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1. Answer: P

Notice that as ¢ — 0, both the numerator and the denominator approach 0. Thus, applying L’Hopital’s
rule on t (keeping x constant):

2. Answer: 1
Let f(z) = €* xf— Then f/(z) =e® —1— 22 When 2 <0, e® <1land 1+ 22 > 1, s0 f'(z) =
e®—(1+22) < 0. Thus f is decreasing on( 0,0). Whenz =0, f'(z) = f/(0) =e’~1-0> =1-1=0.
Finally, for z > 0, f’(:):) = ¢ —1—22 > 0 by a Maclaurin series expansion, so f is increasing on (0, ).

Thus, f must attain its minimum when z = 0, at which point f has the value e — 0 — % =1.

3. Answer: V2

Consider:
d d > tx > tx >
—sin"H(t — 1/1/2) = — e f(x)dx = ze' f(x)dx = xf(z)dz
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4. Answer: © = —% and x =0

Notice that f(z) — 0 as z — +oo. Since 92 + 6z + 2 has no real roots, the maximum value of f(z)

is attained at the maximum of the absolute values of the critical points of %.
3x+

The extrema of m occur at x = f% and x = 0. It is easily checked that maxima of f(x) occur
at both of these points.

5. Answer: %;/g

Let the circular island be a circle of radius 2 centered at the origin. Without loss of generality, let
the length of the rectangular base be from —z to x and the width from —y to y. Notice that by the
equation of a circle, 22 = 4 — y2. Then
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6. Answer: 13

This is the evaluation of the mean of a Poisson distribution: for any A,
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7. Answer:

10.

—2 cos(t?)
t

By the Leibniz integral rule, the above integral becomes
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Answer: In3
The partial sums of this sum are equal to
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This is a Riemann sum, so as n — oo the partial sums converge to

2
/ dr =In3.
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Since the parabola f(x) = x(4 — x) — k is symmetric about « = 2, the problem is equivalent to
minimizing f02 |f(z)|dz. The vertex of the parabola equals (2, f(2)) = (2,4 — k). When k = 4, f(z)
lies completely below the x-axis in the interval [0,2] and hence k > 4 would only translate f(x) down
and increase the integral. Similarly, at ¥ = 0, f(z) lies completely above the x-axis so k < 0 would
only increase the integral. Thus, we can split the integral into two regions

Answer: 3
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We want to solve for the critical point of
a+b
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The numerator equals 0 when k = 3. It is clear that a global minimum results since this is a global
minimum on (—oo, 4] and F(k) is clearly increasing for k > 4.

Answer: y = —4x2 452 —7

Such a parabola intersects f(x) precisely where f/(z) = 0. Hence, the value of the intersection points do
not change when we replace f(z) by f(x)+g(x)f'(x) for any g(x). Therefore, since f'(x) = 62°—12x+6,
we must have that f(z) — 1/6zf'(z) = —4x? + 5 — 7 passes through the three critical points. Since
three points determines a parabola uniquely, this must be the unique parabola passing through the
three critical points.



