Geometry Solutions
 2006 Rice Math Tournament
 February 25, 2006

1. Answer: $\frac{1}{6}$

Let s represent the side length of the cube. The octahedron has a volume equivalent to the volume of two pyramid with height $\frac{s}{2}$ and a square base with side length $\frac{s}{2} \sqrt{2}$. The volume is therefore $2 \cdot \frac{1}{3} \cdot\left(\frac{s}{2} \sqrt{2}\right)^{2} \cdot \frac{s}{2}=\frac{1}{6} \cdot s^{3}$, or $1 / 6$ of the cube volume.
2. Answer: $\frac{13}{32}$

Let $\overline{E F}=x$.

From pythagorean theorem:
$\left(\frac{1}{2}\right)^{2}+(1-x)^{2}=x^{2}$
$1+4 x^{2}-8 x+4=4 x^{2}$
$8 x=5$
$x=\frac{5}{8}$
area of $A D E F=$ area of $A D E G-$ area of $A F G=\frac{1}{2}-\frac{\left(\frac{1}{2}\right)\left(\frac{3}{8}\right)}{2}=\frac{1}{2}-\frac{3}{32}=\frac{13}{32}$
3. Answer: $y=\frac{x^{2}}{8}+1$

Since circle δ is tangent to the x -axis, its radius is y. Thus from the Pythagorean Theorem:

$$
\begin{aligned}
(3-y)^{2}+x^{2} & =(y+1)^{2} \\
9-6 y+x^{2} & =2 y+1 \\
8+x^{2} & =8 y \\
1+\frac{x^{2}}{8} & =y
\end{aligned}
$$

4. Answer: $\frac{1}{2}+\pi\left(1+\frac{11 \sqrt{3}}{12}\right)$

Since inscribed angles intercept arcs of measure twice that of the inscribed angle, this is the area above line $A B$ between circles centered at P and Q, with $\angle A Q B=60^{\circ}$ and $\angle A P B=30^{\circ}, A, B$ on both circles, and P, Q on the perpendicular bisector of $\overline{A B}$. Let M be the midpoint of $\overline{A B} . \triangle A Q B$ is then equilateral, so $Q M=\frac{\sqrt{3}}{2}$, so the radius of circle Q is 1 . We see that since $\angle A P B=30^{\circ}, P$ is on circle Q, so $P M=1+\frac{\sqrt{3}}{2}$, and by the Pythagorean theorem, $(P A)^{2}=\left(1+\frac{\sqrt{3}}{2}\right)^{2}+\left(\frac{1}{2}\right)^{2}=2+\sqrt{3}$. We find the area in circles P and Q above line $A B$ by taking the major sector $A B$ of each the circles above the line and adding in the areas of $\triangle A P B$ and $\triangle A Q B$ respectively:

$$
A=\pi(2+\sqrt{3}) \frac{330}{360}+\frac{1}{2}(1)\left(1+\frac{\sqrt{3}}{2}\right)-\left(\pi \cdot 1^{2} \frac{300}{360}+\frac{1}{2}(1)\left(\frac{\sqrt{3}}{2}\right)\right)
$$

This simplifies to the given answer.

5. Answer: $7 \sqrt{3}$

Let the side length of the cube be s. It is apparent that in order for the shadow to be a regular hexagon, the cube must have two vertices with the same x and y coordinates; call these vertices A and B. Let T be another vertex of the cube. Clearly, $\triangle A B T$ is a right triangle with hypotenuse $A B=s \sqrt{3}$ the space diagonal of the cube, and legs s and $s \sqrt{2}$. Notice that a segment from T to $A B$ has for its shadow a segment between the center of the hexagon and one of its vertices; thus the distance from T to $A B$ is the same as the center to vertex distance. Using similar triangles, this length can be found to be $\frac{s \sqrt{6}}{3}$. Thus the area of the hexagon is $s^{2} \sqrt{3}=147 \sqrt{3}$ and therefore $s=7 \sqrt{3}$.
6. Answer: $\frac{R}{2}(3-2 \sqrt{2})$

Let the radius of the second circle be r.
$R \sqrt{2}-R=r+r \sqrt{2}$
$r=\frac{R(\sqrt{2}-1)}{\sqrt{2}+1}=R(3-2 \sqrt{2})$
Let the radius of the third circle be ρ.
$\sqrt{(r+\rho)^{2}-(r-\rho)^{2}}+\sqrt{(R+\rho)^{2}-(R-\rho)^{2}}=\sqrt{(R+r)^{2}-(R-r)^{2}}$
$\sqrt{4 r \rho}+\sqrt{4 R \rho}=\sqrt{4 R r}$
$\sqrt{r \rho}+\sqrt{R \rho}=\sqrt{R r}$
$\sqrt{\rho}=\frac{\sqrt{R r}}{\sqrt{R}+\sqrt{r}}$
$\rho=\frac{R r}{R+r+2 \sqrt{R r}}=\frac{R^{2}(3-2 \sqrt{2})}{R(4-2 \sqrt{2})+2 R \sqrt{3-2 \sqrt{2}}}=\frac{R^{2}(3-2 \sqrt{2})}{R(4-2 \sqrt{2})+2 R(\sqrt{2}-1)}=\frac{R^{2}(3-2 \sqrt{2})}{2 R}=\frac{R}{2}(3-2 \sqrt{2})$
7. Answer: $\{D, 6\}$

Note that each time the ball bounces up the wall, it is equivalent to forming a mirror image of the table and extending the path taken. Set up sides $\overline{A F}$ and $\overline{A C}$ as the x and y coordinate axes, respectively.

Since the ball is hit at $(0,0.5)$, it can travel in an imaginary straight line through imaginary images of the table until it hits an integer coordinate (i.e. a pocket). Therefore,

$$
0.5+(1.6-1.5) x=y 1+\frac{11}{5} \cdot x=2 y
$$

It is clear that the first instance of integer (x, y) occurs when $x=5$ and $y=6$. Simply counting, 5 units in the x direction ends up on side $\overline{D F}$, and 6 units in the y direction would be on side $\overline{C D}$. Therefore, the ball must have fallen in at this intersection, into pocket D. Drawing iterations of the pool table to fill the rectangle from $(0,0)$ to $(5,6)$, we see that the ball has crossed four vertical boundaries and two horizontal boundaries, making 6 ricochets.
8. Answer: $\frac{400}{21}$

If M is the midpoint of $\overline{Q R}$, then $\overline{P M} \cdot \overline{Q R}=2 A$, where A is the area of the triangle. So $\overline{Q M}=\frac{A}{5}$ and, by the same logic, $\overline{P Q}=\frac{A}{2}$. Use the Pythagorean Theorem on triangle $\triangle P Q M$ to get $A=\frac{50}{\sqrt{21}} \Rightarrow$ $\overline{Q R}=\frac{20}{\sqrt{21}}$.
9. Answer: $\frac{1}{21}$

Arbitrarily label the heights of poles A and B as a and b, respectively. Suppose poles A and B are p and q units, respectively, from pole P_{1} (as measured along the x-axis). Then the height of P_{1}, call it x, satisfies: $\frac{x}{a}=\frac{q}{p+q}$ and $\frac{x}{b}=\frac{p}{p+q} \Rightarrow x=\frac{a b}{a+b}$. The same procedure yields the height of P_{2} : just replace a by $\frac{a b}{a+b}$ in the above equation to get $\frac{a b}{2 a+b}$. Generalize by replacing a by $\frac{a b}{n a+b}$ to get $\frac{a b}{(n+1) a+b}$ as the height of P_{n+1}. Now put $a=1, b=5$ and $n=100$ to get $\frac{1}{21}$.
10. Answer: $\frac{4}{13}$

Let O be the intersection of $\overline{A Q}$ and $\overline{B R}$. Our goal is to find the area of $\triangle A B O=1 \cdot \frac{B Q}{B C} \cdot \frac{A O}{A Q}=\frac{1}{4} \cdot \frac{A O}{A Q}$. Using mass points, place a mass of 1 at B and therefore a mass of $\frac{1}{3}$ at C since $1 \overline{B Q}=\frac{1}{3} \overline{Q C}$. Likewise, vertex A bears a mass of $\frac{1}{9}$. Replace the masses at B and C with a mass of $1+\frac{1}{3}=\frac{4}{3}$ at Q. Thus, $\frac{A O}{O Q}=\frac{4 / 3}{1 / 9}=12$. Hence, $\frac{A O}{A Q}=\frac{12}{13}$. Thus, the area of $\triangle A B O=\frac{1}{4} \cdot \frac{12}{13}=\frac{3}{13}$, which is independent of the side lengths of $\triangle A B C$. There are two additional nonoverlapping triangles like $\triangle A B O$ that must also have an area of $\frac{3}{13}$. The area of the central triangle is $1-3 \cdot \frac{3}{13}=\frac{4}{13}$.

