 2. The Sidney-Type Algoristic is optimal for assembly tree structures.

Proor. Follows immediately from Horn’s {3] result.

While the tree-optimal heuristic is known to be optimal for a larger class of
problems than the Sidney-type heuristic, the latter algoristic is much simpler to
program and use, and appears computationally to be almost as good as the tree-
optimal approach. In addition the Sidney-type algoristic is more easily extended to
planning horizon procedures (see §5).

4. Computational Results

The four scheduling procedures:
(i) first-come first-served heuristic,
(ii) myopic heuristic,

(ii1) tree-optimal algoristic,

(iv) Sidney-type algoristic
have been tested in a large scale computational study. The study randomized job
processing times f, weights w;, and the precedence matrix. Times #;, were chosen
uniformly on [0, 10}, w; uniformly on [0.01, 1.0]. Given a desired precedence matrix P
generate precedences by

i<j=Prob{i< j}=p
Then add additional necessary precedences to make the matrix transitive. Problems
with 10, 15, 20, 30 and 50 jobs were tested; precedence densities were tested;
precedence densities were taken as 0.05, 0.10 or 0.30. 25 replications were run of each
of the resulting 15 basic cases, leading to a total of 375 test problems.

In addition to comparing these four heuristics with one other, we desired where
possible to compare them with optimal solutions. For this reason a branch and bound
routine has been employed. The best algoristic result is used as the initial feasible
solution. The problem branches on the next feasible job to schedule, in order of
increasing z;. The bound is the weighted flow if precedence constraints are ignored on
remaining jobs. Due to computational considerations, the routine has been limited to
1000 branches. (For 30 job problems this still represents minutes of CPU time on the
IBM 360-65 computer.) This procedure would be expected to be efficient for densities
either very close to zero, or to one.

The purpose of this branch and bound investigation is not to find the most efficient
branch and bound, but rather to measure roughly how easy it is to improve the
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algoristics via heavy computation. Due to its high computation cost, branch and
bound “verification” was only carried out on a subset of the full 375 test problems.
For n =10 all 75 problems were computed; for n =15, 20, 30, only 30 of the 75
problems were chosen randomly and computed; for n = 50 none of the 75 problems
were computed. As to be expected, the adequacy of branch and bound decreases
sharply with problem size. For n =10 only 7% of the problems terminated before
optimality, for n = 15 53%, and for n = 20 and 30 100%. The percentage improvement
offered by branch and bound over the best algoristic is as follows: 162 cases, none; 1
case, 0.2%; 1 case 0.4%; 1 case, 0.7%, average 0.01%. Thus by this measure the
algoristics performed extremely well.

Table 1 summarizes the performance of the various heuristics for the 375 test
problems. The cost of the first-come first-serve procedure is normalized to 100.0 so
that the others are directly expressed as a percentage of this cost. Each line of the
table represents an average of 25 test problems. Note that the myopic, the Sidney, and
the three-optimal procedures all perform much better than first-come first-served,
averaging about 20 to 25% improvement overall. Sidney and tree-optimal in turn
consistently outperform the myopic procedure by a wide margin, but are virtually
indistinguishable in performance from each other. Overall, the myopic procedure
costs 81.2, the Sidney procedure 76.6, the tree-optimal procedure 76.5. The marginal
superiority of the tree-optimal algoristic over the Sidney-type algoristic becomes more
noticeable for larger numbers of jobs.

Since the myopic procedure is easy to use, and represents a dispatching procedure,
the results given by Table 1 are probably not enough to rule out its use in many
practical situations. Table 2 investigates this question further. It can be seen that the
myopic procedure obtains about 80% of the potential savings of the more sophisti-
cated procedures at low computational cost. Note however that the effectiveness of
the myopic procedure falls off for larger numbers of jobs.

TABLE 1
Average Cost of Three Heuristics as a Percentage of the Cost of First-Come
First-Served, for 375 Test Problems

Av. %
Myopic
Tree- Excess
n p Myopic Sidney Optimal Cost
10 5 66.9 64.5 64.5 37
10 72.3 69.6 69.6 39
30 87.8 85.4 85.3 29
15 5 66.3 64.2 64.2 33
10 75.5 70.5 70.5 7.1
30 91.5 88.8 88.6 33
20 5 69.3 65.4 65.2 6.2
10 773 70.4 70.3 10.0
30 91.0 88.4 88.4 3.0
30 5 72.3 66.9 66.9 8.1
10 88.9 752 75.0 9.2
30 93.3 92.3 91.9 1.6
50 5 79.3 69.7 69.6 13.9
10 90.2 82.3 82.2 9.8
30 96.0 95.1 94.7 1.4

Average 81.2 76.6 76.5 6.1
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TABLE 2
Mpyopic Savings (over FCFS) as a Percentage of Available
Savings from the Algoristics

Myopic Savings
Percentage of Available

n p Savings
10 5 93
10 91
30 83
15 5 94
10 83
30 75
20 5 88
10 76
30 78
30 5 84
10 44
30 83
50 5 68
10 55
30 75
Average 78

Another possible criterion for choosing a heuristic would be that it have a high
probability of achieving the best result in an individual problem. By this criterion, the
tree-optimal algoristic scores 86%, the Sidney-type algoristic 68% and the myopic
heuristic only 8%. (See Table 3). Note that there are many cases where the algoristics
agree for small numbers of jobs, but few for 50 jobs. It can be deduced that the

TABLE 3
Percentage of the Time Each Heuristic Ties the Best Heuristic for a Problem
n p Myopic Sidney Tree-Optimal
10 5 36 100 100
10 24 92 100
30 28 96 96
15 5 0 100 100
10 8 92 96
30 8 68 84
20 5 0 80 100
10 0 76 100
30 0 52 76
30 5 0 72 84
10 0 44 84
30 12 28 76
50 5 0 52 60
10 0 40 60
30 0 32 68
Average 8 68 86
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probability of an algoristic obtaining the optimal answer is lower for 50 jobs, since
their answers differ from each other for this case.

In summary, both algoristics seem to perform near perfectly, although performance
probably begins to drop off somewhat at 50 jobs and above. The tree-optimal
algoristic is marginally superior in performance. Countering this, the Sidney-type
algoristic is much easier to program and to document, important practical issues. The
hand useable myopic heuristic, which possesses the advantages of a dispatching rule,
picks up 80% of the savings of the more sophisticated procedures, although this
percentage falls off with problem size. The myopic procedure is thus still competitive
for situations in which implementation, floor-acceptance and documentation are
serious issues.

For both algoristics computation time is short, and is not an issue. Programming
complexity is likely to be the implementation issue. Both the Sidney and myopic
procedures are easily adapted to dynamic situations where jobs arrive over time. In
addition the Sidney-type procedure is adaptable to produce approximate planning
horizons as shown in the following section. Since the tree algorithm does not
concentrate on the “initial part” of the network, it cannot be used for planning
horizons. :

A final point to note is that the mirror image Sidney-type procedure (largest simple
final sets last) may easily be programmed to share the same logic. It is not an
equivalent procedure. Computation of both and choosing the better result would
produce a procedure optimal for both ascembly and branching trees which might
compare very favorable with the tree-optimal approach. '

5. Planning Horizons

In this section some planning horizon results are derived. Define the “precedence
level” of a job j by

, 1 if j has no predecessors,
PL(/) =11 + max PL(i) otherwise.

i<y

Define subproblem & as the set of all jobs with precedence level less than or equal to
k.

In practice, information about higher “precedence level” jobs will often be less
precise. A rolling horizon procedure is therefore commonly used, where the problem
will be re-solved with updated forecast information after the first job is completed.
Hence, the point of a planning horizon procedure in this case is not to find a more
efficient way to solve the static n job problem, but rather to find the first job to be
scheduled quickly, and with as little information about “later” jobs as possible. The
planning horizon.problem in the spirit of Lundin and Morton [3] and Morton [4]
would be the following:

Suppose subproblems are solved in order of increasing k, in a “forward algorithm”.
When can information through level k be sufficient to specify exactly the first job to
be scheduled, irrespective of information in later levels? (An exact planning horizon)
Failing this, when can the choice of first jobs to be scheduled be narrowed to a small
subset of the available jobs? (Bound on the optimal policy)

The answer is easily given. Let L be any subset of jobs for which j € L implies
PL(j) < k, and for which there is at least one member of L say / for which PL(/) = k.
Let £ = {L} that is, £ consists of all such subsets. Let S*(L) represent the optimal
initial set for any subproblem L.
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PROPOSITION 3. S*(R)={S*(L)| L € £} is a regeneration set. That is, for every

subproblem of level t > k, it is optimal to schedule at least one of the initial sets in
S *(L) first.

PROOF. Any optimal order has a first occurence of an element at level kK with a
successor. Let j* be this element. Then j* and the jobs preceding it constitute the
desired initial set.

It is worthwhile to point out that a planning horizon result which is much more
practical to implement arises if the criterion is changed to schedule that job which
would be chosen by the Sidney algoristic. In this case let

J = {j | PL(j) = k, or PL(j) < k and j has no successor},

S*(j), j € J,= optimal simple initial set generated by j.

PROPOSITION 4. For the Sidney algoristic criterion, S*(J)={SXj)|j€J} is a
regeneration set. That is, for every subproblem of level t > k it is optimal to schedule at
least one of the simple initial sets in &*(J) first.

ProoOF. Similar.

The advantage of Proposition 4 is that |S = (£)| may be exponential in the number
of jobs of level less than or equal k, while | *(J)] is not.

We remark that both Propositions 3 and 4 may be strengthened at the expense of
complicating the definitions. For Proposition 3, L can be restricted to those subsets
possessing an / for which PL(/) = K and / has a successor. To strengthen Proposition
4, let :

M = {j | PL(j) = k, and j has a successor},

()= z4 of SH()),

2" =max; ¢, (2*())),

J =MUY{j | PL()) < k, j has no successor, and z*(j) < z*}.

Appendix
ALGORITHM. Direct Predecessors, Composite Jobs
D= (a’,-j) = indicator matrix, direct predecessors,
d = { l, i<y,
v 0, otherwise,
D, = jth column of D = indicator vector for direct predecessors of j,
E = (e;) = indicator matrix, predecessors.

For any set S, I(s) = indicator vector of S, with I’s corresponding to elements of S,
0 otherwise. ‘

Logical operators \/(or), A(and), ~ (negation) as usual.

Then the indicator vector for direct predecessor set of 4 is given by:

vAl-Y,5) @
where
W= (;/A D_j)/\(~ 1(4)). (A2)

REASONING. Direct predecessor set of 4 must be a subset of all direct predecessors
of elements of 4, and contains no element of A itself; the set so described is W in
equation (A2).
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Which elements of W are not direct predecessors of A? Precisely those which are
predecessors of other elements of W. Thus, expression (Al).!

! The authors would like to acknowledge Suresh Chand of Carnegie-Mellon University who coded and
carried out the branch and bound work in this paper, and the very helpful referees, especially the one who
supplied the current Appendix.

This paper was prepared under National Science Foundation Grant ENG75-16454.
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