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Abstract. – The tunnel magnetoresistance and its connection to the interlayer exchange
interaction is studied in ferromagnet-insulator-ferromagnet junctions. Building on the non-
equilibrium Keldysh formalism, we include a contact interaction between localized spins and
conduction electrons and derive an expression for the tunnel current that depends on the
magnetization of the layers as 〈SL · SR〉 in correspondence with the exchange coupling. From
this expression we also obtain a formula for the tunnel magnetoresistance. At low bias and
for systems where one can neglect size-quantization effects Julliere’s formula is rederived. The
temperature dependence of the dynamical parameters arises from the system of localized spins,
its interaction with the conduction electrons, and the thermal reservoirs.

There is much evidence to believe that the interaction between the ferromagnetic layers and
the effect of giant magnetoresistance (GMR) are directly related. The simplest model which
provides a reasonable approximation for transition metals is to assume that the exchange inter-
action between the magnetic d-electrons arises through coupling to the conduction s-electrons
which then transmit an effective spin-interaction across the spacer through the Ruderman-
Kittel-Kasuya-Yosida (RKKY) mechanism. Detailed treatments of this effect, going beyond
the simple free-electron picture, had been given in refs. [1–3]. These theories show, as has
been found experimentally [4, 5], that because of the oscillatory nature of the interaction the
coupling between magnetic layers can change in sign with the width of the spacer. On the
other hand, the GMR also varies with the width of the spacer and is pronounced in cases
when the coupling between the layers is antiferromagnetic, as reviewed in refs. [6, 7].

In a recent paper, we pointed out that the tunnel magnetoresistance (TMR) effect and the
non-equilibrium exchange interaction (NEXI) are also closely related [8]. We showed that the
NEXI in a magnetic tunnel junction (MTJ) is mediated to a large extent by spin-polarized
currents. As a function of bias these currents give rise to a change in sign of the coupling.
By a comparison with a mean field treatment we found that the spin-polarized currents are
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dominated by semi-classical terms and depend to a lesser degree on size-quantization effects.
Thus, out of equilibrium the nature of the NEXI may be very different to the typical quantum-
interference effect of the equilibrium RKKY-type. It is desirable then to extend our previous
treatments at a heuristic level to derive a rigorous mathematical formulation demonstrating
the relation between TMR and NEXI in more detail.

For simplicity, we assume a trilayer structure that consists of two planar ferromagnetic
layers of thickness lL(R) and band bottom VL(R) separated at the interfaces by a dielectric
spacer of thickness d and potential V0. The conduction electrons are taken to occupy simple
spherical conduction bands with energies εL(R) = h̄ω − VL(R). Upon biasing the system,
the chemical potentials µL(R) and the band bottoms VL(R) are both separated by a bias
eV = µL −µR, while the spacer layer acquires a slope. As the model is translational invariant
in the directions perpendicular to the current flow, the analysis can be restricted to one
dimension. The results are extended to three dimensions by means of Fourier transforms in
k‖ for the numerical calculations according to refs. [8, 9].

Further, we assume that the uncompensated magnetic moments of the d-electrons are
localized, uniform within the ferromagnets, and the exchange coupling between them and the
conduction electrons is isotropic. This leads to an effective interaction of the form

Heff = −J

2

∑
p;α,β

σαβ · Sp〈Ψ†
α(xp)Ψβ(xp)〉, (1)

where J is the coupling constant, and Ψ†
α(x) and Ψα(x) are field operators which create and

destroy a conduction electron with spin α at point x, respectively; σαβ is the vector of Pauli
matrices, used to represent the spin of the conduction electrons which couple to the local
moments Sp. In order to obtain a proper formulation of the non-equilibrium situation in the
system, we employ the Keldysh non-equilibrium perturbation formalism [10] and express the
spin-dependent particle density in terms of the Keldysh Green’s function G<

αβ(xp, xq;ω) =
ih̄ 〈Ψ†

α(xp)Ψβ(xq)〉). The details of implementing the non-equilibrium theory to the needs of
magnetic layer systems had been discussed in refs. [8, 9, 11].

It is also necessary to include the effects of diffuse scattering from defects in the ferro-
magnets. As the dominant contributions to both the current and NEXI are close to the
Fermi surface in the quasi–one-dimensional system, we employ the constant relaxation time
approximation with τ−1 = τ−1

i + τ−1
p + τ−1

s as in ref. [12]. We note that, although scat-
tering occurs between states with different k‖ vectors, the exchange coupling between layers
of spins is self-averaging [13], and our approximation is tantamount to restoring k‖ symme-
try. The relaxation time τi due to residual impurity scattering is taken to be independent of
temperature T , τp due to phonon scattering is inverse proportional to T except at very low
temperatures, and τs due to spin disorder scattering via interaction (1) may be approximated
as τ−1

s ∝ J2[1 − 〈S〉2/(S2 + S)]. These different contributions to the bulk scattering are
assumed for simplicity to be the same in the left and right ferromagnets and are absorbed in
the complex energies εr

L(R) = εL(R) + ∆ + ih̄τ−1 ≡ (h̄qr
L(R))

2/2m. Here, m is the effective
mass of the conduction electrons, and ∆ a shift in the band.

The current through the trilayer system depends on its magnetic state which is assumed to
be either ferromagnetic or antiferromagnetic. By determining the sign of Eex = 1/2 (EAFM −
EFM), one obtains the stable magnetic configuration. An explicit expression for the NEXI was
first derived in ref. [9] and can be written as a sum of the quantum-interference contribution
which is finite at equilibrium and a term mediated by the spin-currents, according to ref. [8],
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i.e. Eex = Ẽex + Ēex, where

Ẽex = −h̄ 〈SL · SR〉
∫ ∞

−∞

dω
2π

(
nL

F + nR
F

)
Im {ψLR} , (2)

Ēex = −h̄ 〈SL · SR〉
∫ ∞

−∞

dω
2π

(
nL

F − nR
F

)
T [JRLR Re {ψL} − JLLL Re {ψR}] , (3)

with ψL(R) = JL(R) r
r
L(R) ζ

r
L(R), and ψLR = JLJR (tr)2 ζr

Lζ
r
R. We assumed that the interlayer

exchange coupling is sufficiently weaker than the direct exchange within the ferromagnets
and averaged over their spins JL(R) = JρL(R)/(h̄vL(R)), where ρL(R) is the number of spins
per unit volume, and vL(R) the velocities of the conduction electrons. This also leads to the
approximation that 〈SL ·SR〉 ≈ 〈Sz

L〉〈Sz
R〉. The combination of the Fermi functions nL(R)

F and
the form of ψLR and ψL(R) demonstrate clearly the different nature of Ẽex and Ēex. Apart from
the prefactor, the non-local function ψLR consists of a transmission amplitude tr through the
spacer and an oscillatory part responsible for the quantum-interferences of the RKKY-type,
where

ζr
L(R) =

1
2 qr

L(R)

(
1− e

2 i qr
L(R)lL(R)

)
. (4)

On the other hand, ψL(R) is confined to one ferromagnetic layer, where the reflection amplitude
rr
L(R) describes the specular reflexion off the interfaces. The influence of the other ferromagnet
comes in through JL(R)LL(R). LL(R) diverges for an infinitely large and perfectly conducting
ferromagnet, i.e. lL(R) and τL(R) → ∞, but in realistic systems we have to take diffuse
scattering into account. For εF

L(R) � h̄τ−1 we may write in case of h̄ω ≥ V L(R),

LL(R) =
λL(R)

2

(
1− e−2 lL(R)/λL(R)

)
, (5)

where λ = vL(R)τ is the mean free path of the conduction electron spin. Depending on the
thickness of the ferromagnets, there are two important limits: the ballistic regime λL(R) �
lL(R), where LL(R) = lL(R), and the spin diffusive regime λL(R) � lL(R), where LL(R) = λL(R)/2
and ζr

L(R) = (2 qr
L(R))

−1. Since T = |tr| is the transmission coefficient through the system, Ēex

is in fact an energy current which may be understood in terms of an effective Zeeman-type
energy, where the localised spins interact with an effective field carried by the spin-polarized
currents [8].

In case of ferromagnets with a low anisotropy and absence of an external magnetic field,
we may use eqs. (2) and (3) to find a closed expression for the current through the trilayer
system,

I = I0 − sgn (Eex)∆I, (6)

where I0 = 1/2 (IFM + IAFM) and ∆I = 1/2 (IFM − IAFM) are defined in analogy to Eex. In
this form we can derive ∆I by a perturbation expansion of the Hamiltonian (1). We calculate
it in the same fashion as the spin-current in ref. [8], however with the important difference that
the first non-vanishing contribution to the Keldysh Green’s function G<

αβ is only in second
order. After some tedious algebraic manipulations we obtain

∆I = −e 〈SL · SR〉
∫ ∞

−∞

dω
2π

(
nL

F − nR
F

)
T [2Re {ψL}Re {ψR}+Re {ψLR}] , (7)
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Fig. 1 – Current density ∆j (mA/cm2) and NEXI in terms of Φ (fJ/cm2) as functions of bias and
thickness of the right ferromagnet lR (Å) in a Fe(100 Å)-Al2O3(12 Å)-Fe(lR) junction. The mean free
path of the conduction electron spin is taken to be 200 Å, and the ratio of barrier height to Fermi
energy is V0/µ = 1.5. A positive Φ means ferromagnetic coupling, negative antiferromagnetic.

where e = |e| is the elementary charge of an electron. Comparing ∆I with Eex, we find that
both expressions are closely related. In particular, ∆I is also proportional to J2 and contains
the quantum-interference term ψLR as well as the individual contributions of the ferromagnets
ψL(R).

In order to explain the details of the relation between eqs. (2), (3), and (7), we study the be-
haviour of the current density ∆j = ν−1 ∆I3D and coupling Φ = ν−1 E3D

ex at zero temperature
as functions of the external bias for different MTJ compositions and impurity concentrations,
where ν is the area of the interfaces. For simplicity, we take Fe as the ferromagnetic material
on either side of the barrier, and normalize 〈Sz

L(R)〉 = S = 1 at T = 0 to the bulk value. For
comparison with possible experiments, e.g. [14], one needs to take into account in addition the
thickness dependence for ultra-thin layers [15]. Results for an asymmetric junction are shown
in fig. 1. The oscillatory dependence on lR is notably different for forward and backward bias,
but the behaviour of ∆j and Φ are remarkably similar. This can be understood by reference
to fig. 2, which shows the dependence on the mean free path of the conduction electron spin
and compares symmetric and asymmetric junctions. In the symmetric case, ∆j and Φ differ
considerably and, apart from small terms, are even and odd, respectively, with respect to ±V .
To better explain the differences in the behaviour of ∆j and Φ for symmetric and asymmetric
junctions, we refer back to eqs. (3) and (7). Unlike the current the sign of the NEXI depends
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Fig. 2 – Current density ∆j (A/cm2) and NEXI in terms of Φ (pJ/cm2) as functions of bias in a sym-
metric Fe(200 Å)-MgO(12 Å)-Fe(200 Å) and asymmetric Fe(200 Å)-MgO(12 Å)-Fe(20 Å) junction.
The mean free path of the conduction electron spin is taken to be 2000 Å and 200 Å, respectively.
The ratio of barrier height to Fermi energy V0/µ = 1.2.

to a large extent on the relative size of LL and LR. Only in the symmetric junction these
terms nearly cancel, so that in such a case the contribution to the NEXI from eq. (2) are of
comparable order (see low bias region of Φ in fig. 2).

These results show that the effect of a voltage-dependent biasing field is much reduced in
the symmetric case, a circumstance which serves to be useful in device design. As in most
devices the ferromagnetic materials on either side of the barrier are chosen to be different,
leading to an intrinsic asymmetry in the MTJ and thus to a strong voltage-dependent biasing
field, it is possible to compensate partly for this effect by just changing the ratio of lL and
lR. On the other hand, the effect of a voltage-dependent biasing field is enhanced for an
asymmetric MTJ. It should be in principle possible to switch between the different magnetic
configurations by simply reversing the bias in the junction. In the extreme limit of a perfect
tunnel barrier, where ν = 1× 1 µm2, we obtain from the bottom graph of fig. 2 for a bias of
±0.7 V an exchange coupling of approximately 10−20 J. Thus, one could change the orientation
of the magnetization in a “soft” layer whose coercive field is smaller than 0.1 Oe and has a



276 EUROPHYSICS LETTERS

magnetization of 1 kG. Clearly, this limiting case has to be refined considerably for realistic
systems as tunnelling is usually limited to a few channels [16] and switching subjected to
domain formation [17]. Although for a single channel ∆j may be significantly larger, ν is
only of the order of nm2. The example, however, shows that the effect of a voltage-dependent
biasing field can be quite significant and influence strongly the TMR. In some instances the
bias-induced coupling can be ferromagnetic which would make it harder to orient the magnetic
electrodes antiparallel. This gives a physical explanation why for certain junctions the TMR
decreases significantly with increasing bias [18,19].

From eq. (7) it is also possible to derive an expression for the TMR,

TMR =
RAFM −RFM

RAFM/FM
=

2η
1± η

, (8)

where η = (∂V ∆I)/(∂V I0). As long as transport is ballistic, the TMR depends on quantum-
interference effects since ∆I from eq. (7) enters in eq. (8). We believe that the changes
observed recently in the TMR on varying the thickness of one of the ferromagnets may possibly
be attributed to such size-quantization effects (compare with ∆j in fig. 1) [14]. In the spin
diffusive regime and under the limiting conditions of a large barrier, i.e. ψLR ≈ 0, we may use
the WKB theory to approximate ∆I in eq. (7), which contains a product of transmission and
reflection terms, and I0 which, when taken only to the leading order, is equivalent to the usual
Landauer formula. If the bias then tends to zero, eq. (8) will lead to TMR ≈ 2PLPR as given by
Julliere [20]. The values PL(R) = µ0h

L(R)
0 /(2εL(R)

F ) are the Pauli results for the polarization in
one- or quasi–one-dimensional systems, hL(R)

0 = 〈SL(R)〉JρL(R)/(2µ0) is the Weiss field of the
ferromagnet, and µ0 the Bohr magneton. For finite bias the WKB result shows a significant
decrease of the TMR with increasing bias. However, to obtain a reasonable agreement with
the experiments [18, 19, 21], the effective barrier height of the MTJ ought to be much lower
than that obtained from Simmon’s theory of tunnelling [18]. This is in correspondence with
calculations on the tunnel current that take into account the disorder in the insulator [16].
The details of our analysis shall be presented elsewhere.

Finally, we would like to address in brief the temperature dependence of the NEXI and
the TMR. Besides the broadening of the Fermi distributions n

L(R)
F , both quantities depend

strongly on the thermal fluctuations in the magnetization. For temperatures well below the
Curie point of both ferromagnets we may use the spin-wave approximation from the Heisenberg
model for the localized moments such that 〈Sz

L(R)〉 = SL(R) − N−1
L(R)

∑
q n

L(R)
q , n

L(R)
q are

the numbers of excited spin-waves, and NL(R) = ν lL(R)ρL(R) the number of spins. Within
this approximation the temperature decrease of the NEXI and the TMR has a leading-order
term proportional to T 3 in close agreement with experiments [22]. In addition, this effect is
enhanced as spin-dependent scattering increases also as T 3 which follows from the expression
for τs. It has to be pointed out, however, that for ferromagnets of less then ten monolayers
the Curie temperature decreases almost exponentially as the thickness is reduced [15].

In conclusion, we calculated the difference between the currents in the ferromagnetic and
antiferromagnetic states of the system in a perturbative treatment of the s-d interaction. This
led to an expression for the tunnel current that depends on the magnetization of the layers
as 〈SL · SR〉 in correspondence with the NEXI. Since the NEXI-induced voltage-dependent
biasing fields were shown to affect the current in the MTJ strongly, TMR and NEXI can be
regarded as interdependent. It would, therefore, improve the understanding on the nature of
the TMR if one could always provide information on the biasing conditions and geometry of
the MTJs. In addition, our treatment allowed to deal with the temperature dependence of the
MTJ in a straightforward manner. For a more detailed comparison with experiments, we plan
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to include in our approach the important effects of impurity and magnon assisted tunnelling,
interface roughness, and proper treatment of the band structure, as has been pointed out by
various groups [22–25].
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