1. **Answer:** 10

Label three consecutive vertices of the polygon A, B, and C. Let BP be the common side to the pentagons placed on sides AB and BC. Then \(\angle ABP = \angle PBC = 108^\circ \). Since \(\angle ABP + \angle PBC + \angle ABC = 360^\circ \), this gives \(\angle ABC = 144^\circ \). So the exterior angle of this polygon is 36, and thus it has 10 sides.

2. **Answer:** \(8\sqrt{2} \)

Notice that the ball travels the length of the room twice and the width of the room twice, so it’s traveled a total of 8 meters in the horizontal direction and 8 meters in the vertical direction. Because the ball is bouncing (and thus its path after a bounce is the same as its path before the bounce, but reflected), we can rearrange the four segments of its path into a straight line by only reflection and translation. This line travels 8 meters horizontally and 8 meters vertically, so its length, which is the total length of the ball’s path, is \(8\sqrt{2} \).

3. **Answer:** \(\sqrt{3}\pi \)

Since the space diagonal of the cube is a diameter of the sphere, we have \(s\sqrt{3} = 2r \). The ratio is then

\[
\frac{\frac{4}{3}\pi r^3}{\left(\frac{2r}{\sqrt{3}} \right)^3} = \frac{\sqrt{3}\pi}{2}
\]

4. **Answer:** \(288\sqrt{3} - 432 \)

Let \(r \) be the radius of a small circle. The centers of the small circles form an equilateral triangle of side length \(2r \). The length of the median of such a triangle is \(\sqrt{3}r \), so the distance from the center of the triangle (which is also the center of the large circle) to a vertex is \(\frac{2\sqrt{3}}{3}r \). Since each vertex of the triangle is distance \(r \) from the edge of the large circle, the radius of the large circle is \(\frac{2\sqrt{3}}{3}r + r = 144 \).

This gives \((2\sqrt{3} + 3)r = 432 \), so \(r = \frac{432}{2\sqrt{3}+3} \cdot \frac{2\sqrt{3}-3}{2\sqrt{3}-3} = 144(2\sqrt{3} - 3) = 288\sqrt{3} - 432 \).

5. **Answer:** \(15^\circ + \tan^{-1} x \) or \(\frac{\pi}{12} + \tan^{-1} x \)

From basic trigonometry, we have \(\tan(\angle B) = \frac{2 - \sqrt{3} + x}{1 - (2 - \sqrt{3})x} \). This is the tangent angle addition identity, for angles with tangents \(x \) and \(2 - \sqrt{3} \). Since \(\tan(15^\circ) = 2 - \sqrt{3} \), \(\angle B \), the inverse tangent, is therefore \(15^\circ + \tan^{-1} x \).

6. **Answer:** \(44 \over 13 \)

Let \(\alpha = \angle E \) and \(\beta = \angle F \). Note that \(D \) is a right angle. Therefore, \(\sin \alpha = \frac{\sqrt{3}}{2} \). \([CBF] = \frac{1}{2} \cdot 112 \cdot \sin \alpha = \frac{1}{2} \cdot 121 \cdot \frac{\sqrt{3}}{2} \). Similarly, \([ABE] = \frac{1}{2} \cdot 2^2 \sin \beta = \frac{1}{2} \cdot 4 \cdot \cos \alpha = \frac{1}{2} \cdot 4 \cdot \frac{12}{13} \). Finally, \([ACD] = \frac{31}{2} \). Subtracting these three areas from that of \(\triangle DEF \) gives the result.

7. **Answer:** \(2008^2\pi \) or \(4032064\pi \)

Note that we can scale the triangle down by a factor of 2008 to a 3,4,5 right triangle. Let \(AB \), \(AC \) be the legs of the triangle. The incircle splits \(AB \) into two segments of lengths \(x \) and \(y \). It similarly splits \(AC \) into segments of lengths \(x \) and \(z \) and \(BC \) into segments of lengths \(y \) and \(z \). Thus, we get:

\[
\begin{align*}
 x + y &= 3 \\
 x + z &= 4 \\
 y + z &= 5
\end{align*}
\]

Thus, \(x = 1 \), \(y = 2 \), \(z = 3 \). Thus, the incircle has a radius of 1, and so an area of \(\pi \). Scaling back up will increase the incircle’s radius by a factor of 2008, giving us an area of \(2008^2\pi \).
8. Answer: $\sqrt{\frac{30}{3}}$

Let O be the center of the circle, and X be the center of the rhombus (the intersection of AC and BD). Let $m \angle ABC = \theta = \cos^{-1}(-\frac{2}{3})$. Considering $\triangle OBX$ and $\triangle ABX$, using triangle angle sums and the fact that an inscribed angle has half the measure of the intercepted arc, we have $OX = \cos(\pi - \theta)$, so $AX = 1 + \cos(\pi - \theta)$. Also, $BX = \sin(\pi - \theta)$. The Pythagorean theorem then gives

$l = \sqrt{2(1 + \cos(\pi - \theta))} = \sqrt{2(1 + \frac{2}{3})}$.

9. Answer: 12

Let the trapezoid be $ABCD$ with $AB = 10$, $CD = 15$. Let P be the intersection of the diagonals, and let XY be the segment through P parallel to the bases with X on AD and Y on BC. Note that $\triangle PYC \sim \triangle ABC$, so $\frac{PY}{AB} = \frac{YC}{BC}$. Also, $\triangle PYB \sim \triangle DCB$, so $\frac{PY}{CD} = \frac{BY}{BC}$. Adding these equations gives $\frac{PY}{AB} + \frac{PY}{CD} = \frac{BY + YC}{BC} = 1$, so $PY(\frac{1}{10} + \frac{1}{15}) = PY \cdot \frac{1}{5} = 1$, hence $PY = 6$.

The same argument shows that $PX = 6$, so $XY = 12$.

10. Answer: 3

The polygon has angles of 171°, and the smallest triangle has two adjacent sides of the original polygon as two of its sides. The area of this triangle is $\frac{1}{2} \cdot 1 \cdot 1 \cdot \sin(171) = \frac{1}{2} \sin(9)$. So the question is, how many square roots do we need to express $\sin(9)$? Conveniently enough, $\sin(18) = \sqrt{\frac{5-1}{4}}$, so $\cos(18) = \sqrt{1 - \sin^2(18)}$, which requires two square roots to express. Then by the half-angle formula, $\sin(9) = \sqrt{\frac{1 - \cos(18)}{2}}$, which requires three square roots.