1. **Answer: 1681**

 There are 41 words in the problem statement. Since 41 is itself a prime, the answer is $41^2 = 1681$.

2. **Answer: $\frac{100}{x-1}$%**

 After yesterday, the fraction of the initial gold remaining is $1 - \frac{1}{x} = \frac{x-1}{x}$. Therefore, in order to reach the original amount of gold, we must multiply by $\frac{x}{x-1} = 1 + \frac{1}{x-1}$. Thus, the gold must be increased by $\frac{100}{x-1}$ percent.

3. **Answer: $(5, 0), (4, 1), (1, -2)$, and $(2, -3)$**

 We factor the expression as follows:

 \[
 ab + a - 3b - 3 = 5 - 3 \\
 (a - 3)(b + 1) = 2
 \]

 We can use a table to find appropriate values for a and b. Thus, $(5, 0), (4, 1), (1, -2)$, and $(2, -3)$ are the desired solutions.

 \[
 \begin{array}{cccc}
 a - 3 & b + 1 & a & b \\
 2 & 1 & 5 & 0 \\
 -2 & -1 & 1 & -2 \\
 1 & 2 & 4 & 1 \\
 -1 & -2 & 2 & 3
 \end{array}
 \]

4. **Answer: $x = 1$**

 \[
 f(x) + xf\left(\frac{1}{x}\right) = x \\
 f\left(\frac{1}{x}\right) + \frac{1}{x}f(x) = \frac{1}{x} \\
 f\left(\frac{1}{x}\right) = \frac{1}{x} - \frac{1}{x}f(x) \\
 f(x) + x\left(\frac{1}{x} - \frac{1}{x}f(x)\right) = x \\
 x = 1
 \]

5. **Answer: $-\frac{5}{4}$**

 We complete the square:

 \[
 2x^2 + 2xy + 4y + 5y^2 - x = (x^2 + 2xy + y^2) + (x^2 - x + \frac{1}{4}) + (4y^2 + 4y + 1) - \left(\frac{1}{4} + 1\right) \\
 = (x + y)^2 + (x - \frac{1}{2})^2 + (2y + 1)^2 - \frac{5}{4}
 \]

 Notice that $x = \frac{1}{2}$ and $y = -\frac{1}{2}$ would yield the minimum, which is $-\frac{5}{4}$.

6. **Answer: 506**
Let \(P_n \) be the value of the dollar in gold after the \(n^{th} \) bailout. Let \(s = \frac{1}{2} \). Then after the \(n^{th} \) bailout, the dollar is a factor of \((1 + s^{2^{n-1}})\) of its \((n-1)^{th}\) value. Thus,

\[
\begin{align*}
P_4 &= \frac{1}{980}(1 + s)(1 + s^2)(1 + s^4)(1 + s^8) \\
&= \frac{1}{980}(1 + s + s^2 + s^3)(1 + s^4)(1 + s^8) \\
&= \frac{1}{980}(1 + s + s^2 + s^3 + s^4 + s^5 + s^6 + s^7)(1 + s^8) \\
&= \frac{1}{980}(1 + s + s^2 + s^3 + s^4 + s^5 + s^6 + s^7 + s^8 + s^9 + s^{10} + s^{11} + s^{12} + s^{13} + s^{14} + s^{15}) \\
&= \frac{1}{980} \left(1 - \frac{1}{s^{16}}\right).
\end{align*}
\]

Plug in \(s = \frac{1}{2} \), and we find that \(P_4 = \frac{1}{490} \left(1 - \frac{1}{2^{16}}\right) \). So \(b + c = 490 + 16 = 506 \).

7. Answer: 32670

Largest multiple of 60 below 2009 is 1980, so find the sum for \(k = 1 \) to 1979, so that we have each value of \(\lfloor k/60 \rfloor \) exactly 60 times. This sum is therefore \(60(1 + 2 + \ldots + 32) = 60(1 + 32)^2 = 31680\). The remaining terms are all 33, and there are \(2009 - 1980 + 1 = 30\) of them, giving an answer of \(31680 + 30 \times 33 = 32670\).

8. Answer: 1011

\[\begin{align*}
(1\overline{100})(\overline{11}) &= \overline{11000} + 1\overline{100} = \overline{1100} \\
\overline{1100} + 1\overline{11} &= 1\overline{011}.
\end{align*}\]

9. Answer: -58

Let the roots be \(r, s, \) and \(t \). Then they satisfy \(r + s + t = -a, rs + st + rt = b, \) and \(rst = -c. \) So we have \(- (a + b + c + 1) = r + s + t - rs - rt - st + rst - 1 = (r - 1)(s - 1)(t - 1) = 2009 = 7 \times 7 \times 41. \)

Thus the roots are 8, 8, and 42, and \(a = -(r + s + t) = -58 \).

10. Answer: 20

For convenience, set \(x = \sum_{n=1}^{\infty} \frac{\delta(n)}{n^2} \) and \(y = \sum_{n=0}^{\infty} \frac{(-1)^{n-1}\delta(n)}{n^2}. \)

The crucial observation is that \(\frac{1}{2}(x + y) \) and \(\frac{1}{2}(x - y) \) give the same summation as \(x \), restricted to the terms with odd \(n \) and even \(n \) respectively. The latter summation is easily related to \(x \) using the fact that \(\delta(2n) = \delta(n) \) (since multiplying by 2 is simply appending a 0 in the binary expansion), as follows.

\[
\frac{1}{2}(x - y) = \sum_{\text{even } n \geq 2} \frac{\delta(n)}{n^2} \\
= \sum_{n=1}^{\infty} \frac{\delta(2n)}{(2n)^2} \\
= \sum_{n=1}^{\infty} \frac{\delta(n)}{4n^2} \\
= \frac{1}{4} x.
\]

Thus we have \(\frac{1}{2}(x - y) = \frac{1}{4} x. \) It follows that \(x = 2y, \) so \(x/y = 2. \) Thus, the desired answer is 20.