1. Find $\int \frac{x+2}{(x-1)^{2}(x-2)} d x$.
2. Tangent lines are drawn at the points of inflection for the function $f(x)=\cos x$ on $[0,2 \pi]$. The lines intersect with the x-axis so as to form a triangle. What is the area of this triangle?
3. Let f be one of the solutions to the differential equation

$$
f^{\prime \prime}(x)-2 x f^{\prime}(x)-2 f(x)=0
$$

Supposing that f has Taylor expansion

$$
f(x)=1+x+a x^{2}+b x^{3}+c x^{4}+d x^{5}+\cdots
$$

near the origin, find (a, b, c, d).
4. What is the value of the alternating harmonic series $1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\ldots$?
5. Solve the integral equation

$$
f(x)=\int_{0}^{x} e^{x-y} f^{\prime}(y) d y-\left(x^{2}-x+1\right) e^{x}
$$

for $f(x)$.
6. Evaluate the integral

$$
\int_{0}^{\pi}|\sin (2 x)-\sin (3 x)| d x
$$

and express your answer in the $\frac{a+b \sqrt{c}}{d}$, where a, b, c, and d are integers.
7. Let $f(x)=\frac{x^{3} e^{\left(x^{2}\right)}}{1-x^{2}}$. Find $f^{(7)}(0)$, the 7 th derivative of f evaluated at 0 .
8. For the curve $\sin (x)+\sin (y)=1$ lying on the first quadrant, find the constant α such that

$$
\lim _{x \rightarrow 0} x^{\alpha} \frac{d^{2} y}{d x^{2}}
$$

exists and is nonzero.
9. Evaluate the integral $\int_{0}^{\frac{\pi}{2}} \frac{d x}{1+(\tan x)^{\pi}}$.
10. Evaluate the following integral:

$$
\int_{0}^{1} \frac{d x}{x(x+1)\left(\ln \left(1+\frac{1}{x}\right)\right)^{2011}}
$$

