Definitions

A graph is a collection of points (vertices) connected by line segments (edges). In this test, all graphs will be simple – any two vertices will be connected by at most one edge – and connected – you can get from any vertex to any other by following edges.

A simple graph with 7 vertices and 11 edges.

An edge n-coloring of a graph G is an assignment of one of n colors to each edge of G.

A 2-coloring of the earlier graph

A complete graph is one in which any two vertices are connected by an edge.

1. a. Draw a simple connected graph with 8 vertices and 7 edges, and 3-color its edges.
 b. Draw a complete graph on 5 vertices, and 2-color its edges so that it does not contain a red triangle or a blue triangle (3 vertices, the edges between which are all red or all blue).

We will use K_n to denote a complete graph on n vertices. A monochromatic K_n is one in which every edge has the same color. Hence, problem 1(b) could have been phrased “Color K_5 so that it has no monochromatic K_3”.

2. Show that no matter how you 2-color K_6, it will contain a monochromatic K_3. (Hint: Think about all the edges coming from one vertex).

The Ramsey number $R(k)$ is the least number n such that no matter how you 2-color the edges of K_n, there will be a monochromatic K_k. In problems 1(b) and 2, you have shown that $R(3) = 6$.

Interestingly, $R(4)$ is a difficult quantity to calculate, and $R(5)$ is still unknown! Since we cannot go much further in this vein, let us try looking at generalizations of Ramsey numbers. Define $R(k, j)$ as the least n such that every red, blue edge 2-coloring of K_n contains either a red K_k or a blue K_j. Then $R(n)$ is just $R(n, n)$ under this new definition.

3. a. Show that $R(3, 4) > 8$ by exhibiting a 2-coloring.
 b. Show that $R(4, 3) = 9$ (Hint: Use problem 2.)
4. a. Show that
\[R(n, m) \leq R(n, m - 1) + R(n - 1, m). \]
(Hint: see hint to problem 2.)
b. Conclude that \(R(n, m) \) is well defined, that is, that it exists for every \(n \) and every \(m \).

From here on, we will explore some interesting properties and generalizations of Ramsey numbers. Each section is independent.

Bounds on Ramsey Numbers

5. Color a graph of \(n^2 \) points, laid out in a \(n \times n \) grid, as follows: The edge \((u, v)\) is blue if \(u \) and \(v \) are in the same row, and red otherwise.
 a. Show that any \(K_{n+1} \) in that graph contains at least one red edge and at least one blue edge.
 b. Conclude that \(R(n + 1, n + 1) > n^2 \).

Problem 6 gives us a polynomial lower bound for \(R(n, n) \), and it does so constructively – we know exactly which graph will give a counterexample. Erdős has shown that, if we are willing to be nonconstructive, we can get a much better lower bound:

6. a. Show that if the edges of \(K_m \) are colored red or blue randomly with equal probability (i.e., by flipping a coin for each edge), then the probability that it contains a monochromatic \(K_n \) is at most
\[\binom{m}{n} \cdot 2^{1 - \binom{n}{2}}. \]
 b. Show that if \(\binom{m}{n} < 2^{\binom{n}{2} - 1} \), that probability is less than 1.
 c. Using the fact that \(\binom{m}{n} < m^n \), show that if \(m = 2^{\frac{n}{2} - \frac{1}{2}} \) then \(\binom{m}{n} < 2^{1 - \binom{n}{2}} \), and conclude that
\[R(n, n) > 2^{\frac{n}{2} - \frac{1}{2} - \frac{1}{2}}. \]

7. Prove a complementary upper bound: \(R(n, n) \leq 4^n \).

k-color Ramsey Numbers

Similar to our definition \(R(n, m) \), we can define \(R(n_1, n_2, n_3, \ldots, n_k) \) to be the least \(m \) such that if \(K_m \) is colored with \(k \) colors, there is some monochromatic \(K_{n_i} \) of color \(c_i \).

8. Prove that \(R(3, 3, 3) \leq 17 \). (In fact, \(R(3, 3, 3) = 17 \), but this is difficult to show.)

9. Show that
\[R(n_1, \ldots, n_k) \leq R(n_1, n_2, \ldots n_{k-2}, R(n_k, n_k-1)) \]
This gives us the existence of \(R(n_1, \ldots, n_k) \) for all \(\{n_1, \ldots, n_k\} \).

10. Prove that
 a. \(\underbrace{R(3, \ldots, 3)}_{r \text{ 3's}} \leq 3r! \)
b. \[R(3, \ldots, 3) > 2^r \]

Infinite Ramsey Numbers

11. Define \(K_N = (V, E) \), where \(V = \{1, 2, 3, \ldots\} \), and \(E = \{(i, j) : i, j \in V, i < j\} \). This is in some sense an infinite complete graph. Show that if every edge is colored red or blue, there is some infinite subset \(V' \) of \(V \) such that all of the edges between points of \(V' \) are the same color.