1. Find the volume common to 3 cylinders of radius 1 that lie along the three coordinate axes.

Answer: 8(2- $\sqrt{2}$)

Solution: There are many ways to do this problem. Using multi-variable calculus we proceed as follows. Split the object into 16 congruent pieces. One of these sits in the first octant and is defined by, $\left\{(r, \theta, z) \mid 0 \leq r \leq 1,0 \leq \theta \leq \pi / 4,0 \leq z \leq \sqrt{1-x^{2}}\right\}$ where $x=r \cos \theta$. Thus the entire volume is:

$$
16 \int_{0}^{\pi / 4} \int_{0}^{1} \int_{0}^{\sqrt{1-r^{2} \cos ^{2} \theta}} r d z d r d \theta=16 \int_{0}^{\pi / 4} \int_{0}^{1} \sqrt{1-r^{2} \cos ^{2} \theta} r d r d \theta=16-8 \sqrt{2}
$$

Using calculus of only one variable, we want to use the common technique that $V=\int A d h$ where A is the area of a cross section and h is the height at which that cross section sits. To do this, divide the region into 8 congruent pieces and consider the 1st quadrant part again. Now we will consider two regions divided by $z>1 / \sqrt{2}$ and $z<1 / \sqrt{2}$. For the first region, slicing the figure with a plane horizontally produces a square cross section. The sides of this square are of length $\sqrt{1-z^{2}}$. Thus the volume of this region is $\int_{1 / \sqrt{2}}^{1}\left(1-z^{2}\right) d z=\frac{1}{12}(8-5 \sqrt{2})$.
For the second region we will obtain a cross section that consists of a circular sector and two triangles. This cross section is a subset of the unit disc in the first quadrant. For some point on the circle $\left\{x, \sqrt{1-x^{2}}\right\}$ the region of the cross section is equal to the intersection of the disc and a square of side length x with one corner at the origin and two sides parallel to the coordinate axes. The area of this region is $x \sqrt{1-x^{2}}+\frac{1}{2}\left(\frac{\pi}{2}-2 \cos ^{-1}(x)\right)$. It is also easy to see that $x^{2}+z^{2}=1 \Longrightarrow d z=-\frac{x d x}{\sqrt{1-x^{2}}}$. So the volume of this region is,

$$
\int_{1}^{\frac{1}{\sqrt{2}}}\left(\sqrt{1-x^{2}} x+\frac{1}{2}\left(\frac{\pi}{2}-2 \cos ^{-1}(x)\right)\right) \frac{-x}{\sqrt{1-x^{2}}} d x=\frac{4}{3}-\frac{7}{6 \sqrt{2}}
$$

Summing these two answers gives $2-\sqrt{2}$, finally there are 8 regions, giving us an answer of $8(2-\sqrt{2})$.
2. Let $y(x)$ be the solution to the differential equation $y^{\prime \prime}=y x$. The following limit exists:

$$
\lim _{x \rightarrow \infty} \frac{\ln y}{x^{3 / 2}}
$$

- compute it.

Answer: $\frac{2}{3}$
Solution: First of all this is Airy's equation so one can simply recall the asymptotic expansion for $A i(x)$.
Because we know that the limit exists call it α. This implies that $y \approx e^{\alpha x^{3 / 2}}$ for $x \rightarrow \infty$. Using the differential equation we have

$$
x e^{a x^{3 / 2}}=\frac{9}{4} a^{2} x e^{a x^{3 / 2}}+\frac{3 a e^{a x^{3 / 2}}}{4 \sqrt{x}}
$$

Thus $\alpha=\frac{3 \sqrt{16 x^{3}+1}-3}{18 x^{3 / 2}}$ and in the limit $x \rightarrow \infty, \alpha=\frac{2}{3}$.
3. Find f satisfying $4 x(1-x) f^{\prime \prime}+2(1-2 x) f^{\prime}+f=0$ and $f(1)=1, f^{\prime}(1)=1 / 2$.

Answer: $\sqrt{\boldsymbol{x}}$
Solution: This is Mathieu's equation. Make the substitution $x=\cos ^{2} y$. Then the equation becomes, $f^{\prime \prime}(y)+f(y)=0$. The solution to this satisfying the conditions is $\cos (y)$. The rest follows.
Finally suppose that we simply search for the taylor series of f at 1 . Differentiating the equation once and evaluating at 1 gives $f^{\prime \prime}(1)=-1 / 4$. Then, using the differnetial equation we can write for $n \geq 2$:

$$
\begin{array}{r}
\frac{d^{n}}{d x^{n}}\left(4 x(1-x) f^{\prime \prime}+2(1-2 x) f^{\prime}+f\right)= \\
4 x(1-x) f^{(n+2)}+[2(1-2 x)+4(1-2 x) n] f^{(n+1)}+[1-4 n-4 n(n-1)] f^{(n)}=0
\end{array}
$$

So in general

$$
f^{(n+1)}(1)=(1 / 2-n) f^{(n)}(1)
$$

The solution to this is the obvious product which can be written as the generalized binomial coefficient: $f^{(n)}(1)=\prod_{m=0}^{n-1}\left(\frac{1}{2}-m\right)=n!\binom{\frac{1}{2}}{n}$. So the series is

$$
\sum_{n=0}^{\infty}\binom{\frac{1}{2}}{n}(x-1)^{n}=\sqrt{x}
$$

It should be easy to see how to sum this series from the standard decomposition, $(x+1)^{n}=$ $\sum_{k=0}^{\infty}\binom{n}{k} x^{k}$.
4. Compute

$$
\int_{0}^{\frac{\pi}{2}} \frac{d x}{1+\sqrt{\tan x}}
$$

Answer: $\frac{\pi}{4}$

Solution: Split the integral as

$$
\int_{0}^{\frac{\pi}{2}} \frac{d x}{1+\sqrt{\tan x}}=\int_{0}^{\frac{\pi}{4}} \frac{d x}{1+\sqrt{\tan x}}+\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{d x}{1+\sqrt{\tan x}}
$$

Apply the change of variables $x \rightarrow \frac{\pi}{2}-x$ to the second integral to get

$$
\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{d x}{1+\sqrt{\tan x}}=\int_{\frac{\pi}{4}}^{0} \frac{-d x}{1+\sqrt{\cot x}}=\int_{0}^{\frac{\pi}{4}} \frac{d x}{1+\sqrt{\cot x}}=\int_{0}^{\frac{\pi}{4}} \frac{\sqrt{\tan x} d x}{1+\sqrt{\tan x}}
$$

Thus

$$
\int_{0}^{\frac{\pi}{2}} \frac{d x}{1+\sqrt{\tan x}}=\int_{0}^{\frac{\pi}{4}} \frac{d x}{1+\sqrt{\tan x}}+\int_{0}^{\frac{\pi}{4}} \frac{\sqrt{\tan x} d x}{1+\sqrt{\tan x}}=\int_{0}^{\frac{\pi}{4}} \frac{(1+\sqrt{\tan x}) d x}{1+\sqrt{\tan x}}=\int_{0}^{\frac{\pi}{4}} d x=\frac{\pi}{4}
$$

5. Compute

$$
\int_{1}^{e} \frac{\ln (x)}{(1+\ln (x))^{2}} d x
$$

Answer: $\frac{e}{2}-1$
Solution: Set $u=1+\ln (x)$ then $e^{u-1}=x$ and $e^{u-1} d u=d x$ so we have,

$$
\int_{1}^{e} \frac{\ln (x)}{(1+\ln (x))^{2}} d x=\int_{0}^{2} \frac{(u-1) e^{u-1} d u}{u^{2}}=\int_{0}^{2}\left(\frac{1}{u}-\frac{1}{u^{2}}\right) e^{u-1} d u
$$

Now integrate only the first term by parts and the remaining integrals cancel,

$$
\left.\frac{e^{u-1}}{u}\right|_{1} ^{2}-\int_{0}^{2} \frac{-1}{u^{2}} e^{u-1} d u-\int_{0}^{2} \frac{1}{u^{2}} e^{u-1} d u=\frac{e}{2}-1
$$

6. Compute

$$
\frac{1}{\pi} \int_{0}^{\pi}\left(\frac{\sin (10 x)}{\sin x}\right)^{2} d x
$$

Answer: 10

Solution: Let $z=e^{i x}$ so that $\sin x=\frac{z-z^{-1}}{2 i}$ and $\sin (10 x)=\frac{z^{10}-z^{-10}}{2 i}$. We utilize these representations of $\sin x$ and $\sin (10 x)$ to simplify $\frac{\sin (10 x)}{\sin x}=\frac{z^{10}-z^{-10}}{z-z^{-1}}=z^{-9} \frac{z^{20}-1}{z^{2}-1}=z^{-9} \frac{\left(z^{2}\right)^{10}-1}{z^{2}-1}=$ $z^{-9}\left(z^{18}+z^{16}+\ldots+1\right)=\left(z^{9}+z^{7}+\ldots+z+z^{-1}+\ldots+z^{-7}+z^{-9}\right)=\left(\left(z^{9}+z^{-9}\right)+\ldots+\right.$ $\left.\left(z+z^{-1}\right)\right)$. The expression in the integral is the square of our "simplification" but before squaring it, I will note several important things that simplify all of the work. First, when we square it, every power of z will be even. Second of all, $z^{2 k}+z^{-2 k}=2 \cos (2 k x)$ has integral 0 over the interval 0 to π. Thirdly, we expand the square $\left(\sum_{k=1}^{5}\left(z^{2 k-1}+z^{-2 k+1}\right)\right)^{2}=$ $\sum_{k=1}^{5}\left(z^{2 k-1}+z^{-2 k+1}\right)^{2}+2 \sum_{1 \leq k<j \leq 5}\left(z^{2 k-1}+z^{-2 k+1}\right)\left(z^{2 j-1}+z^{-2 j+1}\right)=\sum_{k=1}^{5}\left(2+z^{4 k-2}+\right.$ $\left.z^{-4 k+2}\right)+2 \sum_{1 \leq k<j \leq 5}\left(\left(z^{2(k+j)-2}+z^{-2(k+j)+2}\right)+\left(z^{2(k-j)-2}+z^{-2(k-j)+2}\right)\right)$. So the integral of all of these sums will be 0 , with the exception of $\sum_{k=1}^{5} 2=10$. So we have that the expression in our problem is equal to $\frac{1}{\pi} \cdot(10 \pi)=10$, so 10 is the answer.
A quick comment. Say you have a collection of raffle tickets with n digits in base m (to be clear, if $n=6, m=10$ the tickets are $000000,000001, \ldots, 999998,999999)$. Call a ticket "happy" if n is even and the sum of the first $\frac{n}{2}$ digits is equal to the sum of the last $\frac{n}{2}$ digits. Then the number of happy raffle tickets for any given n and m is equal to $\frac{1}{\pi} \int_{0}^{\pi}\left(\frac{\sin (m x)}{\sin x}\right)^{n} d x$. If one somehow knew this ahead of time, then clearly, for $n=2, m=10$ we have $00,11, \ldots, 99$ are the 10 happy tickets! Also, it is a fun exercise to prove this formula, and I highly recommend at least trying!
7. Compute

$$
\int_{0}^{1 / e} \frac{d x}{\sqrt{-\ln (x)-1}}
$$

Answer: $\frac{\sqrt{\pi}}{e}$

Solution: Set $u=\sqrt{\ln \left(\frac{1}{e x}\right)}$ then $e^{-u^{2}-1}=x$ and $-2 u e^{-u^{2}-1} d u=d x$ so the integral becomes,

$$
\int_{0}^{1 / e} \frac{d x}{\sqrt{-\ln (x)-1}}=\int_{0}^{1 / e} \frac{d x}{\sqrt{\ln \left(\frac{1}{e x}\right)}}=\int_{\infty}^{0} \frac{-2 u e^{-u^{2}-1} d u}{u}=\int_{-\infty}^{\infty} e^{-u^{2}-1} d u=\frac{\sqrt{\pi}}{e}
$$

8. We have a triangle $A B C$ with $A B=2, B C=3$, and $A C=4$. Consider all lines $X Y$ such that X lies on $A C, Y$ lies on $B C$, and triangle $X Y C$ has area half of that of $A B C$. What is the minimum possible length of $X Y$?
Answer: $\frac{\sqrt{6}}{2}$
Solution: Let $x=C X$ and $y=C Y$. Then since the area of $X Y C$ is half of that of $A B C$, we must have $x y=\frac{1}{2} A C \cdot B C=6$. Now, let $\alpha=\angle A C B$. Then by the law of cosines, $X Y=\sqrt{x^{2}+y^{2}-2 x y \cos (\alpha)}=\sqrt{x^{2}+y^{2}-12 \cos (\alpha)}$. Since $\cos (\alpha)$ is a constant, minimizing $X Y$ is equivalent to minimizing $x^{2}+y^{2}$.
Now, since $x y=6$, we have $y=\frac{6}{x}$ and hence $x^{2}+y^{2}=x^{2}+\frac{36}{x^{2}}=\frac{x^{4}+36}{x_{2}^{2}}$. The minimum is achieved when its derivative is zero. The numerator of the derivative is $4 x^{2}-2\left(x^{4}+36\right)$. Setting the derivative to equal 0 , we see that $x^{4}=36$ and hence $x=36^{1 / 4}=\sqrt{6}$ which lies in the range $[2,4]$ and hence is a valid value of x. Therefore, $x=\sqrt{6}$ and $y=\frac{6}{x}=\sqrt{6}$.
We now proceed to compute $\cos (\alpha)$ so we may calculate the length of $X Y$ when $x=y=\sqrt{6}$. By the law of cosines an triangle $A B C, \cos (\alpha)=\frac{A C^{2}+B C^{2}-A B^{2}}{2 A C \cdot B C}=\frac{9+16-4}{24}=\frac{7}{8}$. Therefore, the minimum value of $X Y$ is

$$
X Y=\sqrt{x^{2}+y^{2}-12 \cos (\alpha)}=\sqrt{6+6-12 \cdot \frac{7}{8}}=\frac{\sqrt{6}}{2}
$$

9. u is a twice differentiable real-valued function on $[-1,1]$ with $u^{2}+2 u^{\prime 2}+2 u u^{\prime \prime}=0, u(0)=\sqrt{5}$, and $u^{\prime}(0)=\frac{3}{\sqrt{5}}$. Determine $u\left(\frac{\pi}{4}\right)$.
Answer: $2 \sqrt[4]{2}$
Solution: Note that for any twice differentiable function $u,\left(u^{2}\right)^{\prime \prime}=\left(2 u u^{\prime}\right)^{\prime}=2 u^{\prime 2}+2 u u^{\prime \prime}$. Thus the given differential equation is equivalent to $\left(u^{2}\right)^{\prime \prime}=-u^{2}$. The solutions to this equation are all expressions of the form $a \cos t+b \sin t$, where a and b are arbitrary real constants. Thus $u(t)^{2}=a \cos t+b \sin t$ for some real constants a and b. Because $u(0)>0$ and u is continuous on $[-1,1]$, we can take the nonnegative branch of the square root, giving $u(t)=\sqrt{a \cos t+b \sin t}$. $u(0)=\sqrt{a}=\sqrt{5}$, so $a=5 \cdot u^{\prime}(t)=\frac{-a \sin t+b \cos t}{2 \sqrt{a \cos t+b \sin t}}$, so $u^{\prime}(0)=\frac{b}{a}=\frac{3}{\sqrt{5}}$, and hence $b=3$. Thus $u(t)=\sqrt{5 \cos t+3 \sin t}$, so $u\left(\frac{\pi}{4}\right)=\sqrt{5 \cdot \frac{1}{\sqrt{2}}+3 \cdot \frac{1}{\sqrt{2}}}=\sqrt{\frac{8}{\sqrt{2}}}=\sqrt{4 \sqrt{2}}=2 \sqrt[4]{2}$.
10. In tennis, players have two chances to hit a serve in. If the first serve is in, the point is played to completion (until either player wins the point). If the first serve is out, the player hits a second serve. If the second serve is in, the point is played to completion; otherwise, the server automatically loses the point. Andy can precisely control the velocity v of his serve up to 100 mph . The faster his serve, the higher the probability of him winning the point if the serve goes in, but the higher the probability that the serve goes out. For a given v, the probability that Andy's serve is in is $p(v)=\frac{150-v}{150}$, and the probability that he wins the point after his
serve goes in is $q(v)=\frac{v}{100}$. Assuming that he chooses optimal velocities for his first and second serves, compute the probability that Andy wins the point.

Answer: $\frac{75}{128}$

Solution: We have to find the optimal second-serve velocity first. The probability of winning the point after missing the first serve, as a function of v the speed of the second serve, will be

$$
p(v) \cdot q(v)=\frac{v(150-v)}{100 \cdot 150}
$$

The derivative of this is $\frac{150-2 v}{15000}$, which has only one zero at $v=75$, so this is the maximum. At this v, Andy's probability of winning the point is $\frac{75}{150} \cdot \frac{75}{100}=\frac{3}{8}$.
Now, given this, the probability of winning the first point as a function of v, the speed of the first serve, will be

$$
p(v) \cdot q(v)+(1-p(v)) \cdot \frac{3}{8}=\frac{v(150-v)}{100 \cdot 150}+\frac{3 v}{8 \cdot 150}
$$

The derivative of this is $\frac{150-2 v}{100 \cdot 150}+\frac{3}{8.150}$, setting this equal to 0 and solving, we find $\frac{150-2 v}{100}=$ $\frac{-3}{8} \Rightarrow 8(150-2 v)=-3 \cdot 100 \Rightarrow 1500=16 v \Rightarrow v=\frac{375}{4}$.
Finally, this means the probability Andy wins the point is

$$
p(v) \cdot q(v)+\left.(1-p(v)) \cdot \frac{3}{8}\right|_{v=\frac{375}{4}}=\frac{3}{8} \cdot \frac{15}{16}+\frac{5}{8} \cdot \frac{3}{8}=\frac{75}{128}
$$

Note that this means Andy will always attempt his first serve at 93.75 mph , and his second serve at a more conservative 75 mph . In fact, real tennis players also hit their second serves significantly slower than their first serves.

