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Previous research on how people judge the relation between continuous variables
has indicated that judgments of scatterplots are curvilinearly related to Pearson’s
correlation coefficient. In this article, we argue that because Pearson’s correlation
is composed of three distinct components (slope, error variance, and variance of
X) it is better to look at judgments as a function of these components rather than
as a function of Pearson’s correlation. These three components of Pearson’s cor-
relation and presentation format (graphical and tabular) were manipulated factorially
in three experiments. The first two experiments used naive subjects, and the third
experiment used expert subjects. The major conclusions were (a) scatterplots with
the same value of Pearson’s correlation are judged to possess different degrees of
relation if the correlations are based on different combinations of the three com-
ponents; {b) with Pearson’s correlation held constant, the error variance is the most
important component; and (¢) graphical formats lead to higher judgments of relat-
edness than do tabular formats, with this effect being larger for naive than for expert
observers. It was also concluded that attempts to determine the psychophysical
function between Pearson’s correlation and judgments of relatedness are of ques-
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tionable value,

Although judgments of covariation between
dichotomous variables have been studied ex-
tensively (see Arkes & Harkness, 1983, for a
review), much less attention has been directed
toward judgments of covariation between con-
tinuous variables. Central to understanding
how judgments of the relation between vari-
ables are made is the determination of the psy-
chophysical function between measurable
characteristics of the relation and human
Judgments of it. Two studies have addressed
this question by seeking to determine the psy-
chophysical function between Pearson’s cor-
relations and subjects’ judgments of covaria-
tion (Cleveland, Diaconis, & McGill, 1982;
Jennings, Amabile, & Ross, 1982), and both
found judgments to be a positively accelerated
function of Pearson’s correlation. Jennings et
al.’s data were fit well by the function 1 — (1 —
r?)!, and, although this function did not fit the
data obtained by Cleveland et al. quite as well,
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the fit was still reasonably good. Thus, although
the precise mathematical form of the psycho-
physical function may be in doubt, the general
shape of the function appears to be clear.
Despite this initial success in finding a func-
tion of Pearson’s correlation that fits human
judgments reasonably well, it is probable that
some aspects of the judgment process are
missed when the relation between the variables
is summarized by Pearson’s correlation, Spe-
cificaily, because Pearson’s correlation is itself
based on the three components of a linear re-
lation between variables (slope, the variance
of X and error variance as explained below),
some information about the individual effects
of these components may not be contained in
the function relating values of Pearson’s cor-
relation to human judgments. The problem of
analyzing judgments of covariation in terms
of these three components is similar to the
problem of analyzing judgments of coldness
in terms of the two components of heat loss
(air temperature and wind velocity) in that in
both cases there are underlying components
and a commonly accepted method for com-
bining them: Pearson’s correlation in the for-
mer case and the wind-chill factor in the latter.
Naturally, if one were interested in judgments
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of coldness, one would look at these judgments
as a joint function of air temperature and wind
velocity and not only as a function of the wind-
chill factor.

If a variable Y is linearty related 1o a variable
X, then the relation between Y and X can be
represented as Y = 5.X + ¢, where b is the slope
and ¢ is a random variable with a mean of
zero. The variance of Y, as well as the Pearson’s
correlation between X and Y (r), is determined
from the slope (b), the variance of X(S,?) and
the error variance (S,2): The variance of Y is
°S* + S.% Pearson’s correlation squared is
the variance explained by X(5%S,?) divided by
the variance of Y. This latter expression, which
is shown as Equation 1, illustrates how Pear-
son’s correlation is made up of the components
of slope, error variance, and variance of X:

r’ = PSS + SH). (1)

In order for judgments of covariation to be
a monotonic function of Pearson’s correlation,
these judgments must be the same for all data
having the same value of Pearson’s correlation
regardless of the values of the individual com-
ponents. It is not necessarily the case, however,
that people’s judgments of scatterplots with the
same Pearson’s correlation would be the same.
For example, values of slope, error variance,
and variance of X of 2, 1,000, and 400 lead to
a Pearson’s correlation of .78 as do values of
4, 4,000, and 100. It is an empirical question
as to whether judgments of these two relations
would be equal. If they are not, then one could
find a set of two combinations of the three
components for which the combination that
results in higher judgments has the lower Pear-
son’s correlation simply by changing one of
the three components of the set with the higher
judged relation very slightly in the direction
that would lower Pearson’s corr¢lation.

Although, to our knowledge, no one has
manipulated the components of Pearson’s
correlation in a covariation assessment para-
digm, research on single-cue and multiple-cue
probability learning has been concerned with
the components of slope and error variance.'
For example, Brehmer and Lindberg (1970)
found that increasing the error variance while
holding slope and variance of X constant had
a detrimental effect on subjects’ learning, Al-
though this study was subsequently criticized
by Brehmer (1973) for having confounded er-
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ror variance with Pearson’s correlation, we do
not believe this criticism is valid. Just as it
would not make sense to criticize a study find-
ing that judgments of cold decrease as tem-
perature decreases for confounding tempera-
ture and wind chill, it does not make sense to
criticize Brehmer and Lindberg’s study for
confounding error variance and Pearson’s cor-
relation. Pearson’s correlation is not a variable
of the same class as error variance, but rather
a conglomeration of error variance, slope, and
variance of X,

Two studies have compared peoplc’s ability
to learn relations having the same value of
Pearson’s correlation but differing in slope and
error variance. Uhl (1966) found that changing
either error variance or slope did not affect
learning rate as long as there was a change in
the other variable sufficient to maintain Pear-
son's correlation at a constant level. Contrary
results were obtained in a study by Eade (1967)
in which a combination of high error variance
and high slope led to poorer performance than
did a combination of low error variance and
low slope even though Pearson’s correlation
was the same in both instances. One possible
reason for the discrepancy between the two
studies is that Eade used a wider range of slopes
and error variances and found the effect only
for the most extreme combinations. Thus,
there is evidence that at least in some situa-
tions, performance cannot be predicted from
the value of Pearson’s correlation as well as it
can be predicted from the underlying com-
ponents of Pearson’s correlation.

The major purpose of the present research
was to investigate the effect of the three com-
ponents of Pearson’s correlation on subjects’
judgments of covariation. In order to compare
the way in which these components affect sub-
jects’ judgments with the way they are com-
bined in the computation of Pearson’s corre-

! In single-cue probability learning, subjects are given a
series of trials in which they are presented with a value of
X and asked to predict the value of Y. After responding,
they are shown the actual value of Y. Stimuli are con-
structed so that the values of Y are not perfectly predictable
from X. Most of the research done with this paradigm has
been concerned with the effect of the degree and type of
relation between X and Y on learning (see Naylor & Dom-
ine, 1981, for a review), Multiple-cue probability learning
tasks differ from single-cue tasks only in that Y is to be
predicted from several variables rather than just one,
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lation, we included more than one combina-
tion of these components for a given value of
Pearson’s correlation.

‘We were also interested in the effect of the
format of presentation (graphical vs, tabular)
and how it might interact with the various
components of relatedness. Although both
graphical formats (Cleveland et al., 1982; Er-
lick & Mills, 1967) and tabular formats (Jen-
nings et al., 1982) have been employed in
studies of judgments of relatedness, they have
never been compared directly.

Experiment 1

Method

Subjects. Thirty-nine undergraduate psychology stu-
dents participated in this study for course credit.

Materials. The stimulus materials were packets of either
40 tables of data for X and Y variables or 40 graphs showing
scatterplots of the same data. Each table contained nine
X-Y number pairs presented in ascending order on the X
variate; each graph displayed the same nine data points as
the corresponding table. No numerical values were pre-
sented on the graphs; the X and ¥ axes were unlabeled and
were simply anchored fow and high. Below each table or
graph was a point rating scale with tics at 10-point intervals
and numeric anchors at 0 and 100. .

The data portrayed in the various tables or graphs dif-
fered on three variables: slope, with a value of two or four;
error variance, with a value of 1,000 or 4,000; and the
variance of X, with a value of 100 or 400. These six values
resulted in the eight possible combinations shown in Table
1. Correlations of .53 and .78 were each produced by three
combinations of the variables. One combination produced
a correlation of .30, and one produced a correlation of
.93. Five different sets of these eight combinations were
used. Thus, there was a total of 40 stimulus sets. Note that
the differences between the levels of these factors are in
some sense equivalent because changes in the level of any
one factor produces equivalent changes in r.

An example of the tabular and graphical modes of pre-
sentation is shown in Figure 1. The slope is 4, the errar
variance is 4,000, and the variance of X is 400.

The nine values of X for each data set were generated
as follows. First, the fifth highest X was set equal to 0.
Then, four displacements from 0 were generated by adding
a random component (rectangularly distributed from —.1
to .1) to the expected normal score for the serial position
in question. These displacements constituted the four
highest values of X; the arithmetic inverses of these dis-
placements constituted the lowest four numbers, Therefore,
the X values were symmetrically distributed. Finally, 50
was added to each value of X, and these values were rescaled
s0 that they had the desired variance (100 or 400, depending
on the condition). The 10 values of Y were computed by
multiplying each value of (X — 50) by the desired slope (2
or 4), adding an error component, and then adding 50.
The error component for the lowest value of X was the
same as 1hat for the highest value; the value for the second
highest was the same as that for the second lowest, and so
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Table 1
Correlations Contained in the Stimulus Data Sets
Slope
Low (2) High (4)
Variance LEV HEV LEV HEV

of X (1,000)  (4,000) (10000  {4,000)
Low (100) 53 30 78 53
High {(400) 18 53 .93 .78

Note. LEV = low error variance; HEV = high error vari-
ance.

forth. This pattern was necessary in order to keep the error
components from changing the slope. The error compo-
nents had a mean of 0 and were equal to the values of the
expected normal scores for five numbers scaled to have
the desired variance {1,000 or 4,000).

Procedure.  Subjects were randomly assigned 1o either
the graphical or tabular format condition and were tested
individually or in small groups of from two to six. The
same randomly determined order of stimulus presentation
was used for all subjects. Packets were distributed, and
subjects read their instructions from the packet’s cover sheet
as the experimenter read these same instructions out loud:

This is an experiment to find out how people such as
you detect and estimate the relationship between two
variables, X and Y, in a table or in a scatterplot. You
will measure relationships on a scale of 0 to 100. Zero
means no relationship and 100 means a perfect linear
relationship, Rate each table or scatterplot according to
your subjective assessment of the relationship. Please
mark an “X” directly on the scale to indicate your as-
sessment. There is no right answer. If you have any ques-
tions, feel free to ask the experimenier. Please work
carefully and rapidly, 1aking no more than | minute per
problem.

Any questions from subjects about how one estimates
a relation or what constitutes a relation were answered in
vague terms by the experimenter to avoid emphasizing
any of the three components 1o the subjects.

Results

The mean judgments of relatedness as a
function of siope, error variance, and the vari-
ance of X are presented in Table 2. The main
effect of each of these factors reveals whether
or not it affected subjects’ estimates.

An unweighted means analysis of variance
was performed. Significant main effects of er-
ror variance and variance of X were obtained,
Fs(1, 37) = 31.98 and 16.17, ps < .001. Sub-
jects judged the relations to be stronger when
error variance was low (A = 22.1) than when
it was high (M = 16.9). Subjects also judged
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Figure 1. An example of the graphical and tabular methods of presentation. (The slope is 4; the error variance

is 4,000; the variance of X is 400; and r is .78.)

relations to be stronger when variance of X
was high (M = 21.0) than when variance of X
was low (M = 17.9), In addition, subjects were
much more sensitive to differences in variance
of X when error variance was low than when
error variance was high, (1, 37) =751, p =
.009. Interestingly, there was no main effect of
slope, F(1,37) = 1.12, p = .297.

Overall, subjects judged the degree of relat-
edness to be higher in the graphical format
than in the tabular format, Ms = 24.3 and
14.7 respectively, F(1, 37) = 23.87, p < .001.
In general, the effects of the three variables

Table 2
Mean Judgments of the Relation Between
X and Y, Experiment 1

Slope

Data type

and Low High
variance

of X LEV HEV LEV HEY
Graphical

Low 222 17.0 252 20.3

High 324 23.6 313 222
Tabular

Low 14.4 14.0 16.6 13.6

High 16.0 11.8 18.4 12.6

Note. LEV = low error variance; HEV = high error vari-
ance.

were stronger in the graphical than in the tab-
ular format. There was a significant Format X
Variance of X interaction, F(1, 37) = 15.77,
p < .001 and some hint of a Format X Error
variance interaction, F(1, 37) = 3.85, p = 057.
Finally, there was a significant Format X
Slope X Variance of X interaction reflecting
the fact that the Slope X Variance of X inter-
action was bigger in the graphical format than
in the tabular format condition, F(1, 37) =
5.97, p= .019. No other effects approached
significance.

The major purpose of examining subjects’
sensitivity to slope, error variance, and vari-
ance of X was to see if people are affected by
these components in the same way as is Pear-
son’s correlation coefficient. Mean judgments
as a function of Pearson’s correlation are
shown in Figure 2. The three plus and/or mi-
nus signs associated with each point indicate
the levels of slope, error variance, and variance
of X, respectively, with plus signs indicating
that the value is associated with a higher cor-
relation and minus signs indicating that the
value is associated with a lower carrelation.
Therefore, high slope, low error variance, and

" high variance of X is represented as (+++});

high slope, low error variance, and low vari-
ance of X is represented as {(++-); high slope,
high error variance, and high variance of X is
represented as (+—+) and so forth. It can be
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Figure 2. Mean judgments of the relation between X and Y as a function of presentation format (Graphical
{G]) or Tabular [T1) and slope, error variance, and variance of X of the stimulus data, Experiment 1. (Note:
The three plus and/or minus signs associated with each point represent the levels of siope, error, and variance,
respectively. Plus signs indicate that the value is associated with a higher correlation Thigh slope, low error,
or high variance], and minus signs indicate the reverse [low slope, high error, or low variance].)

seen in Figure 2 that judgments of scatterplots
possessing the same Pearson’s correlations
were judged to have different degrees of relat-
edness.

For the graphical format condition, judg-
ments of relatedness in the low slope, low error
variance, high variance of X condition were
quite a bit higher than judgments in either the
high slope, low error variance, low variance of
X condition or the high slope, high error vari-
ance, high variance of X condition even though
Pearson’s correlation was .78 in all three cases.
Using the Newman-Keuls criterion in com-
paring the means of these three conditions (a
separate error term was computed for each
comparison), significant differences (p < .01)
were found between the first and last of these
conditions and between the first and the second
of these conditions. The difference between the
second and the third conditions was not sig-
nificant (p = .18).

The pattern obtained with the tabular for-
mat was similar to that found with the graph-
ical format. Judgments in the high slope, low
error variance, low variance of X condition
were significantly higher than in the high slope,

high error variance, high variance of X con-
dition (p < .01). The difference between the
low slope, low error variance, high variance of
X condition and the high slope, high error
variance, high variance of X condition did not
quite reach conventional levels of significance
(p = .052).

Discussion

Two clear-cut conclusions can be drawn
from the present data. First, people judge scat-
terplots portraying the same degree of relation
as defined by Pearson’s correlation differently
if the component parts of the correlation are
different. It appears that the lower the error
variance, the higher the judgment of the re-
lation even if the slope and/or the variance of
X are reduced so as to maintain the value of
Pearson’s correlation at a constant level. In this
sense, people are influenced more by error
variance than by either slope or variance of X
relative to how these factors influence Pear-
son’s correlation, a result consistent with those
of Eade (1967). We do not consider these ef-
fects to be biases because in no sense does
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Pearson’s correlation represent the ““true”
measure of relation. Second, people perceive
variables to be more highly related if the data
are portrayed in a graphical format than if they
are portrayed in a tabular format.

One intriguing finding was the lack of a sig-
nificant main effect of slope. Because this is a
rather counterintuitive finding and because of
the hazards inherent in accepting the null hy-
pothesis, we decided to attempt to replicate it
before trying to interpret it.

Experiment 2

Method

Forty undergraduate psychology students participated
in this study. Subjects were randomly assigned to either
the graphical or the tabular format conditions, with the
constraint that an equal number of subjects was assigned
to each condition. The stimulus materials and procedure
were exactly the'same as in Experiment 1.

Results

Table 3 presents the mean judgments for all
conditions. There were sizable main effects of
all three factors. Subjects’ judgments were
higher when the slope was high (M = 40.4)
than when the slope was low (M = 34.8), F(1,
38) = 17.74, p < .001. Relations with low error
were judged higher than relations with high
error, Ms = 44.0 and 31.2, respectively, F(1,
38) = 62.59, p < .001. Finally, subjects judged
relations with high variance of X as stronger
than those with low vartance of X, Ms =
41.8 and 33.4, respectively, F(1, 38) = 33.66,
p<.001.

The Error X Variance of X interaction found
in Experiment 1 was replicated in Experiment
2, F(1, 38) = 10.60, p = .002, as was the main
effect of format, F{1, 38) = 5.96, p = .019. A
number of other less interesting interactions
were also significant; Format X Error, {1,
38) = 28.98, p < .001; Format X Variance of
X, F(1, 38) = 22.77, p « .001; Slope X Variance
of X, F(1, 38) = 25.30, p < .01; and Format X
Slope X Variance of X, F(1, 38) = 6.81, p =
.012. The Format X Slope interaction reflects
the fact that subjects were more sensitive to
slope in the graphical format condition. The
Format X Slope X Variance of X interaction
reflects the fact that the Slope X Variance of
X interaction occurred only in the graphical
format condition. The patterns and interpre-
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Table 3
Mean Judgments of the Relation Between
X and Y, Experiment 2

Slope

Data type

and Low High
variance

of X LEV HEV LEV HEV
Graphical

Low 350 20.6 55.2 359

High 60.9 36.2 69.3 41.8
Tabular

Low 31.3 304 30.5 28.1

High 350 28.8 346 27.8

Note. LEV = low error variance; HEV = high error vari-
ance.

tations of the other interactions were much as
they were in Experiment 1. Qther effects were
not significant.

More important, as in Experiment 1, dif-
ferent combinations of components producing
the same Pearson’s correlation were judged to
portray different degrees of relatedness. As can
be seen in Figure 3, this aspect of the results
of Experiment 1 was almost perfectly repli-
cated. The one outstanding difference was that
the absolute level of judged relatedness was
quite a bit higher in Experiment 2 than it was
in Experiment 1.

Significant differences were found in the
graphical format conditions between the judg-
ments from the three combinations that re-
sulted in a Pearson’s correlation of .78. New-
man-Keuls tests revealed that judgments in the
low slope, low error variance, high variance of
X condition were significantly higher (p < .01)
than the judgments in the high slope, high error
variance, high variance of X condition and that
Jjudgments in the high slope, low error variance,
low variance of X condition were significantly
higher than those in the high slope, high error
variance, and high variance of X condition.
The former comparison indicates that error
variance was relatively more important than
slope, whereas the latter comparison indicates
that error variance was relatively more im-
portant than variance of X, The difference be-
tween the low slope, low error variance, high
variance of X condition and the high slope,
low error variance, low variance of X condition
was not significant (p = .18).
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Figure 3. Mean judgments of the relation between X and Y as a function of presentation format (Graphical
[G] or Tabular [T}) and slope, error, and variance of X of the stimulus data, Experiment 2.

Discussion

Slope had a significant effect on subjects’
judgments in Experiment 2, contradicting the
null result in Experiment 1. However, it should
be noted that the effect of slope was in the
same (and expected) direction in both exper-
iments; it simply failed to reach significance
in Experiment 1. Otherwise, the results of Ex-
periment 2 were very similar to those of Ex-
periment 1. In both experiments subjects’
Judgments were higher when the relations had
low error variance even though the Pearson’s
r was unchanged due to changes in slope or
variance of X. Also, graphical presentation
produced larger estimates in general as well as
stronger effects of the three component factors
than did tabular presentation.

These data, therefore, provide a fairly clear
picture of how statistically naive subjects per-
form on covariation detection tasks. Briefly,
people are affected by all three components of
linear retations, but are not influenced by them
in precisely the same way that the Pearson’s r
is. Would statistically sophisticated subjects
show the same pattern as naive subjects, or
would their judgments reflect a Pearsonian
combination? In Experiment 3 we examine
this issue.

Experiment 3
Method

Subjects. Twenty-five PhD or EdD professionals in
psychology, economics, and education volunteered to take
part in this study as part of a statistically expert sample.
Subjects had taken an average of 5.8 statistics courses in
college, with 2.75 of these courses dealing with correlations
{medians of 4 and 2.5, respectively). They considered
themselves to have a better grasp of statistics than 91% of
the general population and 61% of their professional peers.

Procedure. The stimulus materials were exactly the
same as in Experiments | and 2. Subjects were contacted
in person or by phone and asked o participate. The ma-
terials, with cover-page instructions, were then delivered
to those who consented. Subjects completed the materials
in private and returned them to the experimenter’s de-
partmental mailbox or to a neutral third party. As in the
previous experiments, subjects were instructed to give their
subjective assessments of the relations.

Results

Table 4 presents the mean judgments of re-
latedness. Once again, an unweighted means
analysis of variance was performed, and there
were large main effects of the three compo-
nents of correlations. The high and low slope
means were 47.9, and 34.3, F(1, 23) = 52.88,
p < .001. The high and low error variance
means were 30.3 and 51.9, F(1, 23) = 158.58,
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Table 4
Mean Judgments of the Relarion Between
X and Y, Experiment 3

Slope
Data type
and Low High
variance
of X LEV HEV LEV HEV
Graphical
Low 34.8 10.7 554 271
High 58.9 327 72.5
Tabular
Low 37.1 24.2 44.1 28.2
High 48.7 275 63.8 43.8

Nore. LEV = low error variance; HEV = high error vari-
ance.

p < .001. The high and low variance of X
means were 49.5 and 32.7, F(1, 23) = 73.59,
r < .001. However, there was no main effect
of format (F < 1). The following interactions
were all significant: Format X Error variance,
F(1, 23) = 5.79, p < .05; Format X Variance
of X, F(1, 23) = 4,72, p < ,040; and Format X
Slope X Variance of X, F(1, 23) = 15.31,p <
2001, The first two of these interactions fol-
lowed the same patterns as in Experiments |
and 2, and reflected the fact that both error

647

variance and variance of X had larger effects
with the graphical presentation. The form of
this last interaction was also the same as in the
first two experiments. Basically, an increase in
slope had a smaller effect in the high variance
of X condition than in low variance of X con-
dition for the graphical format, whereas the
opposite was true for the tabular format. No
other effects were significant.

As can be seen in Figure 4, the major result
of Experiments 1 and 2 was replicated: Dif-
ferent combinations of components producing
the same Pearson’s correlation were judged to
have different degrees of relatedness. Moreover,
several significant differences were found when
comparing those combinations yielding a
Pearson’s correlation of .53 as well as thosc
yielding a correlation of .78.

Consider first the combinations yielding
correlations of .78. As in Experiments 1 and
2, the judgments in the graphical condition
with low slope, low error variance, high vari-
ance of X were significantly higher than judg-
ments in the high slope, high error variance,
high variance of X condition (p < .05).

Those combinations resulting in a Pearson’s
correlation of .53 also yielded significantly dif-
ferent judgments of relatedness. In the tabular
format condition, the low slope, low error
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Figure 4. Mean judgments of the relation between X and ¥ as a function of presentation format (Graphical
[G] or Tabular [T]) and slope, error, and variance of X of the stimulus data, Experiment 3.
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variance, low variance of X combination was
judged significantly higher than the low slope,
high error variance, high variance of X com-
bination (p < .01), indicating error variance
to be a more important determinant of per-
ceived covariation than variance of X. The for-
mer combination was also judged higher than
the high slope, high error variance, low vari-
ance of X combination (p = .027), showing
error variance to be more important than
slope.

General Discussion

The major conclusion of these studies is that
different ways of producing the same value of
Pearson’s correlation lead to different judg-
ments of relatedness. Statistical novices and
experts were more influenced by the error
variance than by the variance of X or the slope.
Thus, attempts to determine the psychophys-
ical function relating values of Pearson’s cor-
relation to subjects’ judgments of relatedness
are neglecting relevant information. Because
there are many aspects of the relation between
variables, a mapping of subjects’ judgments
onto one measure such as Pearson’s correlation
can provide, at best, an oversimplified per-
spective on how people make judgments of re-
latedness.

Indeed, criteria other than minimizing
squared deviations may be more appropriate
in many situations. For instance, prediction
accuracy may be defined as the proportion of
times one is correct. With this as a criterion,
the most important component is error vari-
ance. Even when the correlation between X
and Y is low (e.g., the slope is low), the pre-
diction of Y may be very accurate if the error
variance is low. Conversely, a higher correlation
may also have higher error variance (and a very
high slope). From the perspective of a person
operating on the environment, the most im-
portant feature of any covariation may be the
accuracy with which Y is predicted, in which
case the former relation is better (stronger) than
the latter. Thus, as stated earlier, we do not
consider the fact that subjects’ judgments di-
verge from Pearson’s r to represent a bias.

The conclusion that people are more influ-
enced by error variance than is the Pearson
procedure is consistent with previous findings
on single-cue probability learning and on co-
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variation detection. As discussed previously,
Eade (1967) found learning was better with a
low slope and a low error variance than with
a high slope and a high error variance even
though Pearson’s r was the same. The study
by Cleveland et al. (1982) was concerned not
only with determining the psychophysical
function between judgments and Pearson’s
correlations but also with the effect of the size
of the cloud of points present in the scatterplot.
Two scatterplots were used, the axes of which
were scaled differently so that the cloud of
points in one scatterplot occupied a much
smaller portion of the figure than did the points
in the other scatterplot. Subjects judged the
degree of relatedness to be greater with the
smaller cloud of points even though Pearson’s
correlation was the same for both. If one makes
the plausible assumption that subjects based
their judgments on the plot of the points with-
out regard to the numerical labels on the axes,
then the plot with the larger cloud of points
had a larger variance of X and a larger error
variance than did the other plot. The higher
judged relatedness of the small cloud of points
could thus be due to subjects’ stronger weight-
ing of error variance than of variance of X.

Other researchers have concluded that judg-
ments are more closely related to some func-
tion of (1 —~ ) than to Pearson’s r (e.g., Jen-
nings et al., 1982). This, of course, is simply
the formula for the error variance with stan-
dardized variables. )

It could be argued that subjects’ judgments
of relatedness differ for scatterplots with the
same value of Pearson’s correlation because
subjects perceive the components inaccurately
rather than because they combine these com-
ponents in a different manner than they are
combined in the computation of Pearson’s
correlation. Although we acknowledge this
possibility, we suspect that subjects perceive
scatterplots as integral rather than as separable
stimuli and therefore do not perceive slope,
error variance, and variance of X as compo-
nents at all. The application of Garner’s (1974)
procedures for distinguishing integral from
separable stimuli would seem to be a good way
for future research to address this issue.

Our finding that subjects judge the relation
between variables to be higher when the data
are presented in a graphical format than when
they are presented in a tabular format has im-
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plications for one of the main conclusions
drawn by Jennings et al. (1982). These authors
were interested in determining the accuracy
with which subjects can judge the degree of
relation between real-world variables. After
determining the psychophysical function re-
lating degree of correlation to subjects’ ratings,
Jennings et al. were able to “translate” subjects’
judgments of the degree of relation between
real-world variables into Pearson correlations.
Their key finding was that subjects have a ten-
dency to overestimate the degree of relation.
For example, the average judged relation be-
tween self-ratings of intellectualism and self-
ratings of ambitiousness was 50 on a 100-point
scale, The empirically determined value of
Pearson’s correlation for these two variables is
.40. The rating of 50 can be translated into a
correlation by determining how high a corre-
lation must be present in hypothetical data in
order for subjects to give a rating of 50. As it
turns out, it took hypothetical data with a
Pearson’s correlation over .90 for subjects to
judge the degree of relatedness to be 50. Thus,
subjects would appear to overestimate the de-
gree of relation. However, this conclusion may
not be warranted. When Jennings ¢t al. pre-
sented their hypothetical data to subjects, they
were presented in a tabular format, at least in
some instances. Our data indicate that pre-
senting data in graphical format would prob-
ably have led to higher ratings; therefore, judg-
ments of the relation between real-world vari-
ables would have been translated into lower
correlations. For example, it may not have re-
quired a correlaticn as high as .90 for subjects
to judge the degree of relatedness to be 50 if
the data had been presented graphically. This
is not to say that presenting the data in graph-
ical form would necessarily have led to a more
accurate translation procedure, only that Jen-
nings et al.’s conclusions may have been de-
pendent on their format of data presentation.

Even though our expert sample was most
affected by error variance, just as the novices
were, there was some indication that statistical
experts do judge covariation differently. Spe-
cifically, the experts saw stronger relations in
the tabular data than did the novices. However,
the various interactions of format and com-
ponents of the relation were stmilar for the dif-
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ferent subject samples, suggesting that the basic
covariation detection processes are the same
for these two populations.

In sum, our data suggest that people can
detect covariations between variables but that
the components do not influence covariation
judgments in precisely the same manner as
they influence the value of Pearson’s r. We do
not wish to suggest that people perceive the
three components of linear relations indepen-
dently and then combine them into an overall
judgment. Rather, we have been concerned
with the functional relation between these
components and human judgments.
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