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Identification and Estimation
Issues for a Causal Earnings Model

BALA G. DHARAN*

1. Introduction

In this paper, I postulate a causal, or structural, model of corporate
earnings and present a theoretical analysis of various empirical issues
related to the identification and estimation of time-series earnings
models." The postulated model describing corporate earnings is derived
endogenously by specifying a model of the firm’s production and invest-
ment structure and its inventory accounting rule. The main characteristic
of this model is that the firm uses linear stochastic decision rules to
determine its production, inventory, and capital investment levels. Such
decision rules are frequently postulated in the economics literature. Using
the theoretical properties of the derived earnings model, I then address
estimation and forecasting issues in a general manner without actually
doing the estimation.

Starting with Dopuch and Watts [1972], much of the empirical research
in accounting on the structural (i.e., time-series) properties of earnings
numbers has first postulated a linear, stochastic, time-series model as the
underlying earnings-generating process, and then identified and esti-
mated the model using a sample of realized earnings numbers. These
accounting studies usually have the goal of estimating an expectation
model to generate “expected” or forecasted earnings. This type of end
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' The model is “causal” in that the factors determining, or causing fluctuations in
earnings are specified by the model.
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use makes the correct identification of the earnings model and the
estimation of the model coefficients relevant empirical issues for the
model designer, since any misspecification will increase the forecast error
variance.

Estimation problems generally depend on the characteristics of the
firm whose earnings are being analyzed and the number of observations
available. However, researchers usually know very little about the effects
of the firm’s characteristics on model estimation because the model of
the firm is not explicitly specified. Instead, they assume that earnings are
described by a linear, stochastic, univariate model, which in turn is
implicitly assumed to be the “reduced” form of the unspecified structural
model of the firm. Thus, the coefficients of the reduced form model are
unknown functions of the basic model parameters which determine the
firm’s characteristics. As a result, such studies cannot rely on a priori
information on the effects of model parameters on coefficient estimation.

In the causal earnings model of this paper, the firm’s decision charac-
teristics are explicitly stated and therefore the coefficients of the earnings
model are known functions of the firm’s parameters. Moreover, the
covariance matrix of the coefficients of the earnings model is also a
known function of the parameters and the sample size. Hence, by speci-
fying a set of values for the model parameters and by assuming a sample
size, it is possible to compute the ratio of each coefficient to its expected
standard error. Based on these likelihood ratios and other related statis-
tics, it is then possible to predict the model that may be actually identified
by an empiricist.

'The analysis presented here indicates that the derived earnings model
may be significantly more complex than the models that would be
identified and estimated by a time-series analysis of the observed earnings
numbers in sample sizes commonly encountered in accounting research
(e.g., 100 observations). In other words, the estimated models will be
more parsimonious than the derived model.? The effect of this misspeci-
fication is to increase the mean-square forecast error by a median value
of about 12 percent.

Earnings model estimation issues discussed in the accounting literature
are examined here in the light of these results. For example, it is likely
that an empiricist comparing the systematic properties of two accounting
earnings series will probably be unable to test for differences in the order
of the identified models, since limited sample sizes would restrict the
analysis to very parsimonious models in each case. Instead, the empiricist
is more likely to find differences in coefficient values. Similarly, it is the
observed variation in the quarterly earnings model structures identified
by various accounting researchers (e.g., Foster [1977], Griffin [1977], etc.)

* Time-series models are “simple” or “parsimonious” if they have only one or two
autoregressive and moving average terms. “Complex” models are those that are not
parsimonious in this sense.
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that is likely due to the specification errors caused by the parsimony
effect of sample size.

In the next section of this paper, the firm and its decision rules for
production and capacity are described, and the earnings model is derived
by adding an accounting rule for inventory valuation. Section 3 analyzes
the behavior of the coefficients of this model over a wide range of the
firm’s parameter values. The estimation problem is discussed in section
4 after the covariance matrix of the coefficients is computed. Section 5
examines the effect of misspecification on forecasting. The last section
provides some general implications for accounting time-series research.

2. The Firm and the Earnings Model

The firm described here is based on Gonedes and Dopuch [1979] in
that the firm’s stochastic earnings are the product of the joint action of
the accounting system and economic events. The accounting system is
represented by the firm’s inventory accounting rule. The economic en-
vironment is characterized by stochastic sales quantities and linear pro-
duction-investment decisions.?

The firm decides on a level of production in order to achieve a desired
level of ending inventory, and then decides on a capacity that will
accomplish this production. The actual production and capacity, however,
are determined by adjustment speeds that are less than one. The sto-
chastic model for the sales quantity is assumed to be a stationary or
“mean-reverting” process.? This assumption models the unit sales S; for
period ¢ as:

S =S80 + e, (1)

where Sy is the process mean and e, is the realization from a white noise
process with E (e;) = 0, E (ere;) = o%(e;) for t = s, and E (ee;) = 0 for
t # s. Note that expected sales in period ¢ are constant for all ¢.

Following Metzler [1941], let the desired ending inventory in period ¢,
I”, be a linear function of expected sales, §,+1, such that:

ItD = C§z+1 = CSO, (2)

where ¢ is a type of stock-sales ratio, 0 < ¢ < 1. The 0-1 range for c is
reasonable in most economies when a period is defined as a quarter or a
year.

The production quantity, g:, is chosen to maintain inventories at the
desired level. Let:

qt = gH—l + b(IzD - 1171), (3)

3 The main elements of the production-investment model are based on studies on
macroeconomic modeling of the U.S. economy. References to this literature are given later
in this section.

* This assumption facilitates the derivation of model equations. For other sales processes,
one may often have to use simulation to obtain model equations. See, however, Dharan
[1981] for simple extensions to a random-walk or seasonal sales process.
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where I,_; is the beginning inventory in period ¢, and b is the inventory
stock adjustment speed, 0 < b < 1. Equation (3) is based on the flexible
stock adjustment (acceleration) model of Goodwin [1948], also used in
studies by Mantell [1977] and Trivedi [1973].

The inventory balancing equation is:

L=+ q—S. (4)

Using (1) through (4), the decision rules or equations for production and
inventory are obtained. Let b; = 1 — b.° Then the decision rules are:

I[ = b]I[‘—] + bC‘So — €, (5)
and:
qe = b1qi—1 + bSo + be,_;. (6)

The desired capital stock in period ¢, K” is proportional to q;. This
assumption is characteristic of acceleration models as well as the neo-
classical model of Hall and Jorgenson [1967].° We will let K,” = q.. The
actual physical capital stock of period ¢ — 1, K;-; units, depreciates such
that (1 — d)K;-, is the capacity in units available in period ¢ in the
absence of new investment, where d is the physical depreciation rate,
0 < d<1. Let di =1 — d. The period ¢ capacity, K; units, is given by:

K, =dK, .+ a(KzD — d1Ki-1), (7)

where a (K — d1K,_1) is the new investment in period ¢ and a is the
capital stock adjustment speed, 0 < a < 1. The 0-1 range for a is
acceptable when one assumes that instantaneous capacity adjustment is
infeasible due to physical limits. Let a1 = 1 — a. With mean-reverting
sales, and using (6), (7) gives the capacity decision rule:

Kt = (bl + aldl)Kt——l - blaldth_z + abSo + abez_l. (8)

The firm is assumed to incur production costs in period ¢, given by
q{/S, dollars. This implies increasing marginal cost of production.” In
addition to this out-of-pocket cost, the “cost of goods manufactured”
used in the computation of accounting earnings is assumed to include a
depreciation expense. With appropriate normalization of the unit cost of
capacity, the depreciation expense will be K, dollars.® The cost of goods
sold (CGS) in period ¢ is then determined by how the inventory account-

® b is a subscripted constant; so are ai, di, and ¢; (used later).

% See Visscher [1978].

" The marginal out-of-pocket production cost is thus independent of capacity. Note that
the fractional adjustment speed, @, can also imply that there are quadratic capacity
adjustment costs. These costs are not considered in this model.

8 A new investment in period ¢, say X;, can produce a total of X,/d units in periods ¢, ¢
+ 1, ....If the unit cost of capacity is normalized as 1/d dollars, then the investment X,/d
dollars is to be depreciated over the X,/d total units. Under the units-of-production method,
period ¢ depreciation is X; dollars. By extension, capacity of K, units leads to a depreciation
expense of K, dollars.
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ing rule allocates these two costs to various periods. Pretax earnings then
are given by the difference between the sales revenue and the CGS.

I assume that the weighted average cost method of inventory valuation
is used to compute the CGS.® If i, is the weighted average cost per unit of
goods available for sale in period ¢, this method defines i, as:

le = (L1 lr—1 + Qf2/So + Ki) /(L1 + qu), 9)

where q,°/So is the prodution cost and K, is the depreciation expense.
Then, if S; units are sold, the CGS is ;S;. Assuming a unit selling price,
sales revenue is S; dollars, and accounting earnings are Z; = (1 — ;)S;.

Appendix A summarizes the derivation of the time-series expression
for Z;. Using the widely recognized notational conventions of Box and
Jenkins [1970], the resulting autoregressive and moving average (ARMA)
equation for the mean-adjusted earnings series is written as:

Zi =121+ ¢poli—s + G3li—3 + € — 61611 — 02,5 — 036,—3, (10)

where the random shock é; is a function of the variable e, from the sales
process.'” This is an ARMA (3, 3) model, where the numbers (3, 3) denote
the number of lags of earnings and the random shock needed to describe
current earnings. The coefficients of this model are derived in Appendix
A in terms of the firm’s parameters.

To summarize, the firm is characterized by four parameters:

a: capacity stock adjustment speed, O<a<l,
b: inventory stock adjustment speed, 0o<b<l,
c¢: desired stock to expected sales ratio, O<ce<xl,
d: capacity depreciation rate, 0<d<l1.

The firm’s decision rules for production, inventory, and capacity are
given by equations (5), (6), and (8), and its earnings are given by (10).

When considered independently, the production-inventory decision
rules and the capacity decision rule can be shown to be optimal under
certain assumed cost structures.!’ However, they are not necessarily
jointly optimal. Nevertheless, it can be shown that jointly optimal deci-
sion rules from a model with rational expectation equilibrium will resem-
ble the decision rules (5), (6), and (8) under certain conditions.'® It is thus
reasonable to assume that these rules, and hence the model in (10),
approximate the optimality property.

3. Properties of the Coefficients

The values of the coefficients of (10) are determined by the values of
the four model parameters. For the “0 to 1” parameter values, and using

? See Dharan [1981] for extensions to FIFO and LIFO methods.

' See expression (A.20) in Appendix A.

' See, for example, Hall and Jorgenson [1967] for the capacity investment rule and Holt
and Modigliani [1961] for the production-inventory rules.

2 Such a model was derived in an earlier version of this paper and was based on the
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(A.11) to (A.13) and (A.22) to (A.24) from Appendix A, it is seen that the
coefficients alternate in sign as follows:

¢ >0,¢02<0, and ¢3>0, and (11a)
6,>0,6,<0, and 6:>0. (115)

Moreover, when the decision parameters a and b are greater than 0.5, we
get:

1> — ¢p2 > 3, and (12a)
6, >— 6, > 65. (12b6)

Properties (12a) and (126) seem reasonable for a time-dependent
process, since the weights assigned to lagged values of Z and € in (10) are
smaller for larger lags. One can show that the following properties are
also true:

0> ¢1, — 0> — 2, and 63> ¢s. (12¢)

The ability to estimate the model coefficients of (10) depends on (i)
their relative magnitudes as given by (12), and (ii) on the effect of each
smodel parameter on the magnitudes of the coefficients. This latter
information can be obtained by studying the signs of the partial deriva-
tives of each of the six coefficients with respect to each of the decision
parameters.

The partial derivatives of the autoregressive coefficients with respect
to each of the four model parameters are simple functions of the four
parameters. From the signs of the partial derivatives, the effect of the
model parameters on the autoregressive coefficients is summarized as
follows:

The magnitude of all three autoregressive coefficients always (13a)
increases if any of a1, b1, di, and ¢ increases.

The signs of the partial derivatives of the moving average coefficients
are not as easily summarized. The signs often depend on whether the
parameters are closer to one or zero. Hence, the effect of the model
parameters on the moving average coefficients is summarized in this
weaker statement:

When parameter values are greater than 0.5, the magnitude of
all three moving average coefficients usually increases if (13d)
any of ai, b1, di, and c increases.

To summarize, the magnitudes of the autoregressive coefficients and,
often, the moving average coefficients of the earnings model will increase,
if () the stock adjustment speeds a and b are reduced (the firm reacts
more slowly to catch up to the desired capital or inventory levels); (i7)

equilibrium models of Lucas and Prescott [1971], Lucas [1976], Sargent [1979], Eichenbaum
[1980], and Hansen and Sargent [1980].
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the depreciation rate d is reduced (the assets are productive for longer
periods); (7it) the desired stock-to-expected-sales ratio c is increased (the
desired inventory level for a given level of anticipated activity is larger).

This summary agrees with one’s intuitive notion of time dependence
induced by economic actions, since an increase in ai, b1, di, and ¢ would
generally mean that less of the current period shocks in sales and
production cost is absorbed in current earnings and more is passed on to
future earnings. When current earnings are affected relatively more by
the economic shocks of past periods, the magnitudes of the coefficients of
the lag terms in the earnings model tend to increase.

The analysis thus far has been based on the “0O to 1” constraints on the
model parameters noted in section 2. The requirement that the earnings
model (10) be both stationary and invertible may impose additional
constraints on the parameters, and these are identified next.'

A (second-order) stationary earnings series is one whose mean and
variance are time-invariant and finite. For an ARMA (3, .) process, the
requirement that the variance be finite results in the constraints that the
three characteristic roots, G;, i = 1, ... 3, of the characteristic equation:

¢(x) =1 —g1x — pox® — ¢3x® = (1 — G1x) (1 — Gox) (1 — Gsx) =

lie inside the unit circle.”* In other words, the stationarity condition is
that | G;| < 1, where the G; can be real or complex.

The invertibility condition is required, in practical terms, because of
the need to compute the residuals é;, é:~1, ... of (10) during model
estimation. For a given set of coefficients, and for a given sample of
earnings data, recursive computation of & in (10) is possible only if it can
be expressed as a convergent series in terms of present and past earnings.
Thus, the invertibility condition is implicitly assumed by all estimation
routines which rely on minimizing the sum of squares of the computed
residuals. For an ARMA (., 3) model, the invertibility requirement results
in the constraint that the three roots, H;, i = 1, . .. 3, of the characteristic
equation (x) =1 — 1x — 6x* — 03x° = (1 — Hix)(1 — Hpx)(1 = Fvj
= 0 lie inside the unit circle. Thus, the invertibility condition re-izices
that | H;| < 1, where the H; can be either real or complex.

These constraints on the characteristic roots G and H imply some
corresponding constraints on the coefficients of (10) and hence on the
firm’s decision parameters. Usually these are not easy to formulate except
for parsimonious models such as AR (2) or ARMA (1, 1). Fortunately, the
stationarity conditions can be derived explicitly for the average cost
earnings model.

Examining the autoregressive coefficients in Appendix A, and using the
constant ¢; from that appendix, the real roots G;,i = 1, . .. 3, are given by

'3 The stationarity and invertibility conditions are explained in Box and Jenkins [1970],
and the definitions given here will be brief.

" In this equation, and in the subsequent characteristic equation for moving average
terms, x may be any variable.
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G: = ¢1, G2 = b1, and Gs = a:d.. Hence the restriction | G;| < 1 is satisfied
for the average cost earnings model, given the “0 to 1” restrictions on the
parameter values already noted. Thus, the average cost earnings series is
stationary. Since there is no nonstationarity in the sales-generating
process (which is mean reverting), this result confirms that the accounting
process used to compute the earnings did not introduce any nonstation-
arity.

Satisfaction of the invertibility conditions is more difficult to verify.
The characteristic equation #(x) = 0 does not have easily identifiable
roots for the moving average coefficients given by (A.22) to (A.24) in
Appendix A. The solution for the three roots in terms of the three moving
average coefficients are complicated. Furthermore, as seen from the
expressions (A.14) to (A.16) and (A.22) to (A.24), the expressions for the
three roots in terms of the model parameters are also complicated.
Moreover, two of the three roots could be complex conjugates.

Under these circumstances, numerical computation of the character-
istic roots for various combinations of model parameter values provides
one way of verifying whether the invertibility conditions hold. For various
combinations of values of the model parameters ranging from 0.3 to 0.9
with increments of 0.2, the moving average coefficients were computed
and the three corresponding characteristic roots were found. Of the 256
cases examined, the invertibility condition | H;| < 1 was valid for 152
cases, and for a vast majority of them, the values of a, b, (1 — ¢), and d
were nearer to one than to zero.

Table 1 lists both cases where invertibility is satisfied and cases where
it does not hold. From (13), the magnitude of the six model coefficients
can be increased by increasing ai, b1, ¢, or d;. It turns out, however, that
these cases of large coefficient magnitudes also often represent noninver-
tible situations, and hence are not estimable.

Thus, the invertibility condition restricts the allowable parameter
values to ranges narrower than the “0 to 1” noted earlier. Specifically,
the values of a, b, (1 — ¢), and d should preferably be greater than 0.5.
The assumption that these values are > 0.5 does not guarantee, of course,
that the model is invertible (see, for example, cases 5 and 7 in table 1).
However, as noted above, the assumption that the model is invertible
implies that the parameter values are large. The following sections
assume that the earnings model is invertible and that the earnings model
coefficients are relatively small.

4. The Estimation Problem

Given a sample size, reliable estimation of the coefficients of the
earnings model will depend on their theoretical standard errors. If the
ratio of a coefficient estimate to its theoretical standard error (the
likelihood ratio) is very small, then it is usually assumed in time-series
research that the estimate is not significantly different from zero. Such
an assumption is, of course, inappropriate when the estimate being tested
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is highly correlated with other estimates. In such cases, even a low
coefficient estimate need not indicate insignificance. Conventional time-
series research, however, has used the univariate likelihood ratio tests to
evaluate coefficient estimates even in such cases, and hence the discussion
here will start with this approach to examine the problem of estimating
the earnings model.

When the shock e, in (1) is assumed to be normally distributed, the
likelihood ratio is the time-series analogue of the univariate ¢-ratio of
linear regression. It will be assumed that the model can be “reasonably
estimated” if each of the model coefficients is significant as measured by
the t-ratio.'”” In any case, the model will be assumed estimable if all
coefficients, taken together, are significant as measured by an F-test.

For this analysis, the variance-covariance matrix (or simply, the covar-
iance matrix) of the coefficients must be known. Here, I use the fact that
the covariance matrix of the coefficients of (10) is uniquely given once
the values of the coefficients and the sample size are specified. For
compact description of the procedure to compute the covariance matrix,
define the (6 X 1) vector of coefficients 8 = (¢1, ¢z, 3, 01, 02, 63) 7, where
T denotes transpose. Then, from Box and Jenkins [1970], the information
matrix of (10), I;, can be written as:

1= n.[g}T g].o—2<e~>, (14)

where n is the sample size, and A, B, and D are matrices of the order (3
X 3). The elements of I, are the negative of the second-order partial
derivatives of the log-likelihood function of (10) with respect to the
coefficients, and are defined below. First, let V(8) be the covariance
matrix of 8. Box and Jenkins [1970] note that, for moderate to large
sample sizes (i.e., n > 50), V(B) is obtained by:

. _d(&[a B]'
V(B =1, —T[BT D] (15)
The matrix A in (14) is given by:
Viul0)  Viu(1)  Viu(2)
A= ‘/uu(]-) ‘/uu(o) ‘/uu(l) (16)
Vi (2) V(1) Vi(0)

where V,,(0) is the variance and V,,(k) is the autocovariance at lag & of
a variable u, described by the process:

Ut — Gr1lls—1 — Polli—2 — P3lli—3 = €. (17)
The variable u, is interpreted by Box and Jenkins [1970, eq. 7.2.9] as the
negative of the partial derivative of residuals of (10) with respect to the

' In practice, significance can be assumed if the likelihood ratio of a coefficient is greater
than two. It is assumed that the model satisfies other diagnostic tests in addition to having
significant estimates.
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autoregressive coefficients.'® The matrix D is given by:

[V.\-x(O) V(1) Vu(Z)]

D V(1) Vie(0) V(1)

Vie(2) V(D) Vie(0)

(18)

where V..(0) is the variance and V..(k) is the autocovariance at lag 2 of
a variable x; described by the process:

X — 61%-1 — Goxp—2 — G303 = —6;. (19)

The variable x; is interpreted by Box and Jenkins [1970, eq. 7.2.10] as the
negative of the partial derivative of residuals of (10) with respect to
moving average coefficients.'” Finally, the matrix B is given by cross-
covariances between u and x:

Vvu\(O) VuA(_l) ‘/,,,‘(—2)
B=| V() Vi) V-1
Vir(2) V(1) Vi(0)

(20)

where V. (k) is the covariance between u, and x;1.

For time-series processes such as (10), (17), and (19), the variance and
autocovariances are all scaled by the residual variance. Hence the ele-
ments of A and D are scaled by ¢%(é), and so are the elements of B. It
then follows from (14) that the elements of I, are independent of ¢%(é). I;
and V(B) are thus uniquely determined given 8 and the sample size n.
Hence, if theoretical values of the coefficients are known, one can com-
pute the expected standard errors of the coefficients for an assumed
sample size and compute the likelihood ratios.

Table 1 gave a sampling of the over 250 parameter combinations of the
earnings model that were examined for invertibility. For each of the cases
where the model was invertible, the covariance matrix was computed
using the procedures described in Dharan [1982a] assuming a sample size
of 100 observations. Table 2 gives the computed standard errors for case
4 of table 1. It is seen from the top panel of table 2 that all the six
coefficients of the ARMA(3, 3) model in (10) have theoretical standard
errors many times greater than their expected values when a sample size
of 100 observations is assumed. A standard univariate ¢-test cannot reject
the hypothesis that the estimates are zero. Based on the univariate ¢-
tests, it seems that in order to get significant estimates of all six model
coefficients, one would probably need sample sizes in excess of one
million.

A closer examination of the data in table 2 provides some indication
that the above result from the univariate ¢-tests may be understating the
significance of at least some of the coefficient estimates. For example, the

' w,_; = —aé,/d¢;, evaluated at a given B, where ¢, is the computed residual given 8 and
Z of (10).
" x—; = 3é:/80;.
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TABLE 2
Average Cost Earnings Series: Case 4 of Table 1

Model parameters: a =0.5 b=09 ¢=07 d=0.9

ARMA (3,3) Model:

Autoregressive coefficients: ¢; = .56176 ¢, = —.06676 ¢3 = .00206
Moving average coefficients: §; = .71217 6, = —.22626 6; = .01115
Information matrix of the ARMA (3,3) coefficients:

[ .13906E+01  .73293E+00  .32040E+00 —.14738E+01 —.76988E+00 —.33590E+00
J73293E+00  .13906 E+01 \73293E+00 —.87918E+00 —.14738E+01 —.76988E+00
.32040E+00  .73293E+00  .13906E+01 —.30124E+00 —.87918E+00 -—.14738E+01

—14738E+01 —.87918E+00 —.30124E+00  .15896E+01  .92603E+00  .31015E+00

—.76988E+00 —.14738E+01 —.87918E+00  .92603E+00  .15896E+01 92603 E+00

—.33590E+00 —.76988E+00 —.14738E+01 .310156E+00  .92603E+00  .15896 E+01

Variance-covariance matrix of the ARMA (3,3) coefficients:

[ .20509E+10 —.10284E+10  .74868E+08 20509E+10 —.13369E+10 .38335E+09
—.10284E+10 BSI569E+09 —.37542E+08 —.10284E+10  .67037E+09 —.19223E+09
.74868E+08 —.37542E+08  .27331E+07  .74868E+08 —.48803E+08 13994 E+08
20509E+10 —.10284E+10  .74868E+08  .20509E+10 —.13369E+10° .38335E+09
—.13369E+10  .67037E+09 —.48803E+08 —.13369E+10  .87144E+09 —.24989E+09
L .38335E+09 —.19223E+09  .13994E+08 .38335E+09 —.24989E-+09 .71657E+08

S

T-ratios of the ARMA (3,3) coefficients (with n = 100):

AR coefficients: .124046E—03 —.294003E—04 .124534E—04
MA coefficients: .157258 E—03 —.766445E—04 .131668E—04

Assuming that an ARMA (2,2) is estimated,
Variance-covariance matrix of the ARMA (2,2) coefficients:

48498E+02 —.31224E+01 47133E+02 —.68291E+01

1 [ -.31224E+01 .36639E+02 —.23591E+01 .33769E+02
n 47133E+02 —.23591E+01 46767E+02 —.65701E+01
—.68291E+01 .33769E+02 —.65701E+01 .32397E+02

T-ratios of the ARMA (2,2) coefficients (with n = 100):

AR coefficients: .806662E+00 —.110301E+00
MA coefficients: .104139E+01 —.397511E+00

correlation coefficient between the estimates of ¢; and ¢s is given by:

cov(¢r, ¢s) _ 74868 _
[varG) vargn) 17  [(20509)@. 73307~ 2000

Similarly, the correlation coefficient between any of (¢1, ¢2, 01, and 6s)
and (¢s and 63) is close to 1 or — 1. These high correlations indicate that
the confidence regions for pairs of estimates such as (¢1, ¢s) will be
attenuated ellipses along one of the diagonals. In other words, while a
coefficient estimate such as ¢3 may be insignificant when viewed alone,
the estimate, conditional on other coefficient estimates such as ¢, and
¢2, may be acceptable as significant.'® Thus, the univariate ¢—tests, which
are routinely employed by researchers, are not appropriate for cases like
the one in table 2.

A more acceptable procedure to test for the significance of any given
coefficient (or combination of coefficients) is to derive the conditional ¢

o(d1, Pp3) =

8T am grateful to James Patell for pointing this out.
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distribution for the coefficient estimate(s) given all other estimates and
perform the ¢-test based on the conditional distribution. The procedure
for deriving the conditional univariate or multivariate ¢ distributions is
well known and is also summarized in Box and Jenkins [1970, appendix
AT.1].

In addition to the above procedure, the joint multiple ¢ distribution of
B can be used to test the joint hypothesis Ho: 81 = B2 = ..86 = 0. This
procedure is adopted here, since it is equivalent to the conventional F'-
test. For the above hypothesis, the probability contours of the joint six-
variate ¢ distribution of the estimates are ellipsoids defined by g7.
V(B8)™'.8 = constant, where V(8) is the covariance matrix of 8§ and T
denotes transpose. The probability mass outside the density contour of
the distribution 7. V(8)™'- B = 6F, is given by Pr{F > F,}, where the F'
distribution has (6, n — 6) degrees of freedom." Thus, the joint signifi-
cance of B can be tested by computing the statistic Fo using the covariance
matrix of 8, and by comparing the F, value against an appropriate cutoff
value from the F' distribution with (6, 94) degrees of freedom. For the
ARMA(3, 3) case in table 2, Fy is computed as 0.03984, which is clearly
not large enough to reject Ho.

Hence, with 100 observations, the null hypothesis 81 = 82 = ..86 = 0
cannot be rejected. Reported quarterly earnings data of firms are avail-
able for only about 30 years, and empirical research on earnings typically
relies on about 100 or fewer observations. For this sample size, estimating
an ARMA(3, 3) model for the average cost earnings data of the firm
would lead to disappointing results.

The univariate i-statistics and the F-statistic are very small and the
elements of the V() matrix in the top panel of table 2 are very large
because the I, matrix of the ARMA (3, 3) model is very close to singularity.
Rows 3 and 6 (and equivalently columns 3 and 6) of the information
matrix in the top panel of table 2 are nearly identical, but with opposite
sign. The magnitude of the determinant of I, could thus be increased
when these rows and columns are dropped. In other words, if a lower-
order ARMA model is estimated, the coefficients of that model will have
smaller standard errors. In the example given in table 2, this would mean
attempting to estimate an ARMA (2, 2) model by dropping the coefficients
¢3 and 65 from consideration.

The bottom panel of table 2 presents the theoretical (4 X 4) covariance
matrix of an ARMA(2, 2) model, computed using the procedures in
Dharan [1982a], when the firm’s parameters remain the same as in the
top panel. It is seen that all the elements of the new covariance matrix
have considerably smaller values compared to the top panel. The mag-
nitudes of the univariate ¢-ratios of the ¢, ¢2, 61, and 6, coefficients now
are larger. Still, with a sample size of 100, the ¢-test cannot reject the
hypothesis that the estimates of the coefficients are zero. To test the

19 See Box and Jenkins [1970, appendix A7.1].
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hypothesis that all four coefficients are zero, an F-statistic can be com-
puted, as was done for the ARMA (3, 3) case. For the ARMA(2, 2) model,
the joint four-variate ¢ distribution is given by y”-V(y)™'.y = constant,
where y = (B, B2, B, B5)” and V(y) is the covariance matrix in the
bottom panel. Setting the constant equal to 4F, gives the required F-
statistic with (4, 96) degrees of freedom. For the sample size of 100, the
computed Fo(4, 96) is 0.9165, which is not large enough to reject the null
at acceptable significance levels.

Thus, even an ARMA(2, 2) model does not give satisfactory estimates
of the coefficients when the sample size is 100. For such sample sizes, it
is very likely that a researcher analyzing the earnings data of the table 2
case would identify an ARMA(1, 2) or an ARMA(1, 1) model as the
appropriate earnings model.

These observations hold for all the invertible processes examined.
Table 3 shows case 6 from table 1. All six autoregressive and moving
average coefficients for this case are larger (in magnitude) than those of
table 2. However, the magnitudes of the expected univariate ¢-ratios for
an ARMA (3, 3) model are still very small. In addition, the hypothesis “all

TABLE 3
Average Cost Earnings Series: Case 6 of Table 1

Model parameters: ¢ = 0.7 =07 ¢=07 d=0.7
ARMA(3,3) Model:

Autoregressive coefficients: ¢ = .80176 ¢, = —.18759 &3
Moving average coefficients: 6, = 1.156530 6. = —.58686 0
Information matrix of the ARMA(3,3) coefficients:

01112
05686

19146 E+01 J12991E+01 69686 E+00 —.22981E+01 —.15116E+01 —.80104E+00 ]
12991 E+01 19146 E+01 J12991E+01 —.18135E+4+01 —.22981E+01 —.15116 E+01
.69686 £+00 12991 E+01 19146 E4+01 —.83235E+00 —.18135E+01 —.22981E+01
—.22981E+01 —.18135E+01 —.83235E+00 30432 E+01 22492E+01 94052 E+00
—.156116E+01 —.22981E+01 —.18135E+01 .22492E+01 .30432E+01 .22492E+01
L —.80104E+00 —.15116E£+01 —.22981E+01 94052 E+00 22492 E+01 .30432E+01 |

=

Variance-covariance matrix of the ARMA (3,3) coefficients:

A17822E+07  —.12016E+07 18221 E+06 17822E+07 —.18314E+07 81274E+06
—.12015E+07  .80998E+06 —.12284E+06 —.120156E+07 12347E+07  —.54791E+06

18221E+06 —.12284 E+06 18636 E+05 .18221E+06 —.18724 E+06 .83098 E+05
n| 17822E+07 —.12015E+07  .18221E+06 17822E+07 —.18314E+07 81274 E+06
—.18314E+07 12347E+07 ~.18724E+06 —.18314E+07 .18820E+07 —.83519E+06
L 81274E+06 —.54791E+06 83098 E+05 81274E+06 —.83519E+06 .37064 E+06 |

—

T-ratios of the ARMA (3,3) coefficients (with n = 100):
AR coefficients: .6005671E—02 —.208434E—02 .814401E—03
MA coefficients: .865394E—02 —.427784E—02 .933906E—03

Assuming that an ARMA (2,2) is estimated,
Variance-covariance matrix of the ARMA (2,2) coefficients:

48766 E+01 —.263564E+01 36278 E+01 —.22414E+01
l —.26354E+01 46995 E+01 —.17682E+01 .33589E+01

n 36278E+01 —.17582E+01 .33669E+01 —.20121E+01
—.22414E+01 .335689E+01 —.20121 E+01 .30939E+01

T-ratios of the ARMA (2,2) coefficients (with n = 100):
AR coefficients: 363068 E+01 —.865322E+00
MA coefficients: .629618E+01 —.333642E+01
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coefficients are zero” still cannot be rejected using an F-test based on the
joint ¢ distribution of the coefficients. From the bottom panel of table 3,
it seems likely that an ARMA(1, 2) model will be identified for this case.

To summarize the estimation problem, it is very likely that a researcher
analyzing the reported time series of earnings data of the firm would not
identify or estimate the derived ARMA(3, 3) model and instead would
identify a more parsimonious model such as ARMA(1, 1) or ARMA(1, 2)
as the appropriate earnings model. Less parsimonious models might be
identified if model coefficients are tested for significance using conditional
univariate or multivariate ¢ distributions instead of marginal univariate
t distributions. Conventional time-series research has not, however, used
such tests widely even when estimation results required them. Note also
that one can expect some variation on model identification depending on
the identification procedures adopted. However, the inability to identify
the underlying model in the case of the earnings model is caused by the
effect of sample size and coefficient magnitudes on the coefficient vari-
ances rather than solely by thc identification procedure.

5. Effect on Forecasts

It was noted in the introduction that time-series earnings models have
been used in various empirical studies primarily to generate “expected”
or forecasted earnings. The effect of the estimation problem on one-step-
ahead forecasting is examined in this section. Other implications of the
estimation problem are addressed in the next section.

A measure of the effectiveness of a one-step-ahead forecast is the
“mean-squared forecast error” (MSFE), defined as £ (Z: — Z,)?, where Z,
is the true earnings and Z; is the forecast. When the coefficients are
known for the ARMA (3, 3) model in (10), the minimum MSFE forecast
Z, is obtained by setting é; equal to zero. For this forecast, £ G- Z)* =
0%(é). In other words, the residual variance is the smallest forecast error
variance any forecast could have, even when the coefficients are known.

I shall examine the effect of misspecification on forecasts by measuring
the minimum forecast error variance for the misspecified earnings models.
Naturally, the minimum MSFE of a misspecified model such as ARMA(1,
1) or ARMA(1, 2) cannot be less than ¢%(€). However, if the minimum
MSFE is not very different from ¢%(¢), then it can be assumed that the
misspecification does not adversely affect the value of forecasts.

This comparison of the minimum MSFE of the true and the mis-
specified models is based, as noted, on the assumption that the coefficients
of the true model are known exactly. Clearly, the estimated MSFE of
these models (based on a given sample of observations) will be higher
than the minimum values when the true coefficients are replaced by their
estimates. For example, if an ARMA(3, 3) model is fitted to a given
sample of realizations from the earnings model in (10), the MSFE of the
estimated true model will be greater than o*(é). If n is the sample size, it
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can be shown that the increase in the MSFE of the true model is of the
order n~". In other words, as the sample size increases, the discrepancy
between the MISFE of the estimated true model and its minimum MSFE
approaches zero. Intuitively, this can be seen by observing that the
variances of the coefficient estimates are a function of n™", as seen from
(15).% Similarly, the MSFE of an estimated misspecified model such as
ARMA(1, 2) will differ from the minimum MSFE for that model by a
factor which is of the order n~'. Thus, for a given sample size, the ratio
of the estimated MSFE of the true earnings model to that of a misspec-
ified model can be expected to vary around the value given by the ratio
of the minimum MSFESs of the two models. For this reason, the latter
ratio is a reasonable benchmark to measure the effect of misspecification
on forecasting.

The minimum MSFE for the misspecified model will be computed by
first assuming that the researcher identifies an ARMA(1, 2) model for
the observed earnings data which are in fact generated by (10). Since
only the ratio of the minimum MSFE of the misspecified model to the
minimum MSFE of the true model is of interest, let 0%(¢) = 1. Let d;l, b,
and 0, be the coefficients of the ARMA(1, 2) misspecified model. The
earnings forecast computed from the misspecified model is:

Zt = (Zglzt—l - élét—l - 0~2€~r—2- (21)

Since Z, is generated by (10), and since ¢*(€) = 1, the minimum MSFE of
the ARMA(1, 2) model is given by:

EZ,—Z) =1+ v2 + v:* + 05> + Volys + ¢ + $3)
= 2Vi(y1¢2 — ¢2¢3)
— 2Va(y1¢s) — 2(y1v2 — days + Psbh) (22)
+ 2Vea(y1ys + ¢203)
+ 2Ve2(y163),
where:
yi=é— ¢, v2=00— 01, ys=0:~ 0, Vo = E(Z)’,
Vi=E(ZZ 1), Vo= E(Z:Zi—2), Vo1 = E(Zie;—1) = ¢1 — 01, and
Veo = E(Zier-2) = $1Ver + $2 — 2.

To compute the minimum MSFE from (22), the variance Vj and the
autocovariances Vi and Vs of the process in (10) must first be computed.
From their definitions, and using (10), it is readily seen that:

Vo=¢1Vi+ Vot ¢psVs+ 1= 01Ver — 0:Veo — 0:3Ve3, (23)
Vi=¢1Vo+ Vi + ¢psVo— 01 — Ve — 03V, (24)

% See also Box and Jenkins [1970, appendix A7.3].
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Vo=¢1Vi+ ¢2Vo + ¢3Vi — 62 — 65V.,1, and (25)
Vi=¢g1Vo + p2 V1 + 3V — 6, (26)

where Vs = E(Z,Z;_3), and V.35 = E(Zie—3) = ¢p1Vea + ¢p2Ver + ¢35 — 0s.
These form a set of simultaneous equations in V,, Vi, Vs, and V3. Thus,
given B, one can compute the variance and autocovariances of Z, in (10).

To compute the minimum MSFFE from (22), we also need to know the
coefficients ¢, f,, and 8. of the misspecified ARMA(1, 2) model. A
reasonable procedure to compute these is to assume that the empiricist
knows Vy, Vi, Vs, etc., since s/he observes the realizations from the true
process (10), and that s/he will use these values to compute the estimated
coefficients of his assumed ARMA(1, 2) model. The variance and covar-
iances of an ARMA(1, 2) process can be described by equations similar
to (23) to (26). These are:

Li= Vo — Vids, (27)

Ly = —Vop, + Vi, and (28)

by = Vi — Vs, (29)
where:

Li=1+6"— (¢ — 6.)(, + ¢:02), and (30)

Ly = —0, — 6:(1 — 6,). (31)

Since Vo, Vi, and V; are now assumed known, it is possible to compute
é1, 0;, and G, from these equations. Starting with a guess ¢;*, one can
compute Ly using (28), f; using (29), and then 6, using (31) and L, using
(30). When this L, is substituted in (27), one gets a new guess for q~51, say
$#*. When the two guesses are equal, a solution has been found. Other-
wise, one must iterate again by modifying the initial guess.**

To summarize, the minimum MSFE of the misspecified ARMA(1, 2)
model can be computed from (22) by first computing the variance and
autocovariances using (23) to (26) and then computing the ARMA(1, 2)
coefficients using (27) to (31). If the misspecified model is assumed to be
an ARMA(1, 1), the minimum MSFE can be computed from (22) by
letting 8, =0. In addition, the coefficients q~51 and 6 of this model can be
computed by directly solving (27), (28), (30), and (31) once V, and V; are
known.?

In section 3, 152 invertible cases were generated by various parameter
combinations of the earnings model. For each of these cases, minimum
mean-squared forecast errors were computed for ARMA(1, 2) and
ARMA(1, 1) approximations to the underlying ARMA(3, 3) process.

2 For an ARMA(1, 2) model, (26) yields V}, = ¢;V,_; for £ = 2. The solution ¢ from the
iterative search may not satisfy this equation since the iterative search ignores the available
data on V5, V3, etc. This is the effect of aproximating (10) by ARMA(1, 2).

22 Note 21 is applicable to the case of ARMA(1, 1) also. In other words, in solving for
ARMA(1, 1) coefficients, equation (29) and the data on V», V3, etc., are ignored.
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Table 4 summarizes the data on MSFESs. Since ¢%(¢é) was assumed equal
to one, the MSFE in table 4 represents the ratio of the minimum MSFE
of the assumed model to the minimum MSFE of the true model. From
the ratios in table 4, it is seen that the two approximations result in
median increases in minimum MSFE of about 12 percent. The mean
increases, though, are different for the two approximations. The ARMA(1,
1) approximation has a higher mean increase in MSFE because it some-
times has increases of more than 100 percent in the forecast error
variance. (By contrast, the maximum increase in MSFFE for the ARMA(1,
2) approximation is only 78 percent.) However, the extreme increases in
MSFE for the ARMA(1, 1) approximation mostly occurred when the
dropped 6 value (in magnitude) was relatively large in relation to the
retained 6, value. One would expect in these cases that the probability
that an ARMA(1, 1) approximation would be accepted instead of
ARMA(1, 2) is also relatively small. Hence, the equal median increases
in the MSFE of the two misspecified models are perhaps better practical
indicators of the potential effect of the two misspecifications on forecast-
ing.

Whether these median increases in earnings forecast error variance are
acceptable to a forecaster naturally depends on the cost (to the forecaster)
of developing a theoretical model to identify the true underlying process
and the cost of forecast errors. It is clear from table 4 that the increase in
forecast error variance due to the misspecification can be negligible for
some cases. For firms that correspond to these cases of parameter value
combinations, the effect of model misspecification may be considered
tolerable by a forecaster. Of course, a modeling approach to identifying
the structure of earnings process would still be necessary to recognize
such cases.

TABLE 4
Minimum Mean-Squared Forecast Errors of Misspecified Models: Summary of 152
Invertible Cases

Minimum Minimum
MSFE of MSFE of
ARMA(1,2) ARMA(1,1)
Percentiles. .. ... .. 10 1.0090 1.0067
20 1.0242 1.0188
30 1.0490 1.0409
40 1.0722 1.0701
(Median)50 1.1186 1.1176
60 1.1524 1.1844
70 1.2289 1.2867
80 1.3272 1.4954
90 1.5034 1.9691
Minimum . ......... .. ... ... .. 1.0025 1.0017
Mean ........ ... ... .. ... 1.1842 1.2899
Maximum . . . . 1.7808 2.6650

Note: The minimum MSFE of the true ARMA (3,3) process is normalized to 1, and hence the above
data represent ratios of the minimum MSFE of the misspecified model to the minimum MSFE of the
true model.
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6. Conclusion

Based on the analysis above, it appears that accounting earnings of
real firms follow a more complex process than those identified by prior
empirical work. Regardless of the identification method used, earnings
models identified and estimated without reference to a theory of the firm
will likely be more parsimonious than the model postulated by that
theory. In this sense, the estimated models can be said to be misspecified.

My analysis was based on a wide range of parameter values of a firm,
and, when some of the assumptions of this model about the firm and its
accounting system are relaxed, the resulting earnings model can only be
expected to have more autoregressive and moving average terms than
the ARMA(3, 3) model identified here. For example, Dharan [1981] shows
that replacing (1) with a random-walk sales process or a sales process
with seasonality would lead to differencing terms and possibly more
moving average terms in the decision rules. Similarly, using a straight-
line depreciation method instead of the units-of-production method used
here would lead to more autoregressive terms in the capacity decision
rule. Hence, when the model assumptions are relaxed, one can expect the
estimation problems to remain.

The parsimony of the estimated models is due to the large theoretical
variances of the coefficients when sample sizes are of the order encoun-
tered in accounting research and when some of the coefficients (usually
of higher lags) have near-zero values. Of course, parsimony is also
sometimes deliberately sought by identification procedures, as in Akaike
[1974]. Similarly, the subjective or iterative nature of the identification
procedure used may lead the empiricist to give preference to parsimonious
models, as in Box and Jenkins [1970].

The fact that small sample sizes and small coefficients will limit
identification to misspecified and parsimonious models suggests that,
depending on the identification procedure used, different researchers
analyzing the same earnings data may identify different parsimonious
(but misspecified) models. This is particularly likely when the identifi-
cation procedure requires subjective inputs from the researcher in model
selection, as in the case of the Box-Jenkins and (to a lesser extent) the
Akaike procedures. This could explain the variation in the earnings model
structures observed in the quarterly earnings models identified by differ-
ent accounting researchers.?

This parsimony effect also has some implications for empirical studies
that test for changes in the earnings model structure caused by, say, an
accounting change. For example, suppose that a researcher hypothesizes
a change in the earnings model structure as a result of an accounting
change or a decision rule change and tests this hypothesis by estimating

2 See Watts [1975], Griffin [1977], Foster [1977], Brown and Rozeff [1979], and Dharan
[19828]. Foster [1978] provides a review.
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separate models for the prechange and postchange earnings data. The
researcher would likely fail to recognize differences in the order of the
identified models, since limited sample sizes would preclude estimation
of anything but the most parsimonious models for both earnings series.
On the other hand, hypotheses focusing on the differences in the esti-
mated coefficients of each series (e.g., differences in the value of ¢, of
each series) are more likely to be testable despite small sample sizes.
Such a hypothesis test was employed by Dopuch and Watts [1972].

I should emphasize that my main objective was to document a rigorous
causal earnings modeling effort following the framework of Gonedes and
Dopuch [1979] so the observations outlined above are by-products of this
effort. Other researchers who wish to pursue further the above results on
estimation and forecasting or, more likely, the general modeling methods
outlined in this paper should realize that extending this modeling effort
to other environments will lead to analytical derivations which are likely
to become much more complicated when more realistic model assump-
tions are introduced. Hence, it may be more feasible to rely on simulating
the model elements, such as the sales process and the inventory decision,
and then studying the simulated earnings data. The simulation model
could include real-world data (e.g., actual sales data to describe the
stochastic process for sales) and optimal decision rules. With these
additions, the technique of causally linking accounting earnings to man-
agerial decision rules via an accounting system becomes powerful, and
accounting researchers may apply this technique to areas such as fore-
casting efficiency, firm valuation, and income-smoothing—areas that
require knowledge of the effect of firms’ managerial decisions on earnings.

APPENDIX A
Average Cost Earnings Model

This appendix gives a brief derivation of the coefficients of the
ARMA(3, 3) earnings model given in (10) and is based on Dharan
[1981].

As noted in section 4, the time-series expression for the earnings, Z;, is
obtained by first getting a time-series expression for the unit cost i;. To
get the latter, one must substitute the decision rules for production,
inventory, and capacity—expressions (5), (6), and (8)—into the expression
for unit cost (9). Define a lag operator L such that L*Z, gives the lagged
variable Z,_. for integer x = 0. Then the three decision rules can be
written as:

(1= bL)I, = bcSy — e, (A.1)
(1—-bL)q: = bSy + be;—1, and (A.2)
1-b6L)1—-adiL)K; = abS, + abe;—;, (A.3)

where a is the capital stock adjustment factor, b is the inventory stock
adjustment factor, ¢ is the stock to sales ratio, d is the physical deprecia-
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tion rate, a1 =1 —a, b1 =1— b, and d, = 1 — d. Sy is the mean of the
sales process.

In the sales process described by (1), the shocks e, ey, ... are
generated independently by a white noise process and then added to the
value Sy to get S;, S;-1, ..., etc. Viewed this way, one can see that S, can
be scaled arbitrarily for any given set of shocks to get a correspondingly
scaled series of sales. The variance of the sales process is unaltered.
Scaling Sy does not affect the stationarity or invertibility of the resulting
earnings series. Furthermore, scaling of Sy does not require altering the
firm’s four parameters a, b, ¢, and d. In order to get tractable linear
expressions for earnings under average cost method, I assume that Sy is
scaled such that e,/S; is treated as a small fraction. Then nonlinear terms
involving e.e;/So” for all ¢ and s can be ignored as too small. With this
approximation, (A.2) results in:

(1 - b1L)2q12 = S()2b2 + Sobgepl. (A4)
From (A.1) and (A.2):
(1 - b]L)(It—1 + Qt) = bSo + bCSo - ble,«_l. (A5)

From (A.1), (A.3), and (A.4):
(1- blL)(it—IIt—l + Qt2/80 + K

v’ ab
g + + Sobeis - A6
°<1 “bL  1-a d1L> 0oct (A.6)

+ b* N ab ,
1-6L 1-aarL) "o

To derive a linear time-series expression for i, in terms of the shocks,
first assume that this expression will be of the form:

=60+ '21 Biet—j, (A.7)
J=
where 6 is a constant and g; are coefficients of the infinite moving average
terms. 6 can be viewed as the mean value of i;. Then the terms ;1,1 in
(A.6) can be substituted by fe;—; given the earlier assumption about e,/
So. Now the time-series expression for i, can be derived by substituting
(A.5) and (A.6) into equation (9) defining i,. To facilitate these substitu-
tions, it is useful to use (A.5) to write the term (I;—1 + q/) " in (9) as:

Se \' by !
L,+q)'={—— M1- _
Ly CI!) <(1~—b1L> (b + be) ( b+bcut 1) ,

where u;—1 = e,—1/So. Since e;/S, is assumed to be a small fraction, the

b, - : b,
b+ be Ui can be approximated as |1 + 775

term {1 —
b+ be

With this substitution, the rest of the derivation merely involves accu-
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mulating similar terms. The resulting expression for i, is given by:

. 1 b+ ab >+ c ;
l=— —
“T b+ be 1—ad 1+c¢ ! (A.8)
1+ be b* ab
- + — b0 Jus—.
(b+bc)2<1—b1L 1—adL )”’1

Let ¢; = ¢/(1 + ¢). Since c is a stock-sales ratio, ¢, is the ratio of stocks to
stocks plus sales. When the term c;i,—; is taken to the left side and when
both sides are multiplied by (1 — & L)(1 — a, d1L), one gets:

(1 _ C]L)(l - b]L)(l — Qi d]L)l[ = >\0 + ()\1 + >\2L + }\3L2)u,*1, (A9)

where Ao, A1, As, and A3 are constants defined by the four parameters a,
b, ¢, and d. These are defined below. The left side of (A.9) can be
expanded to get:

(1 - ¢1L - (f>2L2 - ¢3L3)it = >\0 + (}\1 + )\ZL + }\3L2)u;71. (AIO)

Expression (A.10) shows that i, is described by an ARMA (3, 2) process
in terms of the shock A;u -1, and this process has three autoregressive
coefficients, ¢1, ¢2, and ¢3, and two moving average coefficients. In
addition, (A.10) confirms that i; indeed has the form assumed in (A.7),
since any stationary ARMA process can be written equivalently as an
infinite order moving average process.

The autoregressive coefficients of (A.10) are given by:

¢1=c1+ b1+ a; di, (A.11)
¢2 = — c1by — bias di — a1 dici, and (A.12)
¢3 = c1bia: di. (A.13)

The moving average coefficients are given by:
1+ be

Ag = 1+ be (b1(0 — a) + a; d1(8 — b)), and (A.15)

Z_b(1+c)2 1 a a; a , an .
1+ be

)\3 = “'m b1a1 dle (A16)

The moving average constant is:
_b(1+a—a1d1)

A
’ 1+c¢

(A.17)

From (A.9), the mean of the i; process is seen as:
>\0 a
= =1+ .
(1—01)(1—b1)(1—a1 dl) 1—a1 dl

] (A.18)

The time-series expression for the earnings Z, is obtained by substitut-
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ing (A.10) into Z; = (1 — i;) S;. This gives: »
(1=¢1L — paL? — 3 LDZi =Ao' + (1 — 6L — 0L — §;1L%é,, (A.19)

where ¢1, ¢2, and ¢3 were defined above:

é{ = —(0 - l)e,, and (A.20)
Ao’ = [(1 = e)b(l — ar dy) = Ao]So = 22 (A.21)
0 1 1 1) = \o 0 = 1 +ec . .
The three moving average coefficients of (A.19) are given by:

A

= ¢ — A.22

01 ¢1 0 — 19 ( )
A

b= =5 — -, and (A.23)
A3

= s — 2
0s = ¢3 9-1 (A.24)

Expression (A.19) describes the earnings under average cost method as
an ARMA(3, 3) process in terms of the shock é;. Since e, is from a white
noise process, the shock é; is also from a white noise process, with zero
mean and a variance of ¢%(é;) = (§ — 1)%6%(e;). The three autoregressive
coefficients of Z; are given by (A.11) to (A.13), and the three moving
average coefficients are given by (A.22) to (A.24). Expression (A.19) is
identical to (10) except that the moving average constant Ao’ in (A.19)
has been dropped in (10), which implies that the mean of the realizations
Zi,Zi-1, ..., etc. has been subtracted from the Z;, Z; 1, .. ., etc. in (10).

In conclusion, it should be noted that the finite lags of Z and € observed
in (A.19) do not mean that only three past periods affect current earnings.
When the earnings are to be written exclusively in terms of the shocks,
the stationary ARMA model in (A.19) is equivalently written in an
infinite moving average form similar to (A.7). Such a form makes clear
the dependence of Z; on all present and past shocks. Also, it should be
noted that the linear stochastic form in (A.19) was derived by ignoring all
nonlinear terms in the derivation. Thus, (A.19) is a linear approximation
to a possibly more complex nonlinear stochastic equation.
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