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Abstract

Our paper introduces a new estimation method for arbitrary temporal het-
erogeneity in panel data models. The paper provides a semiparametric method
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methods proposed in the paper are related to principal component analysis
and estimate the time-varying trend effects using a small number of common
functions calculated from the data. An important application for the new esti-
mator is in the estimation of time-varying technical efficiency considered in the
stochastic frontier literature. Finite sample performance of the estimators is
examined via Monte Carlo simulations. We apply our methods to the analysis
of productivity trends in the U.S. banking industry.
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1 Introduction

Substantial research interest has focused on controlling for unobserved heterogeneity
in panel models. Recent work by Park and Simar and Park, Sickles, and Simar (1994,
1998, 2003, 2005) has focused on semi-parametric efficient panel data estimators for
the standard fixed and random effects models with various specifications, including
autoregressive errors and dynamic models. As the specifications of unobserved
heterogeneity become more and more general, in particular allowing for temporal
variation in the unobserved effects, and as trend stationarity of individual cross-
sections comes under closer scrutiny, the proper specification of time effects becomes
no less important than the specification of a difference or trend stationary time series
(Nelson and Plosser, 1982; Maddala and Kim, 1998; Kao and Chiang, 2000; Baltagi,
Egger, and Pfaffermayr, 2003; Mark and Sul, 2003, Chang, 2004).
In this paper, we extend the random and fixed effects model in such a way that we

do not impose any explicit restrictions on the temporal pattern of individual effects.
They are considered as random functions of time, representing a sample of smooth
individual time trends. A detailed modelling and analysis of the general structure
of these trends is the central point of our methodology. This goal is particularly
important in our application to stochastic frontier analysis, where individual effects
allow to access time-varying technical efficiencies of banks in the U. S. banking system.
The basic qualitative assumption is a fairly smooth, slowly varying local behavior

of trends, although they may possess pronounced temporal patterns on the long-run.
We formalize this idea and show that our model can be used for virtually any smooth
pattern of temporal and cross-sectional changes in unobserved heterogeneity (time
trends) and allows for the possibility that parameter heterogeneity is due to variables
other than the constant term. This generality is accomplished by approximating the
effect terms nonparametrically. The approach is based on a factor model, where time-
varying individual effects are represented by linear combinations of a small number of
unknown basis functions, with coefficients varying across cross-sectional units. Fixed
effects, basis functions and corresponding coefficients are estimated from the data us-
ing methods related to principal component analysis coupled with smoothing spline
techniques. Asymptotic distributions of the new estimators are derived, and rank
tests are applied to determine the dimensionality of the factor model. Furthermore,
goodness-of-fit tests of pre-specified parametric models are elaborated. Simulation
experiments indicate that in finite samples our method works much better than other
well known time-varying effects estimators. As an illustration, the effects are inter-
preted in the context of a stochastic frontier production function (Aigner, Lovell, and
Schmidt, 1977) and our method is applied to the analysis of time-varying technical
efficiency in the U.S. banking industry.
Factor models related to our setup have already been extensively studied in the

econometric literature. Among others, important contributions are given by the work
of Forni and Lippi (1997), Forni and Reichlin (1998), Stock and Watson (2002), Forni
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et al. (2000), Barnanke and Bovin (2000), or Bai and Ng (2002). Bai (2003, 2005)
provides a general inferential theory. Ahn, Lee, and Schmidt (2005) give a general-
ization of Bai’s methodology. Our approach is more general, fully integrating panel
and factor models. It allows us to simultaneously estimate fixed effects, common fac-
tors (basis functions), and individual factor scores under a wide variety of conditions,
including the possible existence of dynamic effects and/or correlations between indi-
vidual effects and explanatory variables. Different from existing work the asymptotic
theory also covers situations where dynamic effects follow non-stationary time series
models, as for example random walks.
Another related branch of research is given by the statistical literature on ”func-

tional data analysis” which deals with the analysis of multiple smooth curves. For
an overview one may consult the book by Ramsay and Silverman (1997). Although
most of the work in this direction is descriptive, explicit factor models and corre-
sponding inferential results based on ”functional principal component analysis” are
given, for example, by Kneip (1994), Ferré (1995), or Kneip and Utikal (2001) for dif-
ferent applications. An essential feature of our approach, taken from this literature, is
the use of nonparametric smoothing techniques as an inherent part of the estimation
procedure. The asymptotic theory of Section 2.2 indicates that econometric factor
models in other contexts may also profit from incorporating smoothing procedures,
since compared to standard results one may then achieve dramatically improved rates
of convergence when estimating common factors.
The remainder of the paper is organized as follows. Section 2 introduces our

new estimator for arbitrary time-varying effects, derives its asymptotic distribution,
and provides other analytical results for optimal choice for the number of principal
components and smoothing parameters. The finite sample performance of our new
estimator is evaluated using Monte Carlo simulations in section 3. In section 4 we
use the new estimator to analyze the technical efficiency of banks in the U. S. bank-
ing system. Concluding remarks follow in section 5. The mathematical proofs are
collected in the Appendix.

2 Model and main results

Panel studies in econometrics provide data from a sample of individual units where
each unit is observed repeatedly over time (or age, etc.). Statistical analysis then
usually aims to model the variation of some response variable Y . In addition to its
dependence on some vector of explanatory variables X ∈ IRp, the variability of Y
between different individual units is of primary interest.
We will assume panel data based on a balanced design with T equally spaced

repeated measurements per individual. The resulting observations of n individuals
can then be represented in the form (Yit, Xit), t = 1, . . . T , i = 1, . . . , n, where the
index i denotes individual units (e.g. firms, households, etc.) and the index t denotes
time periods.
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We consider the model

Yit =

pX
j=1

βjXitj + ui(t) + �it, i = 1, . . . , n, t = 1, . . . , T (1)

Although we consider non-constant individual effects, we will assume that ui(t) is
varying ”slowly” with t, and that u1, . . . , un therefore can be considered as a sample
of smooth random functions. A precise discussion of the role of smoothness of u will
be given in Subsection 2.2.
In our approach “individual effects´´ ui(t) necessarily play a more important role

than in textbook panel data models, where they are sometimes considered as nuisance
parameters. Identifiability of (1) requires that all variablesXitj, j = 1, . . . , p possess a
considerable variation over t. All individual differences are captured by ui(t), and this
includes the effects of additional variables, like e.g. socioeconomic attributes, which
characterize individuals but do not change over time. For example, suppose that
there are q additional explanatory variables Xi,p+1, . . . , Xi,p+q which do not change
over time. The traditional framework then leads to the model

Yit =

pX
j=1

βjXitj +

p+qX
j=p+1

βjXij + τ i + �it (2)

with constant individual coefficients τ i. In model (1), ui(t) then is a constant function
with ui(t) ≡

Pp+q
j=p+1 βjXij + τ i.

Based on (1), the coefficients β as well as the functions ui can be estimated by
semiparametric techniques. Indeed, in Subsection 2.1 this will be done by using partial
spline estimation. However, a completely nonparametric analysis of the individual
effects ui(t) possess a relatively poor degree of accuracy. Furthermore, economic
interpretation and a further analysis of effects of socioeconomic characteristics is
difficult.
In order to deal with (1) it thus makes sense to try to represent the functions ui in

a more convenient form which can be estimated more efficiently, is easier to interpret,
and at the same time does not impose a severe restriction.
Our approach is motivated by ideas from (functional) principal component analysis

leading to factor models studied in the statistical and econometric literature [see, e.g.
Ramsay and Silverman, 1997, or Bai (2003)]. In our context we consider a version
based on the vectors of functional values at the observed time points. Let w(t) =
1
n

P
i ui(t) denote the sample average function. It is then assumed that for some fixed

L ∈ {0, 1, 2, . . . } there exist some basis functions (common factors) g1, . . . , gL such
that

vi(t) := ui(t)− w(t) =
LX
r=1

θirgr(t). (3)
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Together with (1) this leads to the model

Yit =

pX
j=1

βjXitj + w(t) +
LX
r=1

θirgr(t) + �it, i = 1, . . . , n, t = 1, . . . , T (4)

The dimension L as well as g1, . . . , gL and the coefficients (scores) θir are unknown
and have to be determined from the data. Obviously, different from traditional factor
models as analyzed by Bai (2003), (4) additionally incorporates a fixed effect term.
This is similar to the approach by Ahn et al. (2005). Note that by (3) only the linear
factor space LT spanned by g1, . . . , gL is identified but not the particular basis. We
will thus additionally rely on the following normalizing conditions:

(a) 1
n

P
i θ
2
i1 ≥ 1

n

P
i θ
2
i2 ≥ · · · ≥ 1

n

P
i θ
2
iL > 0

(b) 1
n

P
i θirθis = 0 for r 6= s.

(c) 1
T

PT
t=1 gr(t)

2 = 1 and
PT

t=1 gr(t)gs(t) = 0 for all r, s ∈ {1, . . . , L}, r 6= s.

Conditions (a) - (c) do not impose any restrictions, and they introduce a suitable
normalization which ensures identifiability of the components up to sign changes
(instead of θir, gr one may also use −θir,−gr). Note that (a) - (c) lead to orthogonal
vectors gr as well as empirically uncorrelated coefficients θir. This ensures that all
components can be interpreted separately, since they vary orthogonally to each other,
a property which may be very helpful in practice when analyzing and interpreting
these components.
It is important to consider (3) more closely. Obviously, gr denote general func-

tional components (common factors) whose structure provides general information
about the common functional structure of the sample {vi} = {ui − w}. It will be
shown in Section 3 that w and g1, . . . , gL can be estimated more efficiently than the
individual random functions ui.
Differences between individuals are captured by the coefficients θir. For example,

under (2) we have L = 1 and θi1 =
Pp+q

j=p+1 βjXij + τ i. When having estimated
θi1, estimates of βp+1, . . . , βp+q can then be obtained from a linear regression of θi1
on Xi,p+1, . . . , Xi,p+q. This generalizes to more interesting situations with L ≥ 1
and non-constant functions gr(t). Effects of socioeconomic or demographic variables
which do not change over time may be quantified by regressing the scores θir on
Xi,p+1, . . . , Xi,p+q. In many applications such regressions will constitute an important
step in econometric analysis. It will allow to access differences between important
groups of individuals as well as the evolution of these differences over time as induced
by the structure of gr(t).
When generalizing (2) with respect to possibly time varying effects this can be

done either from the point of view of mixed effects models or from the point of view of
time series analysis. Parametric mixed effects models are widely used in applications
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and assume that individual effects can be modelled by linear combinations of smooth,
continuously differentiable basis function (e.g. polynomials). For example, in the
context of production frontier analysis Cornwell, Schmidt, and Sickles (1990) assume
that the ui can be modelled by quadratic polynomials. In our notation, then L = 3
and g1, g2, g3 correspond to a polynomial basis.
>From a time series point of view ”smooth” trends are, however, often described

by discrete time stochastic processes. In this context one may, for example, assume
that ui(t) = ϑirt, where rt is a random walk. Then, L = 1, w(t) = ϑ̄rt, g1(t) = rt√

T

and θ1i =
√
T (ϑi− ϑ̄). Note that different from mixed effect models, vi(t) is then only

defined at the observation points t = 1, 2, 3, . . . . Furthermore, in mixed effect models
LT = span{g1, . . . , gL} is a fixed function space, while in the random walk example
rt and hence g1 are random, and hence LT = span{g1} is a random subspace of IRT .
Our approach will deal with both situations. Indeed, the general model (3) does

not impose any strong restriction on the structure of the functions vi. It is only
assumed that for some L relation (3) holds for a ”best” possible choice of basis
function gr which are not a priori known but are to be estimated from the data.
Our estimation procedure will be based on the fact that under the above nor-

malization g1, g2, . . . are to be obtained as (functional) principal components of the
sample
v1 = (v1(1), . . . , v1(T ))

0, . . . , vn = (vn(1), . . . , vn(T ))
0. More precisely, let

Σn,T =
1

n

X
i

vivi
0 (5)

denote the empirical covariance matrix of v1, . . . , vn (recall that
P

i vi = 0). We use
λ1 ≥ λ2 ≥ · · · ≥ λT as well as γ1, γ2, . . . , γT to denote the resulting eigenvalues
and orthonormal eigenvectors of Σn,T . Some simple algebra [compare, e.g., with Rao
(1954)] then shows that

gr(t) =
√
T · γrt for all r = 1, . . . , t = 1, . . . , T, (6)

θir =
1

T

X
t

vi(t)gr(t) for all r = 1, 2, . . . , i = 1, . . . , n, (7)

λr =
T

n

X
i

θ2ir for all r = 1, 2, . . . (8)

Furthermore, for all l = 1, 2, . . .

TX
r=l+1

λr =
X
i,t

(vi(t)−
lX

r=1

θirgr(t))
2 = min

g̃1,...,g̃l

X
i

min
ϑi1,...,ϑil

X
t

(vi(t)−
lX

r=1

ϑirg̃r(t))
2 (9)

One can infer from relation (9) that vi ≈
Pl

r=1 θirgr(t) provides the best possible
approximation of the functions vi in terms of an l-dimensional linear model. Model
(3) holds for some dimension L if and only if rank(Σn,T ) = L.
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Obviously, Σn,T and, hence, also the components gr depend on the given values
of n and T . A difference to usual factor models as considered by Bai (2003) or Ahn
et al. (2005) consists in the fact that common factors are normalized with respect to
sample instead of population characteristics. The latter may be achieved by replacing
sample averages 1

n

P
i θ
2
ir,

1
n

P
i θirθis by population means E(θ

2
ir),E(θirθis) in (a) and

(b). However, this alternative normalization runs into problems in the random walk
example. Furthermore, the real object of interest in model (3) is the factor space
spanned by g1, . . . , gL and not the particular basis. As soon as it is possible to estimate
very accurately one particular basis of the factor space, we in turn have a very precise
description of this space. In this sense conditions (a) - (c) define a specific set of
orthogonal basis functions which can be estimated with a particularly high degree
of accuracy (see Subsection 2.2). Of course, suitable rotations of estimated common
factors may be applied in subsequent analysis.

2.1 Estimation

In practice, v1, . . . , vn are unknown and all components of model (4) thus have to be
estimated from the data. The idea of our estimation procedure is easily described:
In a first step partial spline methods as introduced by Speckman (1988) are used to
determine estimates β̂j and v̂i. The mean function w is estimated nonparametrically,
and then estimates ĝr are determined from the empirical covariance matrix Σ̂n,T of
v̂1, . . . , v̂n.
Let us first introduce some additional notations. Let Ȳt = 1

n

P
i Yit, Ȳ = (Ȳ1, . . . , ȲT )

0,
Yi = (Yi1 . . . , YiT )

0 and �i = (�i1, . . . , �iT ). Furthermore, let Xij = (Xi1j, . . . , XiTj)
0,

X̄tj =
1
n

P
iXitj, and X̄j = (X̄1j, . . . , X̄Tj)

0. We will use Xi and X̄ to denote the
T × p matrices with elements Xitj and X̄tj.

Step 1: Determine estimates β̂1, . . . , β̂p and v̂i(t) by minimizing

X
i

1

T

X
t

(Yit − Ȳt −
pX

j=1

βj(Xitj − X̄tj)− vi(t))
2

+
X
i

κ
1

T

Z T

1

(v
(m)
i (s))2ds (10)

over all m-times continuously differentiable functions v1, . . . , vn on [1, T ]. Here, κ > 0

is a preselected smoothing parameter and v
(m)
i denotes the m-th derivative of vi.

Spline theory implies that any solution v̂i, i = 1, . . . , n of (10) possess an expansion
v̂i(t) =

P
j ζ̂jizj(t) in terms of a natural spline basis z1, . . . , zT of order 2m (for

a discussion of natural splines and definitions of possible basis functions see, for
example, Eubank, 1988). In practice, one will often choose m = 2 which leads to
cubic smoothing splines.
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If Z and A denote T × T matrices with elements {zj(t)}j,t=1,...,T and
{
R T
1
z
(m)
j (s)z

(m)
k (s)ds}j,k=1,...,T , the above minimization problem can be reformulated

in matrix notation: Determine β̂ = (β̂1, . . . , β̂p)
0 and ζ̂i = (ζ̂1i, . . . , ζ̂Ti)

0 by minimizingX
i

¡
kYi − Ȳ − (Xi − X̄)β − Zζ ik2 + κζ 0iAζi

¢
, (11)

where k · k denotes the usual Euclidean norm in IRT , kak =
√
a0a.

Note that Z is a regular T × T matrix. It is then easily seen that with

Zκ = Z(Z 0Z + κA)−1Z 0 =
¡
I − κ(Z 0)−1AZ−1

¢−1
the solutions are given by

β̂ =

ÃX
i

(Xi − X̄)0(I −Zκ)(Xi − X̄)

!−1X
i

(Xi − X̄)0(I − Zκ)(Yi − Ȳ ) (12)

as well as
ζ̂i = (Z

0Z + κA)−1Z 0(Yi − Ȳ − (Xi − X̄)β̂).

Therefore,
v̂i = Zζ̂ i = Zκ(Yi − Ȳ − (Xi − X̄)β̂) (13)

estimates vi = (vi(1), . . . , vi(T ))0.

Note that Zκ is a positive semi-definite, symmetric matrix. All eigenvalues of Zκ

take values between 0 and 1. Moreover, tr(Z2κ) ≤ tr(Zκ) ≤ T .

Remarks: An obvious problem is the choice of κ. A straightforward approach then
is to use (generalized) cross-validation procedures in order to estimate an optimal
smoothing parameter κ̂opt. Note, however, that the goal is not to obtain optimal
estimates of the vi(t) but to approximate the functions gr in (3). Estimating g in the
subsequent steps of the algorithm involves a specific way of averaging over individual
data which substantially reduces variability. In order to reduce bias, a small degree
of undersmoothing, i.e. choosing κ < κ̂opt, will usually be advantageous. A possible
approach to directly estimate the best possible smoothing parameter for estimating
common factors will be discussed at the end of Subsection 2.2.
Our setup is based on assuming a balanced design. However, in practice one will

often have to deal with the situation that there are missing observations for some
individuals. In principle, the above estimation procedure can easily be adapted to
this case. If for an individual k observations are missing, then only the remaining
T − k are used for minimizing (10). Estimates of v̂i(t) at all t = 1, . . . , T are then
obtained by spline interpolation.
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Step 2: Estimate w = (w(1), . . . , w(T ))0 by by minimizing

1

T

X
t

Ã
Ȳt −

pX
j=1

β̂jX̄tj − w(t)

!2
+ κ∗

1

T

Z T

1

(w(m)(s))2ds.

In principle, a smoothing parameter κ∗ 6= κ may be chosen in this step.

Step 3: Determine the empirical covariance matrix Σ̂n,T of
v̂1 = (v̂1(1), v̂1(2), . . . , v̂1(T ))

0, . . . , v̂n = (v̂n(1), v̂n(2), . . . , v̂n(T ))
0 by

Σ̂n,T =
1

n

X
i

v̂iv̂
0
i

and calculate its eigenvalues λ̂1 ≥ λ̂2 ≥ . . . λ̂T and the corresponding eigenvectors
γ̂1, γ̂2, . . . , γ̂T .

Step 4: Set ĝr(t) =
√
T · γ̂rt, r = 1, 2, . . . , L, t = 1, . . . , T , and for all i = 1, . . . , n

determine θ̂1i, . . . , θ̂Li by minimizing

X
t

(Yit − Ȳt − (Xi − X̄)β̂ −
LX
r=1

ϑriĝr(t))
2 (14)

with respect to ϑ1i, . . . , ϑLi.
As discussed in the preceding section a further step of the analysis may consist

in quantifying the influence of socioeconomic or demographic variables by regressing
the scores θ̂ri on Xi,p+1, . . . , Xi,p+q.

2.2 Asymptotic Theory

We now consider properties of our estimators. We assume an i.i.d. sample of indi-
vidual units and analyze the asymptotic behavior as n, T → ∞. We do not impose
any condition on the magnitude of the quotient T/n. The smoothing parameter
κ ≡ κ(n, T ) may either remain fixed or may increase with n, T . Model (3) is assumed
to possess a fixed dimension L for all n, T .
Before stating further assumptions, let us recall some basic facts of spline theory

which provides a basis to understand the impact of these assumptions (see, for ex-
ample, de Boor 1978, or Eubank 1988). Our analysis will be based the use of cubic
smoothing splines (m = 2). Let ṽi(t) denote the corresponding natural spline inter-
polant of vi(1), . . . , vi(T ), i.e. ṽi is a natural spline function with knots at 1, . . . , T and
ṽi(t) = vi(t) for t = 1, . . . , T . By definition, the vector (I−Zκ)vi is obtained by evalu-
ating the function v minimizing 1

T

P
t(vi(t)−v(t))2+κ 1

T

R T
1
|v00(t)|2dt at t = 1, . . . , T .

Consequently, 1
T
k(I − Zκ)vik2 ≤ κ 1

T

R T
1
|ṽ00i (t)|2dt.
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When analyzing properties of Zκ it turns out that all eigenvalues are between 0
and 1, and for any fixed κ, tr(Z2κ) ≤ T and tr(I − Zκ) = O(T ) as T → ∞. Our
setup is slightly different from usual spline theory which considers smoothing over a
fixed (non-increasing) interval. But we have zj(t) = z∗j (t/T ), where z1, . . . , zT is the
natural spline basis used to construct our estimator in Section 2.1, while z∗1 , . . . , z

∗
T is

a basis for all natural splines defined on [0, 1] with knots 1/T, 2/T, . . . , 1. Obviously,
z00j = z∗

00
j /T 2. Defining the matrices Z∗ and A∗ = {

R 1
1/T

z
∗(m)
j (s)z

∗(m)
k (s)ds}j,k=1,...,T

similar to Z, A in Section 2.1, some straightforward arguments show that Zκ =
(I+κ(Z 0)−1AZ−1)−1 = (I+ κ

T 4
T ·(Z∗0)−1A∗(Z∗)−1)−1. The structure of the eigenvalues

of T ·(Z∗0)−1A∗(Z∗)−1 is well-known (see, for example, Utreras, 1983) and can be used
to show the existence of a constant 0 < q <∞ such that tr(Z2κ) ≤ q · T

κ1/4
. In a simple

regression model of the form yi = vi(t) + �it the average variance of the resulting
estimator will be of order σ2tr(Z2κ)/T . As will be seen in the proof of Theorem 1
below, this generalizes to the variance of the estimators v̂i to be obtained in the
context of our model. These arguments show that for all n, T

1

T
k(I −Zκ)vik2 ≤ κ

1

T

Z T

1
|ṽ00i (t)|2dt, tr(Z2κ) =≤ q · T

κ1/4
,
1

T

X
t

Var�(v̂i(t)) = OP (
σ2tr(Z2κ)

T
)

(15)

whereVar� denotes conditional variance given vi, Xit. Similar relations can, of course,
be obtained with respect to w.
A central theme of Assumptions 1) - 5) below is a quantification of our require-

ment of “smooth” components v and w, while Xit is assumed to be considerably less
smooth. This is translated into the assumption that vi is well approximated by a
cubic smoothing spline, or more precisely that the approximation bias denoted by
bv(κ) can be made sufficiently small by a suitable choice of the smoothing parameter
κ. The smoothest possible function is a constant as assumed in the standard panel
model (2). Then bv(κ) = 0 for all possible choices of κ. The bias will be small if vi(t)
is “slowly” varying over t. No reasonable approximations are possible if the values
vi(t) and vi(t + 1) are essentially unrelated, as for example for independent white
noise processes. In this case Assumption 2) below will not be fulfilled (note however
that by (2) any white noise component of Yit will be captured by the error term �it
and will thus not appear in vi, w).
In existing literature the mixed effects and the time series approach to panel

data analysis appear to be largely incompatible, and very different methodologies are
applied. Although “n → ∞” will of course correspond to drawing more and more
individuals at random, completely different asymptotic setups are used to describe
the situation as ”T →∞”. Our admittedly unusual way of measuring smoothness via
goodness-of-fit of spline approximations is motivated by an attempt to “unify” these
approaches and to provide theoretical results which are able to cope with arbitrary
”smooth” temporal pattern.
Nonparametric versions of mixed effects models, see for example Brumback and

Rice (1998), suppose that for each individual the values vi(t), t = 1, . . . , T , correspond

11



to discretized measurements of an underlying smooth, at least twice differentiable ran-
dom function. In this context, similar to nonparametric regression, a straightforward
asymptotic setup consists in assuming that the distance between adjacent observa-
tional points tends to zero as T → ∞. In other words, the time interval in which
observations are taken is held fixed but the distance between observations is reduced.
For example, for a fixed number of years, T will increase if instead of yearly data we
consider monthly or even daily observations. With increasing T the discrete values
vi(t), t = 1, . . . , T , then provide more and more information about the true underly-
ing functions νi(·). Note that in this situation 1

T

P
t vi(t)

2 will remain stochastically
bounded and will not increase with T .
The mixed effects point of view is commonly adopted in applications, where t

does not represent chronological time, but for example measurements at different
ages of individuals. Furthermore, generalizations of (2) in stochastic frontier analysis
are usually based on assuming smoothly varying functions representing individual
inefficiencies.
The time series approach usually relies on very different methodological reasoning.

Our assumptions then translate into the requirement that vi(t) represent “smooth”
trends, where the degree of smoothness is measured by spline approximations. Recall
that our procedure is not based on trend elimination by differencing, but tries to
estimate the structure of individual trends. By (4) the vi(t) may contain important
information about effects of explanatory variables. Time series asymptotics is based
on adding more and more equidistant time periods as T →∞. Different from above
1
T

P
t vi(t)

2 will then generally increase as T →∞. In order to cope with this setup
we will use functions c(T ) and d(T ) to quantify resulting growth rates of 1

T

P
t vi(t)

2

and 1
T

P
tX

2
it,j.

The following assumptions now provide the basis of our theoretical analysis. We
will write λmin(A) and λmax(A) to denote the minimal and maximal eigenvalues of a
symmetric matrix A, and gr will be used to represent the vector (gr(1), . . . , gr(T ))0.

Assumptions

1) For some fixed L ∈ IN there exists an L-dimensional subspace LT of IRT such
that vi ∈ LT a.e. for all sufficiently large T . Furthermore, LT is independent of
Xit.

2) There exists a nondecreasing function c(T ) of T such that

- E( 1
T

PT
t=1 vi(t)

2) = O(c(T )), E( 1
T

PT
t=1w(t)

2) = O(c(T )),

- 1
n

P
i θ
2
ir = OP (c(T )), 1

n

P
i θ
4
ir = OP (c(T )

2),

- c(T ) = OP (
1
n

P
i θ
2
ir), c(T ) = OP (| 1n

P
i θ
2
ir − 1

n

P
i θ
2
is|)

hold for all r, s = 1, . . . , L, r 6= s, j = 1, . . . , p, as n, T →∞.
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3) As n, T → ∞ the smoothing parameters κ ≡ κn,T > 0, κ∗ ≡ κ∗n,T > 0 are non-
decreasing functions of n, T . Smoothness of vi, w and selection of smoothing
parameters are such that the smoothing biases

bw(κ) :=
p
T−1Ek(I −Zκ)wk2), bv(κ

∗) =
p
T−1E(k(I −Zκ)vik2)

satisfy

bv(κ) = O(1),
bv(κ)

c(T )1/2
= o(1), bw(κ

∗) = O(1),
bw(κ

∗)

c(T )1/2
= o(1)

as n, T →∞. Furthermore, tr(Z2κ)→∞ as n, T →∞.

4)
E( 1

T
T
t=1 X̄

2
tj)

E( 1
T

T
t=1 w(t)

2)
= O(1), and there exists a nondecreasing function d(T ) ≤ c(T ) of

T with d(T ) = o(T ) such that as n, T → ∞ E( 1
T

PT
t=1X

2
it,j) = O(d(T )) holds

for all j = 1, . . . , p as n, T →∞. Furthermore,

λmax

Ã
[
X
i

(Xi − X̄)0(I −Zκ)(Xi − X̄)]−1

!
= Op(

1

nT
) (16)

and there exists a fixed constant D < ∞ such that for all j = 1, . . . , p and all
vectors a ∈ RT

a0(I −Zκ) ·E
¡
(Xij − X̄j)(Xij − X̄j)

0¢ (I −Zκ)a ≤ D · k(I −Zκ)ak2. (17)

holds for all sufficiently large n, T .

5) The error terms �it are i.i.d. with E(�it) = 0, var(�it) = σ2 > 0, and E(�8it) <∞.
Moreover, �it is independent from vi(s) and Xis,j for all t, s, j.

Subsequent theoretical results rely on asymptotic arguments based on Assumptions
1) -5 ). It is therefore important to understand these assumptions correctly in view
of the different asymptotic setups discussed above. First note that by requiring that
1
n

P
i θ
2
ir = OP (c(T )) as well as c(T ) = OP (

1
n

P
i θ
2
ir) we assume that

1
n

P
i θ
2
ir increases

exactly with rate c(T ).
Let us now analyze the situation where vi(t), t = 1, . . . , T , are assumed to be

discretized values of at least twice differentiable random functions, and where the
local asymptotics of nonparametric mixed effects models is considered. Then c(T ) =
d(T ) = 1, and Assumptions 2) - 3) can be made more explicit by posing the following
condition on the structure of underlying functions:
Situation 1. For each individual there are data from T equidistant observa-

tions in a fixed time interval. There exists a smooth function μ as well as i.i.d. non-
zero random functions ν1, . . . , νn on L2[0, 1] such that μ( tT ) = w(t) and νi( tT ) = vi(t)

13



for t = 1, . . . , T . The functions μ as well as ν1, . . . , νn are a.s. twice continuously
differentiable with E(

R 1
0
ν 00i (t)

2dt) <∞ and 0 < E(
R 1
0
νi(t)

2dt) <∞.
Then Assumption 2) is fulfilled with c(T ) = 1. Moreover, v00i (t) =

1
T2
ν 00i (t), and

κ 1
T

R T
1
|ṽ00i (t)|2dt ≤ κ 1

T

R T
1
|v00i (t)|2dt = κ 1

T4

R 1
0
|ν 00i (t)|2dt.

>From (15) we can then infer that

bv(κ)
2 = O(κ

1

T 4
), tr(Z2κ) = O(

T

κ1/4
) (18)

The bias thus depends on the rate of decrease of κ ≡ κn,T as n, T → ∞. An
optimal smoothing parameter for estimating vi then satisfies κ ∼ T−4/5 · T 4, which
means that bv(κ)2 = O(T−4/5) as T → ∞ in Assumption 3). Similar results are
to be obtained with respect to w and bw(κ

∗). It will be seen from the results of
Theorem 1, that undersmoothing, i.e. choosing a smaller smoothing parameter than
the individually optimal one, leads to still better rates of convergence for our estimates
of gr. Also note that in order to satisfy Assumption 4) we implicitly assume that Xitj

are generated by non-smooth stochastic processes. This is a natural condition, since
due to the error terms �it also the time path of our dependent variable Yit is non-
smooth and cannot be well approximated by splines.
In the mixed effect approach formalized in Situation 1 our Assumption 1) corre-

sponds to assuming that all vi lie in a fixed L-dimensional, non-random space LT .
From a time series point of view stochastic trends are, however, often described by
discrete time stochastic processes. An approach relying on the existence of underlying
smooth functions νi(·) is not feasible in this context. The components gr(t) as well as
the structure of LT may then depend on particular realizations of such processes and
may thus be random. Our approach of measuring smoothness by spline approxima-
tions can also be applied in such a situation: Construction of spline smoothers implies
that the value of the integral 1

T

R T
1
|ṽ00i (t)|2dt in (15) is of the same order of magni-

tude as the average squared second differences 1
T

P
t(vi(t + 1) − 2vi(t) + vi(t− 1))2.

Therefore, if 1
T

P
t(vi(t + 1) − 2vi(t) + vi(t − 1))2 is reasonably small, then a fairly

large smoothing parameter κ will still result in a small bias.
An example is provided by the process ui(t) = w(t) + vi(t) = ϑirt, where r(t) =p
|r0 + δ1 + δ2 + · · ·+ δt| for some fixed r0 and i.i.d. random variables δ1, δ2, . . .

with E(δt) = μ, var(δt) = σ2δ. Since for large T we have rt − rt−1 ≈ μ+δt
2rt−1

, such a
process may possibly be assumed if the innovations in certain period depend on the
level of the process reached in the previous period. The stochastic trend induced
by this process cannot be eliminated by differencing, since for any q = 1, 2, . . . the
q-th order differences of rt are not stationary. On the other hand, the resulting vi(t)
are reasonably smooth. It is easily checked that then Assumptions 1) and 2) hold
with L = 1 and c(T ) = T 1/2. Furthermore 1

T

R T
1
|ṽ00i (t)|2dt = OP (T

−1/2), and hence
bv(κ) = OP (κT

−1/2).
w(t), vi(t) may instead be generated by more traditional I(1) processes. Reason-

able convergence results can then still be established due to the fact that 1
T

P
t(vi(t+
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1)− 2vi(t) + vi(t− 1))2 is of a smaller stochastic order of magnitude as 1
T

P
t vi(t)

2.
To give some explicit results in this context we will concentrate on the simple case of
a random walk:
Situation 2.: Assume that for some fixed r1 ∈ IR

ui(t) = w(t) + vi(t) = ϑirt, with rt+1 = rt + δt,

where δ1, δ2, . . . are i.i.d with E(δt) = 0, var(δt) = σ2δ, and δt is independent of ϑi,
�it.
Our model then holds with L = 1, w(t) = ϑ̄rt, gr(t) = rt√

T
and θ1i =

√
T (ϑi − ϑ̄).

Since 1
T

PT
t=1E(ϑ

2
i r
2
t ) = O(T ), Assumptions 1) and 2) are then satisfied with L = 1

and c(T ) = T .
On the other hand, averages of squared first or second differences (rt+1 − rt)

2 or
(rt+2 − 2rt + rt−1)

2 are bounded in probability which implies that for a cubic spline
interpolant r̃(t) of rt we obtain E( 1T

R T
1
|r̃00(t)|2dt) = O(1) as T → ∞. It is then

easy to show that an optimal smoothing parameter may be chosen as a constant
(independent of n and T ) such that

bv(κ) = E(
1

T
k(I − Zκ)vik) = O(1), tr(Z2κ)/T = O(1). (19)

This, of course implies that there is convergence when considering the difference
vi −Zκvi relative to the size of vi:

1

c(T )
E(
1

T
k(I −Zκ)vik2) = O(1/T )

Although, as shown above, our approach is able to cope with trends which do
not fit into the usual I(q) framework, some of our assumptions are restrictive from
a time series point of view. Apart from assuming i.i.d. errors in 5), Assumption 4)
contains regularity conditions which impose restrictions on the design matrix. It is
essentially required that the time paths {Xitj− X̄ij}t are “less smooth” than those of
{vi(t)}t. In particular, stationary processes generate non-smooth time paths. Note,
however, that some interesting cases, as for example cointegration between Y and X,
are excluded. We believe that more general results can be obtained, but part of the
methodology may have to be adapted to the specific situation.
When considering the simplest case p = 1, Assumption 4) is, for example, fulfilled

if the individual processes {Xit}t are independent realizations of some ARMA(q1, q2)
process. Then E((Xi − X̄)(Xi − X̄)0) corresponds to the autocovariance matrix of
this ARMA process, and (16) as well as (17) follow from the well-known structure of
such autocovariance matrices.
Assumption 4) also holds if {Xit}t are generated by ARMA(q1, q2) with individ-

ually different parameters. For example assume that Xit = X̃it + δi, where {X̃it}t
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are independent realizations of an MA(q) process and δi are independent, zero mean
random variables with variance ∆2. Then

E
¡
(Xij − X̄)(Xij − X̄)0

¢
= Γ+∆2 · 110,

where Γ is the autocovariance matrix of the underlying MA(q) process. Since by
construction of Zκ, Zκ1 = 1 for 1 = (1, 1, . . . , 1)0 we arrive at

(I − Zκ)E
¡
(Xij − X̄)(Xij − X̄)0

¢
(I −Zκ) = (I − Zκ)Γ(I −Zκ).

The maximal eigenvalue of Γ remains bounded as T → ∞, and relation (17) is an
immediate consequence of the structure of Zκ. Moreover, it is easily checked that
λmin(E[(Xi − X̄)0(I − Zκ)(Xi − X̄)]) is proportional to T . Since 1

n

P
i(Xi − X̄)0(I −

Zκ)(Xi − X̄) →P E[(Xi − X̄)0(I − Zκ)(Xi − X̄)], relation (16) follows from the
continuity of λmin(A) as a function of A.

Before stating our main theorem we have to introduce some additional nota-
tion. We will say that vi and Xi are “uncorrelated up to linear components” (ulc-
uncorrelated) if there exist linear functions zv,i,T (t) and zx,i,j,T (t), possibly depending
on i = 1, . . . , n, j = 1, . . . , p, or T , so that E(v∗i v

∗
l |X∗) = E(v∗i v

∗
l ) holds for all i, l ∈

{1, . . . , n}, where v∗i (t) = vi(t)− zv,i,T (t), X∗
itj = Xitj − zx,i,j,T (t), and X∗ = (X∗

itj)i,t,j.
In the standard model (2) vi and Xi are necessarily ulc-uncorrelated, since v∗i (t) =
vi(t)− zv,i,T (t) = 0 for the constant function zv,i,T (t) ≡

Pp+q
j=p+1 βj(Xij − X̄j)+ τ i− τ̄ ,

and hence v∗i ≡ 0 does not depend at all on X.
We will use “E�” to denote conditional expectation given vi and Xi, i = 1, . . . n.

Moreover, X̃i = Xi − X̄. Additionally note that eigenvectors are only unique up to
sign changes. In the following we will always assume that the right ”versions” are
used. This will go without saying.

Theorem 1. Under Assumptions 1) - 5) we obtain as n, T →∞

(a) kβ −E�(β̂)k = OP (bβ(κ)), where

bβ(κ) :=

⎧⎪⎨⎪⎩
OP (

bv(κ))√
Tn
) if Xi and vi are ulc-uncorrelated,

OP (
bv(κ))√

T
) else,

and V
−1/2
n,T (β̂ −E�(β̂)) ∼ N(0, I), where

Vn,T = σ2

ÃX
i

X̃ 0
i(I −Zκ)X̃i

!−1ÃX
i

X̃ 0
i(I −Zκ)

2X̃i

!ÃX
i

X̃ 0
i(I −Zκ)X̃i

!−1
= OP

µ
1

nT

¶
.

(b) 1√
Tc(T )

kw − ŵk = OP

µ
bw(κ∗)
c(T )1/2

+ bβ(n, t)) +
q

tr(Z2
κ∗)

nTc(T )

¶
.
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(c) For all r = 1, . . . , L

T−1/2kgr − ĝrk = OP

Ã
bv(κ)

c(T )1/2
+

1

T 2c(T )2
+

s
tr(Z2κ)
nTc(T )

!
.

(d) For all r = 1, . . . , L

|θ̂ri − θri| = OP

µ
bv(κ)

2

c(T )
+ d(T )bβ(κ) +

tr(Z2κ)
nT

+
1√
T

¶
.

Furthermore, if bv(κ)2

c(T )1/2
+ d(T )1/2(bβ(κ) +

1√
nT
) + 1

T 2c(T )3/2
= o(T−1/2), then

√
T (θ̂1i − θ1i, . . . , θ̂Li − θLi)

0 →d N(0, σ
2I).

(e) If additionally tr(Z2κ)/n→ 0 as well as Td(T )bβ(κ)2+
d(T )
n
+ 1

Tc(T )
= o

³p
tr(Z2κ)/n

´
,

then

n
PT

r=L+1 λ̂r − (n− 1)σ2 · tr(ZκP̂LZκ)

σ2
q
2n · tr((ZκP̂LZκ)2)

→d N(0, 1), (20)

n · tr(PLΣ̂n,T )− (n− 1)σ2 · tr(ZκPLZκ)

σ2
p
2n · tr((ZκPLZκ)2)

→d N(0, 1), (21)

where P̂L = I −
PL

r=1 γ̂rγ̂
0
r, and PL is the projection matrix projecting into the

n− L dimensional linear space orthogonal to span{Zκg1, . . . ,ZκgL}.

A proof of the theorem can be found in the appendix. Let us interpret the results
on estimating β and gr in terms of the specific additional assumptions made in the
two situations discussed above.
Situation 1. Recall that c(T ) = d(T ) = 1 and that by (19) we obtain bv(κ)

2 =
O(κ 1

T4
). As noted above the optimal smoothing parameter to obtain best possible

estimates of the individual functions vi(t) is of order κ
T 4
= κT ∼ T−4/5. However,

different from individual estimates of vi variance of the estimated functional compo-
nents ĝr decrease as n increases. Best rates of convergence with respect to gr can thus
be obtained by undersmoothing. If n = o(T 4) and T = o(n4), then n−4/5κT may be
used instead of κT . This yields bv(κ) = OP ((nT )

−2/5), tr(Z2κ) = O(nT )1/5)), as well
as

T−1/2kgr − ĝrk = OP ((nT )
−2/5).

Also note that in this situation (nT )−2/5 = o(T−1/2), (nT )−2/5 = o(n−1/2), and the
additional requirements ensuring the distributional results in Theorem 1c) - 1e) are
necessarily fulfilled. Moreover, bβ(κ) = o(1/

√
nT ), and Theorem 1a) simplifies to

V
−1/2
n,T (β̂ − β) ∼ N(0, I).
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One might compare these results with the general theory of existing economet-
ric factor models as derived by Bai (2003). If T is not too small compared to n,
Bai’s results imply that in his context the rate of convergence of estimated factors is
n−1/2 instead of (nT )−2/5 as obtain for our method. One must, however, be careful
when interpreting this difference. Our results crucially depend on the data-dependent
normalization of g1, g2, . . . given by (a) - (c) above, while in standard factor models
normalization usually refers to population characteristics. If for example, the sample
means in (a) - (c) were replaced by their population analogues, then even in our
context only a rate of convergence n−1/2 of ĝr to this ”re-normalized” factors could
be achieved, since at best 1

n

P
i θ
2
ir is only a

√
n-consistent estimator of E(θ2ir) (in

Situation 1 this will usually be the case). But recall that factor spaces are identical,
and in order to characterize this space as precisely as possible, one should definitely
look for the ”best estimable” orthogonal basis. Therefore, a crucial point is that
standard factor approaches (not applying smoothing techniques) will always lead to
T−1/2kgr− ĝrk = OP (n

−1/2), even if gr is defined according to our particular normal-
ization (a) - (c). Smoothing here dramatically improves upon the rate of convergence.
Situation 2. Consider the case of a random walk as discussed above. Note that

this situation does not fit into the framework of traditional econometric factor models.
Additionally assume that as for ARMA(p, q)-processes Xit satisfies Assumption 4
with d(T ) = 1. Then, c(T ) = T and a constant, non-increasing smoothing parameter
κ provides best possible estimates of individual functions. Then bv(κ)

c(T )1/2
= O(T−1/2),

and consequently
T−1/2kgr − ĝrk = OP (T

−1/2).

The additional requirements ensuring the distributional results in Theorem 1c) -
1e) hold if vi and Xi are ulc-uncorrelated. The bias in estimating β is of order
bβ(κ) = O(1/

√
nT ) if if Xi and vi are ulc-uncorrelated, and bβ(κ) = O(1/

√
T ) else.

It will thus not be negligible compared to the standard error.
In order to avoid further complications in the presentation of results, the effect of

undersmoothing is not covered by the theorem. Formally, in the case of a randomwalk
undersmoothing will mean to use a sequence of smoothing parameters with κ→ 0 as
n, T → ∞, which is not compatible with Assumption 2. For example, let κ ∼ n−τ

for some τ > 0 with T 1/2n−τ →∞. Then bv(κ) = O(n−τ). It follows from the results
of Utreras (1983) that we still have tr(Z2κ) = O(T ), but tr((I − Zκ)) = O(κT ).
For simplicity assume that β is estimated with respect to a constant, non-increasing
smoothing parameter κ, and that undersmoothing is only applied in Step 3 of our
estimation procedure by analyzing re-estimated functions v̂i = Zκ(Yi−Ȳ −(Xi−X̄)β̂)
with κ ∼ n−τ . The arguments used to derived Theorem 1(c) then readily generalize,

and it may then be shown that T−1/2kgr − ĝrk = OP (
n−τ

T 1/2
+ d(T )1/2

T
√
n
+
q

1
nT
) if vi and

Xi are ulc-uncorrelated, and T−1/2kgr− ĝrk = OP (
n−τ

T 1/2
+ d(T )1/2

T
+
q

1
nT
), else. In both

cases the rate of convergence is o(T−1/2), which shows that undersmoothing may be
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beneficial even in this situation.
Remarks:
a) We have seen that, depending on the situation, the bias of our estimator β̂

may not be negligible. Fortunately there seem to exist some ways to reduce bias.
As can be seen from the proof of the theorem one obtains E�(β̂) − β = (

P
i X̃

0
i(I −

Zκ)X̃i)
−1P

i X̃
0
i(I − Zκ)vi. By the results of the theorem this bias term may be

estimated when replacing vi by v̂i. Another approach to bias reduction may consist
in iterating our estimation procedure. In addition to estimating θri, (14) might also be

used to obtain updated least squares estimates β̂
(1)
. These new estimates of β might in

turn be plugged into Step 2 and 4 of our algorithm to determine new approximations
ĝ
(1)
r , etc. A precise analysis is, however, not in the scope of the present paper.
b) The question arises whether it is possible to determine the best smoothing

parameter for estimating g1, g2, . . . directly from the data. A straightforward ap-
proach consists in a ”leave-one-individual-out” cross-validation. For a fixed L and
i = 1, . . . , n let β̂−i and ĝr,−i denote the respective estimates of β and gr obtained
from the data (Ykj, Xkj), k = 1, . . . , i−1, i+1, . . . , n, j = 1, . . . , T , and let θ̂r,−i denote
the corresponding estimates of θri to be obtained when using β̂−i , ĝr,−i instead of β̂,
ĝr in Step 4 of our estimation procedure. All these estimates depend on κ, and one
may approximate an optimal smoothing parameter by minimizing

CV (κ) :=
1

nT

X
i

X
t

(Yit − Ȳt − (Xit − X̄t)β̂−i −
LX
r=1

θ̂r,−iĝr,−i(t))
2

over κ. Note that by (4) and by the independence of β̂−i, ĝr,−i from �it

E�[CV (κ)] =
1

nT

X
i

X
t

((Xit−X̄t)β̂+
LX
r=1

θrigr(t)−(Xit−X̄t)β̂−i−
LX
r=1

θ̂r,−iĝr,−i(t))
2+
(T − L)

T
σ2

holds for all κ. It therefore seems to be reasonable to expect that this approach “in
tendency” selects a κ providing a small mean squared error between true an estimated
model. A precise theoretical analysis is not in the scope of the present paper.

2.3 Dimensionality and model tests

Result (20) of Theorem 1(e) may be used to estimate the dimension L. A prerequisite
is of course the availability of a reasonable estimator of σ2. We propose to use

σ̂2 :=
1

(n− 1) · tr(I −Zκ)2

X
i

k(I − Zκ)(Yi − Ȳ − (Xi − X̄)β̂)k2. (22)

We then use the following procedure to determine an estimate L̂ of L:
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First select an α > 0 (e.g., α = 1%). For l = 1, 2, . . . determine

∆(l) :=
n
PT

r=l+1 λ̂r − (n− 1)σ̂2 · tr(ZκP̂lZκ)

σ̂2
q
2n · tr((ZκP̂lZκ)2)

. (23)

Choose L̂ as the smallest l = 1, 2, . . . such that

∆(l) ≤ z1−α,

where z1−α is the 1− α quantile of a standard normal distribution.

The following theorem provides a theoretical justification of this procedure. A
proof is given in the appendix.
Theorem 2. In addition to the assumptions of Theorem 1 assume that tr(Z2κ)/n→ 0

as well as Td(T )bβ(κ)2 +
d(T )
n
+ 1

Tc(T )
= o

³p
tr(Z2κ)/n

´
. Then,

lim inf
n,T→∞

P(L̂ = L) ≥ 1− α.

Relation (21) may serve to test the validity of a pre-specified parametric model
of the form vi(t) =

PL
j=1 ϑriψr(t) for some known basis functions ψr. If Pψ,L denotes

the projection matrix projecting into the n− L dimensional linear space orthogonal
to span{Zκψ1, . . . ,ZκψL}, then the null hypothesis: H0 : vi(t) =

PL
j=1 ϑriψr(t) is

rejected if
n · tr(Pψ,LΣ̂n,T ) − (n− 1)σ̂2 · tr(ZκPψ,LZκ)

σ̂2
p
2n · tr((ZκPψ,LZκ)2)

> z1−α

Obviously, under H0 we have Pψ,L = PL, and by (21) the test possesses an as-
ymptotically correct size. But the derivation of (21) is based on the fact that
tr(PLΣn,T ) = 0 and hence tr(PLΣ̂n,T ) = tr(PL(Σ̂n,T − Σn,T )). If H0 is false, then
generally tr(Pψ,LΣn,T ) = OP (Tc(T )), and therefore tr(Pψ,LΣ̂n,T ) = tr(Pψ,LΣn,T ) +

tr(Pψ,L(Σ̂n,T − Σn,T )) will in tendency be too large.
This test can of course be particularly applied to verify the validity of a standard

panel model Yit = β0+
Pp

j=1 βjXitj + θ1i+ �it with constant individual effects. Then
L = 1 and Pψ,L = I − 1

T
110 with 1 = (1, . . . , 1)0. Also note that in this case c(T ) = 1

as well as bv(κ) = bw(κ
∗) = 0 for all possible choices of κ, κ∗.

3 Simulations

In this section, we investigate the finite sample performances of the new estimator
described in Section 2 (hereafter we will call it KSS estimator) through Monte Carlo
experiments. A competing time-varying individual effects estimator is based on the
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Cornwell, Schmidt, and Sickles fixed effects estimator (CSSW, 1990). The CSSW
estimator allows for an arbitrary polynomial in time (usually truncated at powers
larger than two) with different parameters for each firm. We also consider the clas-
sical time-invariant fixed and the random effects estimators (Baltagi, 2005). These
estimators have been used extensively in the productivity literature which interprets
time varying firm effects (time trends) as technical efficiencies.
We consider the panel data model (1):

Yit =

pX
j=1

βjXitj + ui(t) + �it

We simulate samples of size n = 30, 100, 300 with T = 12, 30 in a model with p = 2
regressors. The error process �it is drawn randomly from i.i.d. N(0, 1). The values
of true β are set equal to (0.5, 0.5). In each Monte Carlo sample, the regressors are
generated according to a bivariate VAR model as in Park, Sickles, and Simar (2003,
2005):

Xit = RXi,t−1 + ηit, where ηit ∼ N(0, I2), (24)

and

R =

µ
0.4 0.05
0.05 0.4

¶
.

To initialize the simulation, we choose Xi1 ∼ N(0, (I2 − R2)−1) and generate the
samples using (24) for t ≥ 2. Then, the obtained values of Xit are shifted around
three different means to obtain three balanced groups of firms from small to large.
We fix each group at μ1 = (5, 5)

0, μ2 = (7.5, 7.5)
0, and μ3 = (10, 10)

0. The idea is to
generate a reasonable cloud of points for X. In all of our data generating processes
(DGP’s) we set the mean function w(t) = 0. Thus in equation (3) above ui(t) = vi(t)
and the model considered in our experiments becomes:

Yit =

pX
j=1

βjXitj + vi(t) + �it.

We generate time-varying individual effects in the following ways:

DGP1 : vi(t) = θi0 + θi1
t

T
+ θi2

µ
t

T

¶2
DGP2 : vi(t) = φirt

DGP3 : vi(t) = υi1g1t + υi2g2t

DGP4 : vi(t) = ξi

where θij (j = 0, 1, 2) ∼ i.i.d.N(0, 0.52), rt+1 = rt + δt, φi, δt, υij(j = 1, 2) ∼
i.i.d.N(0, 1), g1t = sin(πt/4) and g2t = cos(πt/4). Even though there is no correla-
tion between the effects and regressors in DGP1, the fixed effects treatment (CSSW)
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is used in the experiments. DGP2 is the random walk process. DGP3 is consid-
ered to model effects with large temporal variations. DGP4 is the usual constant
effects model with symmetric effects. Thus, we may consider DGP3 and DGP4 as
two extreme cases among the possible functional forms of time varying individual
effects.
The CSSW (within) fixed effects estimator is

βCSSW = (X 0MQX)
−1X 0MQy

where MQ = I − Q(Q0Q)−1Q0, Q = diag(Wi), i = 1, . . . , n, and Wit = [1, t, t2].
A second-order time polynomial is used to approximate vi(t) based on the CSSW
(within) residuals.
For the KSS estimator, cubic smoothing splines were used to approximate vi(t) in

step 1, and the smoothing parameter κ was selected by using ‘leave-one-individual-
out’ cross-validation.1 The coefficient parameter β is updated using ĝr(t) obtained
in step 4 of (14), which is found to generate substantial efficiency gains. However,

the updated estimates β̂
(1)
are not plugged into step 2 again because there is no

efficiency gain observed for ĝr(t). Most simulation experiments were repeated 1,000
times except the cases for n = 300 for which 500 replications were carried out. To
measure the performances of the various estimators of the effects, we used normalized
mean squared error (MSE):

R(bv, v) = P
i,t (bvi(t)− vi(t))

2P
i,t v

2
i (t)

.

We now present the simulation results. Tables 1-4 present mean squared errors
(MSE) of coefficients2and effects for each DGP. Also, average optimal dimensions, L,
chosen by ∆(l) criterion are reported in the last column of second panel in each table.
We note that the optimal dimension, L, is correctly chosen for the KSS estimator in
all DGPs. Thus, we can verify the validity of the dimension test ∆(l) discussed in
Section 2.
For DGP1, the performances of the KSS estimator are better than those of the

other estimators by any standards. This is true even when the data is as small as
n = 30 and T = 12. In particular, the KSS estimator outperforms the other estimators
in terms of MSE of efficiency. Since the data are generated by DGP1, we may expect
that CSS estimator performs well. This is true for T = 30. However, if T is small
(T = 12), the inefficient CSSW estimator (effects and regressors are not correlated) is
no better than the other estimators. The performances of Within and GLS estimators
generally get worse as T increases.

1We let κ = (1− p)/p and choose p among a selected grid of 9 equally spaced values between 0.1
and 0.9.

2The MSE of coefficients are scaled by 103.
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DGP2 is considered to see the performance of the estimators for arbitrary func-
tional form of individual effects. Hence, estimators based on relatively simple function
of time such as used in the CSS estimator is not sufficient for this type of DGP. How-
ever, the KSS estimator does not impose any specific forms on the temporal pattern of
effects, and thus it can approximate any shape of time varying effects. We may then
expect good performances of the KSS estimator even in this situation, and the results
confirm such belief. KSS estimator dominantly outperforms the other estimators by
any standards in the order of three to ten times. It is particularly conspicuous in
terms of MSE of effects and efficiencies. CSSW performs reasonably well for effects,
but it is no better than the others for other criteria.
DGP3 generates effects with large temporal variations. As T increases, the varia-

tions become large. The other estimators assume pre-specified and simple functional
forms, thus they are expected to perform less satisfactorily for this DGP. On the
contrary, the KSS estimator allows arbitrary functional forms as well as multiple in-
dividual effects. Hence, it is expected to perform well even under this DGP. Indeed,
the results show that the KSS estimator performs very well, especially for large T ,
with correct number of L chosen. On the other hand, the other estimators suffer from
severe distortions in the estimates of the effects, although coefficient estimates look
reasonably good.
DGP4 represents the reverse situation so that there is no temporal variation in

the effects. Thus, the Within and GLS estimators work very well. Now, our primary
question is what are the performances of KSS estimator in this situation. As seen in
Table 4 its performance is fairly good and comparable to those of the Within and GLS
estimators. Therefore, the KSS estimator may be safely used even when temporal
variation is not noticeable.
In sum, simulations show that the KSS estimator is safely applicable regardless of

the assumption on the temporal patterns of effects, and may therefore be preferred to
other existing estimators in these types of empirical settings, among potentially many
others. On the other hand, either if constant effects are assumed when true effects
are time-variant, or if the temporal patterns of effects are misspecified, parameter
estimates as well as effect estimates become severely biased. In these cases, large T
increases the bias, and large n does not help solve the problem.

4 Efficiency Analysis of Banking Industry

4.1 Empirical Model

We next compare the various estimators in an empirical illustration of efficiency
changes in the US banking industry after a series of deregulatory initiatives in the
early 1980’s. We model the multiple output/multiple input banking technology using
the output distance function (Adams, Berger, and Sickles, 1996). The output distance
function, D(Y,X) ≤ 1, provides a radial measure of technical efficiency by specifying
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the fraction of aggregated outputs (Y ) produced by given aggregated inputs (X). An
m-output, n-input deterministic distance function can be approximated byQm

j Y
γj
jQn

k X
βk
k

≤ 1,

where the γ0js and the β
0
ks are weights describing the technology of a firm. If it is

not possible to increase the index of total output without either decreasing an output
or increasing an input, the firm is producing efficiently or the value of the distance
function equals 1.
The Cobb-Douglas stochastic distance frontier that we utilize below in our em-

pirical illustration is derived by simply multiplying through by the denominator,
approximating the terms using natural logarithms of outputs and inputs, and adding
a disturbance term �it to account for statistical noise. We also specify a nonnegative
stochastic term u∗i (t) for the firm specific level of radial technical inefficiency, with
variations in time allowed. The Cobb-Douglas stochastic distance frontier is thus

0 =
X
j

γj ln yj,it −
X

βk lnxk,it + u∗i (t) + �it.

Then, we normalize the outputs with respect to the first output and rearrange to get

ln yJ =
X
j

γj(− ln byj,it)−Xβk(− lnxk,it)− u∗i (t) + �it,

where yJ is the normalizing output and byj = yj/yJ , j = 1, . . . ,m, j 6= J. To streamline
notations, let Yit = ln yJ , Y ∗it = − ln byj,it, Xit = − lnxk,it, and ui(t) = −u∗i (t), in which
case we can write the stochastic distance frontier as

Yit = Y ∗0it γ +X 0
itβ + ui(t) + �it. (25)

This model can be viewed as a generic panel data model we introduced in equa-
tion (1) above in which the effects are interpreted as time-varying firm efficien-
cies, and fits into the class of frontier models developed and extended by Aigner,
Lovell, and Schmidt (1977), Meeusen and van den Broeck (1977), Schmidt and Sick-
les (1984), and Cornwell, Schmidt, and Sickles (1990)3. Once the individual effects
ui(t) are estimated, technical efficiency for a particular firm at time t is calculated as
TE = exp {ui(t)−maxj=1,...,N(uj(t))} for the CSSW and the KSS estimators (Corn-
well, Schmidt, and Sickles, 1990). Technical efficiency is calculated similarly for the
standard time-invariant fixed effects and random effects estimators following Schmidt
and Sickles (1984). We also consider the Battese and Coelli (BC, 1992) estimator
which is a likelihood-based random effects estimator wherein the likelihood function

3In keeping with the stochastic frontier paradigm we allow the technical efficiency to be correlated
with the potentially distorted relative output allocations Y ∗it .
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is derived from a mixture of normal noise and an independent one-sided efficiency er-
ror, usually specified as a half-normal. In the BC estimator, effect levels are allowed
to differ across cross-sectional units but their temporal pattern is fixed across cross-
sectional units and are specified as technical efficiencies ui(t) = − exp(−η(t − T ))ξi
where ξi are independent half normal random effects and η parameterizes the tempo-
ral pattern in the firms’ efficiencies.

4.2 Data

We use panel data from 1984 through 1995 for U.S. commercial banks in limited
branching regulatory environment. The data are taken from the Report of Condition
and Income (Call Report) and the FDIC Summary of Deposits4. The data set include
667 banks or 8,004 total observations. Table 5 provides variables description and gives
the means of the samples.
The variables used to estimate the Cobb-Douglas stochastic distance frontier are

Y = ln(real estate loans); X = − ln(certificate of deposit), − ln(demand deposit),
− ln(retail time and savings deposit), − ln(labor), − ln(capital), and − ln(purchased
funds); Y ∗ = − ln(commercial and industrial loans/real estate loans), and− ln(installment
loans/real estate loans). For a complete discussion of the approach used in this paper,
see Adams, Berger, and Sickles (1999).

4.3 Empirical Results

The Hausman-Wu test, which tests the correlation assumptions for regressors and
individual effects, was performed. The test statistic is 203.58, and the null hypothesis
of no correlation is rejected at the 1% significance level. Thus there is strong evidence
against the exogeneity assumption underlying the random effects GLS estimator.
Consequently, in the following analysis we do not report the results from the random
effects GLS estimator. The assumption is also fatal to the consistency of the random
effects BC estimator. However, we will provide estimation results for the BC estimator
as well to compare them with those from the other estimators (Within, CSSW, and
KSS) which are robust to the existence of correlation between regressors and effects.
We test the dimensionality using ∆(l) test. The dimension L is chosen according

to the rule described in Section 2 with the maximum dimension set to 8. Using the
1% significance level, the critical value is 2.33. With L = 7 the test statistic is 1.36
which is below the critical value. The optimal choice of dimensionality is thus seven5.
Table 6 presents parameter estimates from Within, BC, CSSW, and KSS6. Ta-

4For a more detailed discussion of data, see the Appendix in Jayasiriya (2000).
5When we assume L = 1 and test the null hypothesis that the individual effect is constant, the

test statistic Z is 165.02. Thus the null hypothesis of linear individual effect is strongly rejected.
6To calculate efficiency scores from the effects estimators, the effects estimates are trimmed at

the top and bottom 5% level (see Berger, 1993). This does not apply to the BC estimator because it
directly calculates efficiencies. For the time-varying effects estimators, the firms which enter the top
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ble 7 provides Spearman rank correlations among the estimators and shows relatively
close correspondences (ranging from 0.7667 to 0.9854) among the rankings of efficien-
cies based on the different treatments of time-varying firm specific effects7. Average
technical efficiencies for Within, BC, CSSW, and KSS are 0.4553, 0.6111, 0.6220,
0.6056 respectively. One may expect that during the period of deregulation firms
tend to become more efficient due to increased competitive pressures in the indus-
try. Figure 1 displays the temporal pattern of efficiency changes for time-variant
efficiency estimators. We also construct an estimate of efficiency change over the
sample period based on a pooled estimator that combines estimates from each of the
time-varying measures. These results indicate a consensus growth of about 0.8%
per year in efficiency during the sample period. Were these rates of cost diminution
applied to the US banking industry the implied savings based on 1995 revenues and
costs (Klee and Natalucci, 2005) would be on the order of $30 billion-our estimated
measure of the benefits from deregulation of this key service industry.

5 Conclusion

In this paper we have introduced a new approach to estimating temporal heterogene-
ity in panel data models. We estimate the effects using the procedure combining
smoothing spline techniques with principal component analysis. In this way, we can
approximate virtually any shapes of time-varying effects. As we have pointed out,
these methods can be transparently ported to the time series literature to address the
issues of proper detrending filters in time series models.
Simulation experiments show that previous estimators, which do not allow for

general temporal variations in effects terms or which misspecify the temporal pat-
tern of variations, may suffer from serious distortions. On the other hand, our new
estimator performs very well regardless of the assumption on the temporal pattern
of individual effects. We have used this estimator to analyze the technical efficiency
of U.S. banks in the limited branching regulatory environment for relatively small
banks for the period of 1984-1995, and discovered that the relatively small banks in
our sample have became more efficient over the years. The implied savings to the
banking industry by 1995, were all banks to have enjoyed a similar efficiency gain as
did our sample banks, is on the order of $30b.

and bottom 5% range of effects in any time periods were excluded in calculating average efficiencies.
Therefore, in this sense, it is not fair to directly compare the efficiencies from the Within or BC
estimators with those from the CSS and KSS estimators.

7 We report results with ray returns to scale set to one. No significant ray scale economies
appear to exist using these treatments and in other analysis conducted by the authors with these
data. Moreover, the equivalence of input and output oriented technical efficiency is preserved when
scale economies are unity, thus avoiding difficutlies in interpretation that have been pointed out
often in the productivity literature.
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6 Appendix: Mathematical Proofs

Proof of Theorem 1: It is easily seen that

β̂ = (
X
i

X̃ 0
i(I −Zκ)X̃i)

−1
X
i

X̃ 0
i(I −Zκ)(Yi − Ȳ )

= β + (
X
i

X̃ 0
i(I −Zκ)X̃i)

−1
X
i

X̃ 0
i(I − Zκ)vi

+(
X
i

X̃ 0
i(I − Zκ)X̃i)

−1
X
i

X̃ 0
i(I −Zκ)(�i − �̂).

Consequently, E�(β̂) − β = (
P

i X̃
0
i(I − Zκ)X̃i)

−1P
i X̃

0
i(I − Zκ)vi. By Assumption

1) there exists a fixed basis b1, . . . , bL of LT with 1
T
kbrk2 = 1, r = 1, . . . , L, which

can be chosen independent of Xit. Therefore, vi =
PL

r=1 ϑirbr with
Pn

i=1 ϑir = 0.
Let Xij denote the T -vectors with elements Xitj, t = 1, . . . , T , and recall that by
Chebychev-type inequalities we have P(|Zn,T | ≥ δ) ≤ E(|Zn,T |r)/δr for all possible
sequences of random variables |Zn,T | with E(|Zn,T |r) < ∞ and all δ > 0. We thus
necessarily have Zn,T = OP (E(|Zn,T |r)1/r).
In the general case, the j = 1, . . . , p elements of the vectors

P
i X̃

0
i(I − Zκ)vi can

thus be bounded by

|
X
i

X̃ 0
ij(I − Zκ)vi| ≤ n

LX
r=1

s
|1
n

X
i

ϑ2ir| · |b0r(I − Zκ)(
1

n

X
i

X̃ijX̃ 0
ij)(I −Zκ)br|

= OP

µ
n

LX
r=1

q
E(ϑ2ir) · |b0r(I −Zκ)E(X̃ijX̃ 0

ij)(I −Zκ)br|
¶

But by Assumptions 2) - 4) we obtain

n
LX
r=1

q
E(ϑ2ir) · |b0r(I −Zκ)E(X̃ijX̃ 0

ij)(I −Zκ)br| ≤ n
LX
r=1

q
E(ϑ2ir) ·D · k(I −Zκ)brk2 = OP (n

√
Tbv(κ)).

Condition (16) of Assumption 4) then leads to kE�(β̂)− βk = OP ((
bv(κ)

T 1/2
).

Note thatZκz = z and (I−Zκ)z = (I−Zκ)
1/2z = 0 for all κ, if z = (z(1), . . . , z(T ))0

is a linear function. If vi and Xi are ulc-uncorrelated, then in the notation used in
the definition of ulc-uncorrelatedness X̃ 0

ij(I−Zκ)
1/2 = X̃∗0

ij (I−Zκ)
1/2, (I−Zκ)

1/2vi =

(I −Zκ)
1/2v∗i , and therefore

E(X̃ 0
ij(I −Zκ)vi)

2 = tr
³
E((I −Zκ)

1/2X̃ijX̃
0
ij(I −Zκ)

1/2) ·E((I −Zκ)
1/2viv

0
i(I −Zκ)

1/2)
´

= E
³
E(ϑ2ir)|b0r(I −Zκ)E(X̃ijX̃

0
ij))(I −Zκ)br

´
= O(T · bv(κ)2)

Since due to our normalization E(vi(t)vl(t)) = O(E(vi(t)
2/n), it can be shown by

similar arguments that E(X̃ 0
ij(I − Zκ)vi)(X̃

0
lj(I − Zκ)vl) = O(T · bv(κ)2/n) for i 6= l.
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Therefore,
E(
P

i X̃
0
ij(I −Zκ)vi)

2 = O(nT · bv(κ)2), and |
P

i X̃
0
ij(I −Zκ)vi| = OP (

p
nT · bv(κ)2),

which leads to kE�(β̂) − βk = OP ((nT )
−1/2 · bv(κ)). By Assumptions 4) and 5) the

assertion on β̂ − E�(β̂) = (
P

i X̃
0
i(I − Zκ)X̃i)

−1P
i X̃

0
i(I − Zκ)(�i − �̄) = (

P
i X̃

0
i(I −

Zκ)X̃i)
−1P

i X̃
0
i(I −Zκ)�i follows from standard arguments.

Consider Assertion (b). Obviously,

w − ŵ = (I −Zκ∗)w − Zκ∗ �̄−Zκ∗X̄(β − β̂)

and T−1/2kZκ∗ �̄k = OP (
p
tr(Z2κ∗)/(nT )). The assertion then follows from Assump-

tions 2) and 4) as well as from the above results on the convergence of kβ − β̂k.
In order to prove Assertion (c) first note that

v̂i = vi + ri, with ri = −(I − Zκ)vi +Zκ(�i − �̄) +ZκX̃i(β − β̂).

Therefore,

Σ̂n,T = Σn,T +B, B =
1

n

X
i

(vir
0
i + riv

0
i + rir

0
i). (26)

Assertion (b) of Lemma A.1 of Kneip and Utikal (2001) implies that for all r =
1, . . . , L

γr − γ̂r = SrBγr +R, with kRk ≤
6 supkak=1 a

0B0Ba

mins |λr − λs|2
(27)

and with Sr =
P

s6=r
1

λs−λrPs, where Ps denotes the projection matrix projecting into
the eigenspace corresponding to the eigenvalue λs of Σn,T .
In order to evaluate the above expression we first have to analyze the stochastic

order of magnitude of the different elements of B. Consider the terms appearing in
1
n

P
i(vir

0
i + riv

0
i). Using Assumptions 1) - 4) some straightforward arguments now

lead to
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k 1
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By similar arguments
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X
i
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Obviously, E�(tr((
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Similarly,
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For the leading terms appearing in 1
n

P
i rir

0
i we obtain
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κ) for all s = 1, 2, 4. Therefore
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Assumptions 1) and 2) additionally imply that 1
mins |λr−λs| = OP (

1
T ·c(T )). When com-

bining (27) with (28) - (36) we thus obtain
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By definition of Sr we have Srγr = 0. Furthermore, Assumption 3 implies that
k(I − Zκ)γrk = OP (
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). Hence,
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Let us now consider the remainder term R in (27). Note that all eigenvalues of Zκ
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)

¶
(39)
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By (27), (37), (38) and (39) the asserted rate of convergence follows from

T−1/2kgr − ĝrk = kγr − γ̂rk = OP

Ã
bv(κ)

c(T )1/2
+

1

T 2c(T )2
+

s
tr(Z2κ)
nTc(T )

!
. (40)

Let us switch to Assertion (d). Definition of θ̂ir as well as Assertions a) and c) imply
that

θ̂ri =
1

T
ĝ0r(Yi − Ȳ − X̃iβ̂)

= θri +
1

T
g0r(�i − �̄) +

1

T
(ĝr − gr)

0vi +OP (d(T )
1/2(bβ(κ) +

1√
nT
))

Moreover, one can infer from relations (27) - (40) that

1

T
(ĝr − gr)

0vi =
1

n
√
T

X
j

γ0rvjv
0
j(I −Zκ)Srvi +

1

n
√
T

X
j

γ0r(I −Zκ)vjv
0
jSrvi

1

n
√
T

X
j

γ0rvj�
0
jZκSrvi +OP

µ
bv(κ)

2

c(T )1/2
+ d(T )1/2(bβ(κ) +

1√
nT
) +

1

T 2c(T )3/2

¶

However, the well-known properties of Zκ imply that 1
T
g0r(I − Zκ)gs is of the same

order of magnitude as 1
T
g0r(I −Zκ)(I −Zκ)gs for all r, s. Hence,

1

n
√
T

X
j

γ0rvjv
0
j(I−Zκ)Srvi ≤

1

n

X
s6=r

X
j

|v0iγr|√
T |λr − λs|

|v0j(I−Zκ)θsigs| = OP (
bv(κ)

2

c(T )1/2
)

as well as

1

n
√
T

X
j

γ0r(I−Zκ)vjv
0
jSrvi ≤

1

n

X
j

|v0ivj|√
T mins |λr − λs|

|v0j(I−Zκ)γr| = OP (
bv(κ)

2

c(T )1/2
).

Furthermore, 1
n
√
T

P
j γ

0
rvj�

0
jZκSrvi = OP (

1√
nT
). This implies

(θ̂ri−θri) =
1

T
g0r�i+OP

µ
bv(κ)

2

c(T )1/2
+ d(T )1/2(bβ(κ) +

1√
nT
) +

1

T 2c(T )3/2

¶
+oP

¡
T−1/2

¢
.

Since 1
T
g0rgr = 1 we immediately obtain

√
T · 1

T
g0r�i →d N(0, σ

2). The asserted
rate of convergence is an immediate consequence. Note that due to g0rgs = 0 the
random variables g0r�i and g0s�i are uncorrelated for r 6= s. Hence, if additionally
bv(κ)2

c(T )1/2
+d(T )1/2bβ(κ)+

tr(Z2κ)
nT

= o(T−1/2), the assertion on the multivariate distribution

of
√
T (θ̂1i − θ1i, . . . , θ̂Li − θLi)

0 follows from standard arguments.
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It remains to prove assertion (e). First note that

v̂i = Zκvi + r̃i, with r̃i = Zκ(�i − �̄) +ZκX̃i(β − β̂).

Consequently, with Σ̃n = Zκ(
1
n

P
i viv

0
i)Zκ we obtain

Σ̂n = Σ̃n + B̃, B̃ =
1

n

X
i

(Zκvir̃
0
i + r̃iv

0
iZκ + r̃ir̃

0
i).

Σ̃n possesses only L nonzero eigenvalues λ̃1 ≥ · · · ≥ λ̃L with corresponding eigenvec-
tors γ̃1, . . . , γ̃L. Our assumptions and arguments similar to (27) - (40) then show that
λ̃r = O(Tc(T )), 1

mins |λ̃r−λ̃s|
= OP (

1
T ·c(T )), kγr − γ̃rk = OP (

bv(κ)

c(T )1/2
), and

kγ̂r − γ̃rk = OP

Ã
d(T )1/2bβ(κ)

c(T )1/2
+

1

T 2c(T )2
+

s
tr(Z2κ)
nTc(T )

!
(41)

for all r, s = 1, . . . , L, r 6= s.
Assertion (a) of Lemma A.1. of Kneip and Utikal (2001) implies that

TX
r=L+1

λ̂r = tr(PLB̃) +R∗, with R∗ ≤
6L supkak=1 a

0B̃0B̃a

mins |λ̃r − λ̃s|
(42)

where PL = I −
PL

r=1 γ̃rγ̃
0
r. Using again arguments similar to the proof of Assertion

(c) it is easily seen that

6L supkak=1 a
0B̃0B̃a

mins |λ̃r − λ̃s|
= OP

µ
Td(T )bβ(κ)

2 +
1

Tc(T )
+

tr(Z2κ)
n

¶
. (43)

On the other hand,

tr(PLB̃) = tr

Ã
1

n

X
i

PLZκX̃i(β − β̂)(β − β̂)0X̃ 0
iZκ

!
+ tr

Ã
PLZκ(

1

n

X
i

(�i − �̄)(�i − �̄)0)Zκ

!
(44)

Some straightforward computations lead to

E

Ã
tr(PLZκ(

1

n

X
i

(�i − �̄)(�i − �̄)0)Zκ)

!
= σ2(1− 1

n
)tr(ZκPLZκ),

Var

Ã
tr(PLZκ(

1

n

X
i

(�i − �̄)(�i − �̄)0)Zκ)

!
=
2σ4

n
· tr((ZκP̂LZκ)

2) · (1 + oP (1)) = OP

µ
tr(Z4κ)

n

¶
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Since tr( 1
n

P
iPLZκX̃i(β− β̂)(β− β̂)0X̃ 0

iZκPL) = OP

³
Td(T )bβ(κ)

2 + d(T )
n

´
and since

by assumption Td(T )bβ(κ)
2 + d(T )

n
= o

³p
tr(Z4κ)/n

´
one may invoke standard argu-

ments to show that

tr(PLB̃) − σ2
¡
1− 1

n

¢
tr(ZκPLZκ)q

2σ4

n
· tr((ZκPLZκ)2)

→d N(0, 1). (45)

Since tr(PLB̃) = tr(PLΣ̂n), (21) is an immediate consequence. By (41)- (43) , Rela-
tion (45) remains valid when tr(PLB̃) is replaced by

PT
r=L+1 λ̂r as well as PL by P̂L.

This proves (20) and hence completes the proof of the theorem. ¤

Proof of Theorem 2: It follows from arguments similar to those used in the proof
of Theorem 1 that

σ̂2 =
1

(n− 1) · tr((I −Zκ)2)

X
i

(�i − �̄)0(I −Zκ)
2(�i − �̄)
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1
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X
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v0i(I −Zκ)
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¶
.

Clearly,

E

Ã
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(n− 1) · tr((I −Zκ)2)

X
i

(�i − �̄)0(I − Zκ)
2(�i − �̄)

!
= σ2

By Assumption 2) the well-known properties of Zκ imply 1/tr(I − Zκ) = OP (T
−1),

and therefore
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!
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µ
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¶
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Consequently, with

0 ≤ Rn,T =
1

(n− 1) · tr((I −Zκ)2)

X
i

v0i(I −Zκ)
2vi = Op(bv(κ)

2) (46)

we obtain
σ̂2 = σ2 +Rn,T + op (1) . (47)

Let us now consider the behavior of ∆(l) for l < L. We can immediately infer from
(47) that

∆(l) =

⎡⎣nPL
r=l+1 λ̂r − (n− 1)(σ2 +Rn,T ) · tr(Zκ(P̂l − P̂L)Zκ)− (n− 1)Rn,T · tr(ZκP̂lZκ)

σ̂2
q
2n · tr((ZκP̂lZκ)2)

+
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σ̂2
q
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By Assumption 2) and Theorem 1d) n
PL

r=l+1 λ̂r =
PL

r=l+1 T
P

i θ̂
2

ir is of order
nTc(T ), while (n − 1)(σ2 + Rn,T ) · tr(Zκ(P̂l − P̂L)Zκ) = OP (n), (n − 1)Rn,T ·
tr(ZκP̂lZκ) = oP (nTc(T )), andq
2nσ̂4 · tr((ZκP̂lZκ)2) = OP ((nT )

1/2). Consequently, the first term on the right
hand side of (48) increases as n, T → ∞, while the second term is still bounded in
probability. We can thus infer that for l < L

P(∆(l) > z1−α)→ 1 and therefore P(L̂ 6= l)→ 1 (49)

as n, T →∞.
For l = L we obtain Since Rn,T ≥ 0 we can infer from Theorem 1(e) that

lim sup
n,T→∞

P(∆(L) ≥ z1−α) ≤ α. (50)

The assertion of the theorem now is an immediate consequence of (49) and (50). ¤
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Table 1. Monte Carlo Simulation Results for DGP1

MSE of Coefficients
N T Within GLS CSSW KSS
30 12 0.07258 0.06381 0.00867 0.00874

30 0.02832 0.02355 0.00240 0.00258
100 12 0.01862 0.01643 0.00266 0.00273

30 0.00678 0.00649 0.00073 0.00075
300 12 0.00610 0.00609 0.00086 0.00087

30 0.00210 0.00208 0.00023 0.00023

MSE of Effects
N T Within GLS CSSW KSS L
30 12 0.1770 0.1746 0.0091 0.0091 2.4070

30 0.1666 0.1663 0.0036 0.0043 2.8050
100 12 0.1285 0.1280 0.0072 0.0073 2.9688

30 0.1240 0.1240 0.0029 0.0030 3.0100
300 12 0.1025 0.1025 0.0059 0.0060 3.0040

30 0.1001 0.1001 0.0024 0.0025 3.0060
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Table 2. Monte Carlo Simulation Results for DGP2

MSE of Coefficients
N T Within GLS CSSW KSS
30 12 0.02414 0.02085 0.01370 0.00477

30 0.00699 0.00675 0.00662 0.00188
100 12 0.00974 0.00842 0.00488 0.00139

30 0.00201 0.00195 0.00193 0.00052
300 12 0.00341 0.00430 0.00169 0.00047

30 0.00071 0.00073 0.00063 0.00028

MSE of Effects
N T Within GLS CSSW KSS L
30 12 0.1655 0.1630 0.0601 0.0170 1.0050

30 0.0976 0.0975 0.0692 0.0100 1.0000
100 12 0.1544 0.1547 0.0491 0.0117 1.0000

30 0.0890 0.0890 0.0624 0.0072 1.0000
300 12 0.1480 0.1484 0.4500 0.0104 1.0000

30 0.0860 0.0861 0.0597 0.0065 1.0000
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Table 3. Monte Carlo Simulation Results for DGP3

MSE of Coefficients
N T Within GLS CSSW KSS
30 12 0.01346 0.00589 0.02166 0.00662

30 0.00464 0.00227 0.00598 0.00203
100 12 0.00465 0.00188 0.00708 0.00168

30 0.00153 0.00074 0.00193 0.00041
300 12 0.00148 0.00066 0.00241 0.00038

30 0.00049 0.00023 0.00062 0.00012

MSE of Effects
N T Within GLS CSSW KSS L
30 12 1.1064 1.0411 1.1410 0.3586 2.0184

30 1.0541 1.0318 1.1158 0.2213 1.9382
100 12 1.0517 1.0311 1.0276 0.2086 2.1727

30 1.0350 1.0285 1.0810 0.0879 2.0776
300 12 1.0398 1.0337 1.0144 0.1787 2.0859

30 1.0308 1.0287 1.0728 0.0727 2.0432
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Table 4. Monte Carlo Simulation Results for DGP4

MSE of Coefficients
N T Within GLS CSSW KSS
30 12 0.00544 0.00484 0.00841 0.00615

30 0.00188 0.00181 0.00221 0.00200
100 12 0.00176 0.00122 0.00262 0.00183

30 0.00061 0.00051 0.00073 0.00062
300 12 0.00056 0.00080 0.00086 0.00058

30 0.00020 0.00026 0.00024 0.00020

MSE of Effects
N T Within GLS CSSW KSS L
30 12 0.1213 0.1126 0.3387 0.1519 1.0320

30 0.0472 0.0462 0.1288 0.0638 1.0100
100 12 0.0929 0.0876 0.2706 0.1032 1.0430

30 0.0363 0.0354 0.1062 0.0414 1.0230
300 12 0.0795 0.0811 0.2366 0.0838 1.0280

30 0.0319 0.0323 0.0947 0.0339 1.0200
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Table 5.Summary Statistics for Small Banks

Variable Definition Mean
reln Log of real estate loans 8.559
ciln Log of commercial and industrial loans 7.338
inln Log of installment loans 7.632
CD Log of certificate of deposits 7.400
DD Log of demand deposits 7.875
OD Log of retail time and savings deposits 9.977
lab Log of labor 4.499
cap Log of capital 5.613
purf Log of purchased funds 10.079

Number of observations 8004

Table 6. Estimation Results
Within BC CSSW KSS

CD -0.0357 (0.0047) -0.0332 (0.0043) -0.0095 (0.0032) -0.0008 (0.0019)
DD -0.0678 (0.0155) -0.0244 (0.0124) -0.0908 (0.0134) -0.0410 (0.0109)
OD -0.1451 (0.0097) -0.1433 (0.0091) -0.1295 (0.0069) -0.0440 (0.0200)
lab -0.1517 (0.0165) -0.1403 (0.0130) -0.1639 (0.0139) -0.1254 (0.0093)
cap -0.0456 (0.0054) -0.0523 (0.0048) -0.0461 (0.0054) -0.0289 (0.0053)
purf -0.5522 (0.0208) -0.6065 (0.0151) -0.5601 (0.0162) -0.7598 (0.0268)
ciln 0.1583 (0.0045) 0.1596 (0.0042) 0.1468 (0.0037) 0.1202 (0.0031)
inln 0.3745 (0.0061) 0.3639 (0.0054) 0.3512 (0.0056) 0.3237 (0.0050)
time 0.0154 (0.0009) 0.0023 (0.0013) - -

Avg TE 0.4553 0.6111 0.6220 0.6056

Table 7. Spearman Rank Correlations of Efficiencies
Within BC CSSW KSS

Within 1.0000 . . .
BC 0.9854 1.0000 . .
CSSW 0.8743 0.8785 1.0000 .
KSS 0.7667 0.7937 0.8974 1.0000
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