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Abstract

This paper examines the liquidity of corporate bonds and its asset-pricing implications
using a novel measure of illiquidity based on the magnitude of transitory price move-
ments. Using transaction-level data for a broad cross-section of corporate bonds from
2003 through 2007, we find the illiquidity in corporate bonds to be significant, sub-
stantially greater than what can be explained by bid-ask bounce, and closely linked to
liquidity-related bond characteristics. More importantly, we find a strong commonality
in the time variation of bond illiquidity, which rises sharply during market crises and
reaches an all-time high during the recent sub-prime mortgage crisis. Monthly changes
in this aggregate bond illiquidity are strongly related to changes in the CBOE VIX Index
and lagged stock market returns. Examining its relation with bond pricing, we find that
our measure of illiquidity explains the cross-sectional variation in average bond yield
spreads with large economic significance.
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1 Introduction

The liquidity of the corporate bond market has been of interest for researchers, practitioners

and policy makers. Many studies have attributed deviations in corporate bond prices from

their “theoretical values” to the influence of illiquidity in the market.1 Yet, our understanding

of how to quantify illiquidity remains limited. Without a credible measure of illiquidity, it is

difficult to have a direct and serious examination of the asset-pricing influence of illiquidity

and its implications on market efficiency.

Several measures of illiquidity have been considered in the literature for corporate bonds.

A simple measure is the bid-ask spread, which is analyzed in detail by Edwards, Harris, and

Piwowar (2007).2 Although the bid-ask spread is a direct and potentially important indicator

of illiquidity, it does not fully capture many important aspects of liquidity such as market

depth and resilience. Alternatively, relying on theoretical pricing models to gauge the impact

of illiquidity allows for direct estimation of its influence on prices, but suffers from potential

mis-specifications of the pricing model.

In this paper, we rely on a salient feature of illiquidity to measure its significance. It has

been well recognized that the lack of liquidity in an asset gives rise to transitory components

in its prices (see, e.g., Grossman and Miller (1988) and Huang and Wang (2007)). The

magnitude of such transitory price movements reflects the degree of illiquidity in the market.

Since transitory price movements lead to negatively serially correlated price changes, the

negative of the autocovariance in price changes, which we denote by γ, provides a simple, yet

robust measure of illiquidity. In the simplest case when the transitory price movements arise

purely from bid-ask bounce, as considered by Roll (1984), 2
√

γ equals the bid-ask spread.

But in more general cases, γ captures the broader impact of illiquidity on prices, above and

beyond the effect of bid-ask spread. Moreover, it does so without relying on specific bond

pricing models.

Indeed, our results show that the lack of liquidity in the corporate bond market is sub-

stantial, significantly more severe than what can be explained by bid-ask bounce, and closely

related to bond characteristics that are known to be linked to liquidity. More importantly,

1For example, Huang and Huang (2003) find that yield spreads for corporate bonds are too high to be
explained by credit risk and question the economic content of the unexplained portion of yield spreads (see
also Colin-Dufresne, Goldstein, and Martin (2001) and Longstaff, Mithal, and Neis (2005)). Bao and Pan
(2008) document a significant amount of transitory excess volatility in corporate bond returns and attribute
this excess volatility to the illiquidity of corporate bonds.

2See also Bessembinder, Maxwell, and Venkataraman (2006) and Goldstein, Hotchkiss, and Sirri (2007).
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taking advantage of this novel measure of illiquidity, we are able to analyze the time variation

of the aggregate illiquidity in corporate bonds and its asset-pricing implications. The main

results of our paper can be further detailed as follows.

First, we uncover a level of illiquidity in corporate bonds that is important both econom-

ically and statistically. Using TRACE, a transaction-level dataset, we estimate γ for a broad

cross-section of the most liquid corporate bonds in the U.S. market. Our results show that,

using trade-by-trade data, the median estimate of γ is 0.3598, and the mean estimate is 0.5814

with a robust t-stat of 22.23; using daily data, the median γ is 0.5533, and the mean γ is

0.9080 with a robust t-stat of 29.13. To judge the economic significance of such magnitudes,

we can use the quoted bid-ask spreads to calculate a bid-ask implied γ. For the same sample

of bonds and for the same sample period, we find that the median and mean γ implied by

the quoted bid-ask spreads are respectively 0.0302 and 0.0458, which are tiny fractions of our

estimated γ. An alternative comparison is to use the Roll’s model to calculate the γ-implied

bid-ask spread, which is 2
√

γ, and compare it with the quoted bid-ask spread.3 Using our

median estimates of γ, the γ-implied bid-ask spread is $1.1996 using trade-by-trade data and

$1.4876 using daily data, significantly larger than the median quoted bid-ask spread of $0.3160

or the estimated bid-ask spread reported by Edwards, Harris, and Piwowar (2007) (see Section

5 for more details). Such comparisons clearly indicate that our illiquidity measure γ captures

the price impact of illiquidity above and beyond the effect of simple bid-ask bounce.

Second, we establish a robust connection between our illiquidity measure γ and bond

characteristics known to be relevant for liquidity. Regressing our illiquidity measure γ on

a spectrum of bond characteristics, we find a strong positive relation between γ and bond

age — a variable widely used in the fixed-income market as a proxy of illiquidity; and a

strong negative relation between γ and the size of the bond issuance — another variable

potentially linked to bond liquidity. Moreover, we find that the measure of illiquidity captured

by γ is related to but goes beyond the information contained in the quoted bid-ask spreads.

Specifically, adding the bid-ask implied γ as an additional explanatory variable, we find that it

has a positive cross-sectional relation with our γ measure, but it does not alter the established

cross-sectional relation between γ and bond characteristics, including age and issuance size.

We also take advantage of the trading variables included in our transaction-level data, and

3Roll’s model assumes that directions of trades are serially independent. For a given bid-ask spread, positive
serial correlation in trade directions, which could be the case when liquidity is lacking and traders break up
their trades, tends to increase the implied bid-ask spreads for a given γ. This could potentially increase the
magnitude of the γ implied bid-ask spreads, further deepening its difference from the quoted bid-ask spreads.
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find that bonds with smaller average trade sizes typically have higher illiquidity measure γ.

Controlling for other bond characteristics, we also find that bonds with credit default swaps

traded on their issuers tend to have lower illiquidity measure γ.

Third, our illiquidity measure allows us to focus on the systematic component of bond

illiquidity, examining its variation over time and its connection with broader financial markets.

Over our sample period, there is a trend of decreasing γ, indicating an overall improvement

of liquidity in the corporate bond market. Against this backdrop of an overall time trend,

however, we find substantial monthly movements in the aggregate measure of illiquidity. In

particular, the aggregate γ rises sharply during market crises, including the periods that

eventually lead to the downgrade of Ford and GM bonds to junk status, and reaches an

all-time high during the sub-prime mortgage crisis that starts in August 2007.

Moreover, we find that the common illiquidity component uncovered by our analysis is

closely connected with the changing conditions of broader financial markets. Specifically,

regressing changes in aggregate γ on changes in VIX, a variable typically known as the market

“fear gauge,” we find a positive and significant relation. Changes in aggregate γ are also found

to be positively related to changes in the aggregate default spread, and negatively related to the

past-month performance of the aggregate stock and bond markets. When all these variables

are used together, however, we find that that only changes in VIX and lagged aggregate stock

returns remain significant in explaining the monthly changes in aggregate γ. In contrast, the

default spread and lagged aggregate bond returns — two variables that are measured from

the credit market and are expected to be more closely related to our γ measure — fail to

remain significant. Moreover, there is no significant relation between changes in our aggregate

γ and changes in the volatility of the aggregate bond returns. The fact that the VIX index,

measured from index options, is the most important variable in explaining changes in aggregate

illiquidity of corporate bonds is rather intriguing. Indeed, from an aggregate perspective, this

implies that the sources of our estimated bond market illiquidity are not contained just in the

bond market. This raises the possibility of illiquidity being an additional source of systemic

risk, as examined by Chordia, Roll, and Subrahmanyam (2000) and Pastor and Stambaugh

(2003) for the equity market.

Fourth, we examine the asset-pricing implications of bond illiquidity. We find that our

illiquidity measure γ explains the cross-sectional variation of average bond yield spreads with

large economic significance. Controlling for bond rating categories, we perform monthly cross-

sectional regressions of bond yield spreads on bond γ. We find a coefficient of 0.4220 with a
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t-stat of 3.95 using Fama and MacBeth (1973) standard errors. Given that the cross-sectional

standard deviation of γ is 0.9943, our result implies that for two bonds in the same rating

category, a two standard deviation difference in their γ leads to a difference in their yield

spreads as large as 84 bps. This is comparable to the difference in yield spreads between Baa

and Aaa/Aa bonds, which is over 77 bps in our sample. In contrast, quoted bid-ask spreads

have rather limited, if any, economic significance in explaining the cross-sectional average yield

spreads. Moreover, the economic significance of our illiquidity measure remains robust in its

magnitude and statistical significance after we control for a spectrum of variables related to

the bond’s fundamental information as well as bond characteristics. In particular, liquidity

related variables such as bond age, issuance size, quoted bid-ask spread, and average trade

size do not change this result in a significant way.

In addition to the main results summarized above, we provide detailed analyses of our

illiquidity measure to further shed light on the nature of illiquidity in corporate bonds. We

explore the dynamic property of illiquidity by estimating the magnitude of price reversals

after skipping one or several trades. We find significant price reversals even after skipping a

trade, indicating a mean-reversion in price changes that lasts for more than one trade.4 We

also find that negative price changes, likely caused by excess selling pressure, are followed by

stronger reversals than positive price changes, resulting in an asymmetry in γ.5 We find that

price changes associated with large trades exhibit weaker reversals than those associated with

small trades, and this effect is robust after controlling for the overall bond liquidity. Although

this result suggests a strong link between liquidity and trade sizes, it is, however, difficult to

interpret this negative relation between γ and trade sizes simply as more liquidity for larger

trades, since both trade sizes and prices are endogenous.

Our paper is related to the growing literature on the impact of liquidity on corporate bond

yields. Using illiquidity proxies that include quoted bid-ask spreads and the percentage of

zero returns, Chen, Lesmond, and Wei (2007) find that more illiquid bonds earn higher yield

spreads. Using nine liquidity proxies including issuance size, age, missing prices, and yield

volatility, Houweling, Mentink, and Vorst (2003) reach similar conclusions for euro corporate

bonds. de Jong and Driessen (2005) find that systematic liquidity risk factors for the Treasury

bond and equity markets are priced in corporate bonds, and Downing, Underwood, and Xing

4This is consistent with the fact that our γ measured at the daily level, capturing this persistent transaction-
level mean-reversion cumulatively, yields a higher magnitude than its counterpart at the transaction level.

5Such an asymmetry was described as a characteristic of the impact of illiquidity on prices by Huang and
Wang (2007). Our results provide an interesting empirical test of this proposition.
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(2005) address a similar question. Using a proprietary dataset on institutional holdings of cor-

porate bonds, Nashikkar, Mahanti, Subrahmanyam, Chacko, and Mallik (2008) and Mahanti,

Nashikkar, and Subrahmanyam (2008) propose a measure of latent liquidity and examine its

connection with the pricing of corporate bonds and credit default swaps.

We contribute to this growing body of literature by proposing a measure of illiquidity that

is theoretically motivated and empirically more direct. Moreover, the degree of illiquidity

captured by our illiquidity measure is significantly higher in magnitude than that implied

by the quoted or estimated bid-ask spreads. We are able to establish a connection between

our measure of illiquidity and the commonly used liquidity proxies such as age, issuance

and trading activities. But more importantly, our illiquidity measure contains information

above and beyond these proxies in explaining, for example, the average bond yield spreads

across a broad cross-section of bonds. Finally, the close connection between our aggregate

illiquidity measure and overall market conditions is a clear indication that our measure indeed

extracts useful information about illiquidity from the transaction-level data. We hope that

the properties we uncover in this paper about the illiquidity of corporate bonds can provide

a basis to further analyze its importance to the efficiency of the bond market.

The paper is organized as follows. Section 2 describes the data used in our analysis

and provides summary statistics. The main results of our paper are reported in Section 3,

and Section 4 provides further analyses of our illiquidity measure. Section 5 compares our

illiquidity measure with the effect of bid-ask spreads. Section 6 concludes.

2 Data Description and Summary

The main data set used for this paper is FINRA’s TRACE (Transaction Reporting and Com-

pliance Engine). This data set is a result of recent regulatory initiatives to increase the price

transparency in secondary corporate bond markets. FINRA, formerly the NASD, is responsi-

ble for operating the reporting and dissemination facility for over-the-counter corporate bond

trades. On July 1, 2002, the NASD began Phase I of bond transaction reporting, requiring

that transaction information be disseminated for investment grade securities with an initial

issue size of $1 billion or greater. Phase II, implemented on April 14, 2003, expanded reporting

requirements, bringing the number of bonds to approximately 4,650. Phase III, implemented

completely on February 7, 2005, required reporting on approximately 99% of all public trans-

actions. Trade reports are time-stamped and include information on the clean price and par

value traded, although the par value traded is truncated at $1 million for speculative grade
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bonds and at $5 million for investment grade bonds.

In our study, we drop the early sample period with only Phase I coverage. We also drop

all of the Phase III only bonds. We sacrifice in these two dimensions in order to maintain a

balanced sample of Phase I and II bonds from April 14, 2003 to December 31, 2007. Of course,

new issuances and retired bonds generate some time variation in the cross-section of bonds in

our sample. After cleaning up the data, we also take out the repeated inter-dealer trades by

deleting trades with the same bond, date, time, price, and volume as the previous trade.6 We

further require the bonds in our sample to have frequent enough trading so that the illiquidity

measure can be constructed from the trading data. Specifically, during its existence in the

TRACE data, a bond must trade on at least 75% of its relevant business days in order to

be included in our sample. Finally, to avoid bonds that show up just for several months and

then disappear from TRACE, we require the bonds in our sample to be in existence in the

TRACE data for at least one full year.

Table 1 summarizes our sample, which consists of frequently traded Phase I and II bonds

from April 2003 to December 2007. There are 1,249 bonds in our full sample, although the

total number of bonds do vary from year to year. The increase in the number of bonds from

2003 to 2004 could be a result of how NASD starts its coverage of Phase III bonds, while

the gradual reduction of number of bonds from 2004 through 2007 is a result of matured or

retired bonds.

The bonds in our sample are typically large, with a median issuance size of $700 million,

and the representative bonds in our sample are investment grade, with a median rating of 6,

which translates to Moody’s A2. The average maturity is close to 7 years and the average age

is about 4 years. Over time, we see a gradual reduction in maturity and increase in age. This

can be attributed to our sample selection which excludes bonds issued after February 7, 2005,

the beginning of Phase III.7 Given our selection criteria, the bonds in our sample are more

frequently traded than a typical bond. The average monthly turnover — the bond’s monthly

trading volume as a percentage of its issuance size — is 7.83%, the average number of trades

in a month is 174. The average trade size is $448,000.

In addition to the TRACE data, we use CRSP to obtain stock returns for the market and

6This includes cleaning up withdrawn or corrected trades, dropping trades with special sale conditions or
special prices, and correcting for obvious mis-reported prices.

7We will discuss later the effect, if any, of this sample selection on our results. An alternative treatment
is to include in our sample those newly issued bonds that meet the Phase II criteria, but this is difficult to
implement since the Phase II criteria are not precisely specified by NASD.
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the respective bond issuers. We use FISD to obtain bond-level information such as issue date,

issuance size, coupon rate, and credit rating, as well as to identify callable, convertible and

putable bonds. We use Bloomberg to collect the quoted bid-ask spreads for the bonds in our

sample, from which we have data for 1,212 out of the 1,249 bonds in our sample. We use

Datastream to collect Lehman Bond indices to calculate the default spread and returns on the

aggregate corporate bond market. To calculate yield spreads for individual corporate bonds,

we obtain Treasury bond yields from the Federal Reserve, which publishes constant maturity

Treasury rates for a range of maturities. Finally, we obtain the VIX index from CBOE.

3 Main Results

The main results of our paper center around our proposed measure of illiquidity: its main em-

pirical properties and its asset-pricing implications. Section 3.1 motivates and formalizes our

measure of illiquidity and reports its estimates for individual bonds. Section 3.2 examines the

cross-sectional properties of our illiquidity measure, focusing in particular on its connection

with various bond characteristics. Section 3.3 analyzes the time-series variation of our illiq-

uidity measure with a focus on the commonality of bond illiquidity and its potential relation

with changing market conditions. Finally, Section 3.4 explores the asset-pricing implications

of illiquidity by examining the extent to which our measure of illiquidity can help explain the

cross-sectional variation in corporate bond yield spreads.

3.1 Measure of Illiquidity

In the absence of a theory, a definition of illiquidity and its quantification remain imprecise.

But two properties of illiquidity are clear. First, it arises from market frictions, such as costs

and constraints for trading and capital flows; second, its impact to the market is transitory.8

Our empirical measure of illiquidity is motivated by these two properties.

Let Pt denote the clean price of a bond at time t. We start by assuming that Pt consists

of two components:

Pt = Ft + ut . (1)

The first component Ft is its fundamental value — the price in the absence of frictions,

which follows a random walk; the second component ut comes from the impact of illiquidity,

8In a recent paper, Vayanos and Wang (2008) provide a unified theoretical model for liquidity, which relates
illiquidity with different forms of market frictions. Huang and Wang (2007) consider a model in which trading
costs give rise to illiquidity in the market endogenously and show that it leads to transitory deviations in
prices from fundamentals.
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which is transitory.9 In such a framework, the magnitude of the transitory price component

ut characterizes the level of illiquidity in the market. Our measure of illiquidity is aimed at

extracting the transitory component in the observed price Pt. Specifically, let ΔPt = Pt−Pt−1

be the price change from t − 1 to t. We define the measure of illiquidity γ by

γ = −Cov (ΔPt, ΔPt+1) . (2)

With the assumption that the fundamental component Ft follows a random walk, γ depends

only on the transitory component ut, and it increases with the magnitude of ut.

Several comments are in order before our proceed with our analysis of γ. First, other than

being transitory, we know little about the dynamics of ut. For example, when ut follows an

AR(1) process, we have γ = (1 − ρ)2σ2/(1 + ρ), where σ is the instantaneous volatility of ut,

and ρ is its persistence coefficient.10 In this case, while γ does provide a simple gauge of the

magnitude of ut, it combines various aspects of ut. Second, in terms of measuring illiquidity,

other aspects of ut that are not fully captured by γ may also matter. In other words, γ itself

gives only a partial measure of illiquidity. Third, given the potential richness in the dynamics

of ut, γ will in general depend on the horizon over which we measure price changes. And this

horizon effect is important because γ measured over different horizons may capture different

aspects of ut or illiquidity. For most of our analysis, we will use either trade-by-trade prices

or end of the day prices in estimating γ. Consequently, our γ estimate captures more of the

high frequency components in transitory price movements.

Table 2 summarizes the illiquidity measure γ for the bonds in our sample.11 Focusing first

on Panel A, in which γ is estimated bond-by-bond using either trade-by-trade or daily data,

we see an illiquidity measure of γ that is important both economically and statistically. For

the full sample period from 2003 through 2007, our illiquidity measure γ has a cross-sectional

average of 0.5814 with a robust t-stat of 22.23 when estimated using trade-by-trade data, and

an average of 0.9080 with a robust t-stat of 29.13 using daily data.12 More importantly, the

9Such a separation assumes that the fundamental value Ft carries no time-varying risk premium. This is
a reasonable assumption over short horizons. It is equivalent to assuming that high frequency variations in
expected returns are ultimately related to market frictions — otherwise, arbitrage forces would have driven
them away. To the extent that illiquidity can be viewed a manifestation of these frictions, price movements
giving rise to high frequency variations in expected returns should be included in ut. Admittedly, a more
precise separation of Ft and ut must rely on a pricing theory incorporating frictions or illiquidity. See, for
example, Vayanos and Wang (2008).

10The persistent coefficient ρ is less than 1 given that ut is transitory.
11To be included in our sample, the bond must trade on at least 75% of business days and at least 10

observations of the paired price changes, (ΔPt, ΔPt−1), are required to calculate γ.
12The robust t-stats are calculated using standard errors that are corrected for cross-sectional and time-
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significant mean estimate of γ is not generated by just a few highly illiquid bonds. Using

trade-by-trade data, the cross-sectional median of γ is 0.3598, and 100% of the bonds have a

statistically significant γ (the t-stat of γ greater than or equal to 1.96); using daily data, the

cross-sectional median of γ is 0.5533 and over 99% of the bonds have a statistically significant

γ. Moreover, breaking our full sample by year shows that the illiquidity measure γ is important

and stable across years.

Table 2: Measure of Illiquidity γ = −Cov (Pt − Pt−1, Pt+1 − Pt)

Panel A: Individual Bonds

2003 2004 2005 2006 2007 Full

Trade-by-Trade Data
Mean γ 0.6546 0.6714 0.5717 0.4677 0.4976 0.5814
Median γ 0.4520 0.3928 0.3170 0.2588 0.2830 0.3598
Per t-stat ≥ 1.96 99.74 97.53 99.31 98.69 97.45 100.00
Robust t-stat 16.87 16.01 19.10 20.56 19.51 22.23

Daily Data
Mean γ 1.0201 0.9842 0.9047 0.7618 0.9222 0.9080
Median γ 0.6949 0.5328 0.4558 0.4149 0.5590 0.5533
Per t-stat≥ 1.96 95.35 90.64 96.04 95.50 92.63 99.36
Robust t-stat 22.03 17.22 26.81 26.13 24.92 29.13

Panel B: Bond Portfolios

2003 2004 2005 2006 2007 Full
Equal weighted -0.0031 -0.0044 -0.0032 0.0007 -0.0009 -0.0023
t-stat -0.57 -1.22 -1.18 0.64 -0.44 -1.67
Issuance weighted 0.0006 -0.0039 -0.0012 0.0007 0.0003 -0.0009
t-stat 0.10 -1.00 -0.41 0.50 0.11 -0.57

Panel C: Implied by Quoted Bid-Ask Spreads

2003 2004 2005 2006 2007 Full
Mean implied γ 0.0455 0.0409 0.0499 0.0501 0.0510 0.0458
Median implied γ 0.0370 0.0299 0.0272 0.0237 0.0268 0.0302

At the individual bond level, γ is calculated using either trade-by-trade or
daily data. Per t-stat ≥ 1.96 reports the percentage of bond with statistically
significant γ. Robust t-stat is a test on the cross-sectional mean of γ with
standard errors corrected for cross-sectional and time-series correlations. At
the portfolio level, γ is calculated using daily data and the Newey-West t-stats
are reported. Monthly quoted bid-ask spreads, which we have data for 1,212
out of 1,249 bonds in our sample, are used to calculate the implied γ.

series correlations. Specifically, the moment condition for estimating γ is γ̂ + ΔP i
t ΔP i

t−1 = 0 for all bond i
and time t, where ΔP is demeaned. We can then correct for cross-sectional and time-series correlations in
ΔP i

t ΔP i
t−1 using standard errors clustered by bond and day.
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As a comparison to the level of illiquidity for individual bonds, Panel B of Table 2 reports γ

measured using equal- or issuance-weighted portfolios constructed from the same cross-section

of bonds and for the same sample period. In contrast to its counterpart at the individual bond

level, γ at the portfolio level is slightly negative, rather small in magnitude, and statistically

insignificant. This implies that the transitory component extracted by our γ measure is

idiosyncratic in nature and gets diversified away at the portfolio level. It does not imply,

however, that the illiquidity in corporate bonds lacks a systematic component, which we will

examine later in Section 3.3.

Panel C of Table 2 provides another and perhaps more important gauge of the magnitude

of our estimated γ for individual bonds. Using quoted bid-ask spreads for the same cross-

section of bonds and for the same sample period, we estimate a bid-ask implied γ for each

bond by computing the magnitude of negative autocovariance that would have been generated

by bid-ask bounce. For the full sample period, the cross-sectional mean of the implied γ is

0.0458 and the median is 0.0302, which are more than one order of magnitude smaller than

the empirically observed γ for individual bonds. As shown later in the paper, not only does

the quoted bid-ask spread fail to capture the overall level of illiquidity, but it also fails to

explain the cross-sectional variation in bond illiquidity and its asset pricing implications.

Although in the remainder of the paper we focus on extracting the transitory component

at the trade-by-trade and daily frequencies, it is nevertheless interesting to provide a gen-

eral picture of γ over varying horizons. First, our result shows that the magnitude of the

illiquidity measure γ is stronger at the daily than the trade-by-trade horizon. Given that

the autocovariance at the daily level cumulatively captures the mean-reversion at the trade-

by-trade level, this implies that the mean-reversion at the trade-by-trade level persists for a

few trades before fully dissipating, which we show in Section 4.1. Second, moving from the

daily to weekly horizon, we find that the magnitude of γ increases from an average level of

0.9080 to 1.0899, although its statistical significance decreases somewhat to a robust t-stat of

16.81, and 82.79% of the bonds in our sample have a positive and statistically significant γ

at this horizon. Third, extending to the bi-weekly and monthly horizons, γ starts to decline

in both magnitudes and statistical significance, equaling 0.9199 with a robust t-stat of 8.04

for bi-weekly, and 0.5076 with a robust t-stat of 2.18 for monthly horizons. At the individual

bond level, the fraction of bonds that have positive and statistically significant γ is 42.88% for

bi-weekly, and only 16.5% for monthly horizons, respectively. Finally, at the six-week horizon,

the magnitude of the estimate inches up a little from its monthly counterpart, but there is no
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longer any statistical significance.

As mentioned earlier in the section, the transitory component ut might have richer dy-

namics than what can be offered by a simple AR(1) structure for Δut. By extending γ over

various horizons, we are able to uncover some of the dynamics. We show in Section 4.1 that

at the trade-by-trade level Δut is by no means a simple AR(1). Likewise, in addition to the

mean-reversion at the daily horizon that is captured in this paper, the transitory component

ut may also have a slow moving mean-reversion component at a longer horizon. To examine

this issue more thoroughly is an interesting topic, but requires time-series data for a longer

sample period than ours.13

3.2 Illiquidity and Bond Characteristics

Our sample includes a broad cross-section of bonds, which allows us to examine the connection

between our illiquidity measure γ and various bond characteristics, some of which are known to

be linked to bond liquidity. The cross-sectional variation in our illiquidity measure γ and bond

characteristics are reported in Table 3. We use daily data to construct yearly estimates for γ

for each bond and perform yearly cross-sectional regressions on various bond characteristics.

Reported in square brackets are the t-stat’s calculated using the Fama and MacBeth (1973)

standard errors.

We find that older bonds on average have higher γ, and the results are robust regardless

of which control variables are used in the regression. On average, a bond that is one-year

older is associated with an increase of 0.0726 in its γ, which accounts for 8% of the full-sample

average of γ. Given that the age of a bond has been widely used in the fixed-income market as

a proxy for illiquidity, it is important that we establish this connection between our illiquidity

measure γ and age. Similarly, we find that bonds with smaller issuance tend to have larger γ.

We also find that bonds with longer time to maturity and lower credit rating typically have

higher γ.

Using weekly bond returns, we also estimate, for each bond, its beta’s on the aggregate

stock- and bond-market returns, using the CRSP value-weighted index as a proxy for the

stock market and the Lehman US Bond Index as a proxy for the bond market. We find that

13By using monthly bid prices from 1978 to 1998, Khang and King (2004) report contrarian patterns in
corporate bond returns over horizons of one to six months. Instead of examining autocovariance in bond
returns, their focus is on the cross-sectional effect. Sorting bonds by their past monthly (or bi-monthly up to
6 months) returns, they find that past winners under perform past losers in the next month (or 2-month up
to 6 months). Their result, however, is relatively weak and is significant only in the early half of their sample
and goes away in the second half of their sample (1988–1998).
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Table 3: Cross-Sectional Variation in γ and Bond Characteristics

Cons 0.8795 0.8775 0.8671 0.8763 0.8830 0.8786 0.8948 0.9271
[21.93] [23.28] [14.97] [23.03] [22.83] [22.66] [17.42] [25.12]

Age 0.0726 0.0523 0.0517 0.0464 0.0326 0.0571 0.0722 0.0719
[4.37] [6.18] [4.24] [4.97] [3.95] [5.98] [3.44] [3.64]

Maturity 0.0708 0.0424 0.0401 0.0461 0.0481 0.0450 0.0651 0.0688
[11.05] [19.59] [3.12] [11.04] [10.96] [9.80] [13.45] [17.36]

ln(Issuance) -0.1951 -0.1373 -0.1294 -0.1368 -0.0257 -0.1551 -0.2129 -0.2340
[-5.87] [-3.23] [-5.31] [-3.57] [-1.05] [-3.81] [-6.12] [-7.87]

Rating 0.0415 0.0164 0.0105 0.0232 0.0314 0.0190 0.0403 0.0537
[8.05] [3.95] [1.58] [3.03] [3.35] [2.40] [2.77] [6.82]

beta (stock) 0.4389 0.1536 0.24
[4.34] [0.70] [1.13]

beta (bond) -0.0237 0.0351 0.0307
[-0.90] [0.69] [0.59]

sig(e) 0.4730 0.4581 0.4120 0.4397
[4.37] [4.04] [3.82] [3.79]

sig(efirm) -0.0357
[-0.42]

sig(efirm res) 0.6570
[11.31]

Turnover -0.0165
[-2.60]

ln(Trd Size) -0.2350
[-10.15]

ln(#Trades) 0.0571
[1.66]

Quoted BA γ 2.0868
[2.61]

CDS Dummy -0.0456
[-1.90]

R-sqd (%) 49.11 62.68 74.46 61.79 63.86 61.46 47.43 45.61

Yearly Fama-MacBeth regression with γ as the dependent variable. T-stats are reported
in square brackets using Fama-MacBeth standard errors with serial correlations corrected
using Newey-West. Issuance is the bond’s amount outstanding in millions of dollars. Rating
is a numerical translation of Moody’s rating: 1=Aaa and 21=C. Maturity is the bond’s time
to maturity in years. Turnover is the bond’s monthly trading volume as a percentage of its
issuance. Trd Size is the average trade size of the bond in thousands of dollars of face value.
#Trades is the bond’s total number of trades in a month. beta(stock) and beta(bond) are
obtained by regressing weekly bond returns on weekly returns on the CRSP value-weighted
index and the Lehman US bond index, and sig(e) is the standard deviation of the residual.
For firms with more than 10 bonds, sig(e) is further decomposed into a firm-level sig(efirm)
and the residual sig(efirm res). Quoted BA γ is the γ implied by the quoted bid-ask spreads.
CDS Dummy is 1 if the bond has credit default swaps traded on its issuer.
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while γ cannot be explained by the cross-sectional variation in the bond beta, it is positively

related to the stock beta. But this result goes away after adding the volatility, sig(e), of

the idiosyncratic component of bond returns. Specifically, our results show that a bond with

a higher idiosyncratic volatility has higher γ. For a sub-sample of our bonds whose issuer

issues more than 10 bonds, we can further decompose the idiosyncratic volatility into a firm-

level component and a bond-specific component. We find that the firm-specific component is

not related to our illiquidity measure γ, while the bond-specific component exhibits a strong

connection to our illiquidity measure. Interestingly, bond ratings are not significantly related

to γ in this regression, although this could be because of the specific sub-sample.

Given that we have transaction-level data, we can also examine the connection between

our illiquidity measure and bond trading activity. We find that, by far, the most interesting

variable is the average trade size of a bond. In particular, bonds with smaller trade sizes have

higher illiquidity measure γ.

To examine the cross-sectional connection between our illiquidity measure and the quoted

bid-ask spreads, we use the quoted bid-ask spreads for each bond in our sample to calculate the

bid-ask spread implied autocovariance, or bid-ask implied γ. We find a positive relation be-

tween our γ measure and the γ measure implied by the quoted bid-ask spread. The regression

coefficient is on average around 2 and is statistically significant. The magnitude of the coef-

ficient implies that one unit difference in γ implied by quoted bid-ask spreads gets amplified

to twice the difference in our measure of γ. Adding the bid-ask implied γ as an explanatory

variable, however, does not alter the relation between our γ measure and liquidity-related

bond characteristics such as age and size. Overall, we find that the magnitude of illiquidity

captured by our γ measure is related to but goes beyond the information contained in the

quoted bid-ask spreads.

Finally, we introduce a CDS dummy, which is one if the bond issuer has credit default

swaps traded on it, to examine whether or not there is a difference in our illiquidity measure for

bonds with and without CDS traded on their issuers. About 85% of the bonds in our sample

have traded CDS and our results show that, after controlling for bond age, maturity, issuance

size and rating, such bonds on average do have slightly lower γ, although with marginal

economic and statistical significance.
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3.3 Commonality in Illiquidity and Market Conditions

We next examine the time variation of illiquidity in the bond market. From Table 2, we see a

steady reduction in the annual γ averaged over all bonds in our sample from 2003 through 2006.

For example, the average γ using daily data is 1.0204 in 2003, which decreases monotonically

to 0.7818 in 2006, suggesting an overall improvement of liquidity in the bond market from

2003 through 2006. During 2007, however, the average γ jumped back to 0.9222, reflecting

worsening liquidity in the market.14 Our focus in this section is on the time variation beyond

this simple time trend and its association with the conditions in the credit market. For this,

we turn our attention to monthly fluctuations in the illiquidity measure γ.

Monthly illiquidity measures γ are calculated for each bond using daily data within that

month. Aggregating γ across all bonds, we plot in Figure 1 the time-series of the monthly

aggregate illiquidity measure γ and the lower and upper bounds of its 95% confidence interval

calculated using robust standard errors that take into account both time-series and cross-

sectional correlations. It is clear that the aggregate γ exhibits significant time variation,

which suggests common movements in illiquidity across individual bonds.

In particular, after decreasing markedly but relatively smoothly during 2003 and the first

half of 2004, it reversed its trend and started to climb up in late 2004 and then spiked in

April/May 2005. This rise in γ coincides with the downgrade of Ford and GM to junk status

in early May 2005, which rattled the credit market. The illiquidity measure γ quieted down

somewhat through 2006, and then in August 2007, it rose sharply to an unprecedented level

since the beginning of in our sample. August 2007 is when the sub-prime mortgage crisis hit

the market and the credit conditions in the U.S. worsened in a precipitous fashion. Compared

with its value in late 2006, which was below 0.8, the quick rise to a level of 1.37 in August 2007

was quite dramatic. Even relative to July 2007, when the aggregate γ was at a level of 0.9727,

the upward jump was an extreme event. For our sample, the standard deviation of monthly

changes in aggregate γ is 0.1084, making the monthly jump from July to August a close to

four-standard-deviation event. In September and October, the illiquidity measure γ came

14By focusing only on Phase I and II bonds in TRACE to maintain a reasonably balanced sample, we did
not include bonds that were included only after Phase III, which was fully implemented on February 7, 2005.
Consequently, new bonds issued after that date were excluded from our sample, even though some of them
would have been eligible for Phase II had they been issued earlier. As a result, starting from February 7, 2005,
we have a population of slowly aging bonds. Since γ is positively related to age, the overall downward trend
in γ would have been more pronounced had we been able to maintain a more balanced sample. It should be
mentioned that the sudden increases in aggregate γ during crises are too large to be explained by the slow
aging process. Finally, to avoid regressing trend on trend, the time-series regression results presented later in
this section are based on regressing changes on changes.
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Figure 1: Monthly time-series of γ, averaged across all bonds. For each bond and month,
daily data is used to estimate γ. The dashed lines are the upper and lower bounds of
the 95% confidence interval, using robust standard errors clustered by bond and day.

down somewhat. But then, on October 24, Merrill Lynch reported the biggest quarterly loss

in its 93-year history after taking $8.4 billion of write-downs, almost double the firm’s forecast

three weeks before. Less than a week later, the CEO of Merrill resigned. This was followed

by Citigroup’s announcement of write-downs of even larger magnitudes and the resignation

of its CEO in early November. Not surprisingly, our illiquidity measure γ quickly jumped up

again in November and December 2007 to an all time high level of 1.39.

The fact that γ increased drastically during the two periods of credit market turmoil

indicates that not only does bond market illiquidity vary over time, but, more importantly,

it also varies together with the changing conditions of the market. In Figure 2, we plot the

average γ along with several variables that are known to be linked to market conditions. To

capture the conditions of the credit market, we use default spread, measured as the difference

in yields between AAA- and BBB-rated corporate bonds, using the Lehman US Corporate

Intermediate Indices. To capture the overall market condition, we use the CBOE VIX index,

which is also known as the “fear gauge” of the market. To capture the overall volatility of the
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Figure 2: Monthly time-series of γ along with CBOE VIX index, default spread, and
bond return volatility.

corporate bond market, we construct monthly estimates of annualized bond return volatility

using daily returns to the Lehman US Investment Grade Corporate Index. Comparing the

time variation in these variables with that of our aggregate γ, we have several observations.

First, there does not seem to be an obvious link between γ and the volatility of bond

returns. In fact, as shown in Table 4, regressing changes in γ on contemporaneous changes in

the bond volatility, the t-stat of the slope coefficient is 0.71 and the R-squared of the regression

is 0.45%. This is somewhat surprising. To the extent that volatility affects the risks in market

making, one might expect a positive relation between illiquidity and return volatility. Second,

contrasting its lack of comovement with bond volatility, the aggregate γ comoves with VIX

in a rather significant way. Regressing changes in γ on contemporaneous changes in VIX,

we obtain a slope coefficient of 0.0312 with a t-stat of 3.46 (adjusted for serial correlation

using Newey-West). The R-squared of the OLS regression is 39.53%, and the adjusted R-

squared is 37.96%. Third, the aggregate γ also comoves with the default spread in a positive

way. Regressing changes in γ on contemporaneous changes in the default spread, the slope

coefficient is 0.4757 with a t-stat of 2.31 and the adjusted R-squared is 13.92%. By far, the
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connection between γ and the CBOE VIX index seems to be the strongest, which is quite

interesting given that one variable is constructed using transaction-level corporate bond data

and the other using index options.

Table 4: Time Variation in γ and Market Variables

Cons 0.0035 0.0029 0.0066 0.0027 0.0159 0.0060 0.0126
[0.30] [0.33] [0.53] [0.33] [1.11] [0.48] [1.51]

Bond Volatility 0.0079 0.0063
[0.71] [0.72]

ΔVIX 0.0312 0.0270
[3.46] [3.02]

ΔTerm Spread 0.1010 0.0210
[1.57] [0.37]

ΔDefault Spread 0.4757 0.2100
[2.31] [1.57]

Lagged Stock Return -0.0125 -0.0087
[-2.31] [-3.07]

Lagged Bond Return -0.0215 -0.0102
[-3.52] [-1.26]

Adj R-sqd (%) -1.43 37.96 0.44 13.92 7.15 2.74 43.51

Monthly changes in γ regressed on monthly changes in bond index volatility, VIX, term
spread, default spread, and lagged stock and bond returns. The Newey-West t-stats are
reported in square brackets.

We further examine in Table 4 the relation between monthly changes of our aggregate γ

and the performance of the aggregate stock and bond markets in the previous month. We find

that our aggregate γ typically increases after a poor performance in the aggregate bond or

stock market. The slope coefficient is -0.0125 with a t-stat of -2.31 for the lagged stock return,

and is -0.0215 with a t-stat of -3.52 for the lagged bond return.15 These results are consistent

with the observation that liquidity is more likely to worsen following a down market.

The various market condition variables considered so far are closely inter-connected. To

evaluate their relative importance, Table 4 also reports the result of the multivariate regression

using all variables simultaneously to explain the monthly changes in aggregate γ. Both VIX

and lagged stock returns remain significant, but the default spread and lagged bond returns

fail to remain significant. It is quite intriguing that two variables measured from the same

15We use monthly excess stock and bond returns, with the one-month T-bill rate as the risk-free rate. It
might also be interesting to observe that in the univariate regression, changes in VIX and lagged bond return
have similar magnitudes of t-stat but very different R-squareds. This is because our t-stats are corrected for
serial correlation using Newey-West. Our results imply that the regression residuals are positively autocor-
related in the regression involving changes in VIX, and negatively autocorrelated in the regression involving
lagged bond return.
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market fail to explain our aggregate γ, while two other variables, one from index options and

the other from the stock market, remain important.

Our time-series analysis of the aggregate illiquidity reveals two important properties of γ as

a measure of illiquidity for corporate bonds. First, there exists commonality in the illiquidity

of individual bonds, which is reflected in the significant time variation in aggregate γ. Second,

such common movements in bond market illiquidity are closely connected with overall market

conditions in an important way.

In order to further explore the commonalities in bond market illiquidity, we conduct a

principal component analysis for the changes in the γ of individual bonds. In particular, we

sort bonds by their age and issuance size into nine portfolios. We choose these two bond

characteristics because they are known to be linked to bond liquidity. For each portfolio, we

compute its aggregate γ by averaging the bond level γ (estimated monthly using daily data)

across all bonds in the portfolio. Using monthly changes in the γ’s for the nine age and size

sorted portfolios, we estimate the variance-covariance matrix and compute its eigenvalues.

The results are summarized in Table 5.

Table 5: Principal Component Analysis of γ

Panel A: The Relative Importance of the PC’s
PC1 PC2 PC3 PC4

% Explained 30.32 21.05 17.68 11.01
Cumulative % 30.32 51.37 69.05 80.06

Panel B: Factor Loadings on the First Four PC’s
size age PC1 PC2 PC3 PC4
1=small 1=young 0.2817 -0.0494 0.2421 0.3232
1 2 -0.0778 0.7943 0.5572 0.1330
1 3 0.3659 -0.0147 -0.2269 0.5218
2 1 0.1979 -0.1125 0.2104 0.1809
2 2 0.2930 -0.0135 -0.0905 0.4271
2 3 0.5682 -0.2876 0.4969 -0.4674
3 1 0.1130 -0.0228 0.0823 0.2106
3 2 0.1621 -0.0459 0.1455 0.0165
3=large 3=old 0.5420 0.5180 -0.5021 -0.3568

The principal component analysis is performed on 9 portfolios
of bonds sorted by age and issuance size.

The first principal component explains over 30% of the changes in the portfolio γ’s, while

the next three principal components explain 21%, 18% and 11% of the variation, respectively.

The first two principal components collectively explain over 51% of the variation in portfolio
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γ’s, and the first four principal components explain over 80%. Examining the factor loadings

of the first four principal components, we find no obvious link between them and the bond

characteristics considered here. The first principal component, however, resembles our aggre-

gate γ, with the exception of small-size and medium-age bonds whose factor loading is slightly

negative.

3.4 Bond Yield Spreads and Illiquidity

We now examine the pricing implications of bond illiquidity. For this purpose, we focus

on the bond yield spread, which is the difference between the corporate bond yield and the

Treasury bond yield of the same maturity. For Treasury yields, we use the constant maturity

rate published by the Federal Reserve and use linear interpolation whenever necessary. We

perform monthly cross-sectional regressions of the yield spreads on the illiquidity measure γ,

along with a set of control variables. We first report our results for our full sample of bonds,

including both investment-grade and junk bonds, and then for only investment-grade bonds.

Given that the Phase I and II bonds in TRACE are predominantly investment grade, this

sub-sample analysis is important for us to rule out the possibility that our result is driven just

by a handful of unrepresentative junk bonds.

The results for both investment-grade and junk bonds are reported in Table 6, where the t-

stat’s are calculated using the Fama-MacBeth standard errors with serial correlation corrected

using Newey and West (1987). To include callable bonds in our analysis, which constitute a

large portion of our sample, we use a callable dummy, which is one if a bond is callable and

zero otherwise. We exclude all convertible and putable bonds from our analysis. In addition,

we also include three rating dummies for A, Baa, and junk ratings, respectively. The first

column in Table 6 shows that the average yield spread of the Aaa and Aa bonds in our sample

is 70.62 bps, relative to which the A bonds are 18.71 bps higher, Baa bonds are 77.21 bps

higher, and junk bonds are 466.84 bps higher.

As reported in the second column of Table 6, adding γ to the regression does not bring

much change to the relative yield spreads across ratings. This is to be expected since γ should

capture more of a liquidity effect, and less of a fundamental risk effect, which is reflected

in the differences in ratings. More importantly, we find that the coefficient on γ is 0.4220

with a t-stat of 3.95. This implies that for two bonds in the same rating category, if one

bond, presumably less liquid, has a γ that is higher than the other by 1, the yield spread

of this bond is on average 42.20 bps higher than the other. To put an increase of 1 in γ
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in context, the cross-sectional standard deviation of γ is on average 0.9943 in our sample.

From this perspective, our illiquidity measure γ is economically important in explaining the

cross-sectional variation in average bond yields.

To control for the fundamental risk of a bond above and beyond what is captured by the

rating dummies, we use equity volatility estimated using daily equity returns of the bond

issuer. Effectively, this variable is a combination of the issuer’s asset volatility and leverage.

We find this variable to be important in explaining yield spreads. As shown in the third

column of Table 6, the slope coefficient on equity volatility is 0.0652 with a t-stat of 3.34.

That is, a ten percentage point increase in the equity volatility of a bond issuer is associated

with a 65.2 bps increase in the bond yield. (Later in this section when we focus only on

investment-grade bonds, we will find that this control becomes less important.) While adding

γ improves the cross-sectional R-squared from a time-series average of 27.41% to 31.37%,

adding equity volatility improves the R-squared to 50.6%. Such R-squared’s, however, should

be interpreted with caution since it is a time-series average of cross-sectional R-squared, and

does not take into account the cross-sectional correlations in the regression residuals. By

contrast, our reported Fama-MacBeth t-stat’s do and both variables are comparable in terms

of their statistical significance. It is also interesting to observe that by adding equity volatility,

the magnitudes of the rating dummies decrease significantly. This is to be expected since both

equity volatility and rating dummies are designed to control for the bond’s fundamental risk.

When used simultaneously to explain the cross-sectional variation in bond yield spreads,

both γ and equity volatility are significant, with the slope coefficients for both remaining

more or less the same as before. This implies a limited interaction between the two variables,

which is to be expected since the equity volatility is designed to pick up the fundamental

information about a bond while γ is to capture its liquidity information. Moreover, the

statistical significance of our illiquidity measure γ increases to a t-stat of 5.85, indicating a

closer connection between yield spreads and γ after controlling for the fundamental risk.

Adding three bond characteristics — age, maturity and issuance — to compete with γ, we

find that the positive connection between γ and average bond yield spreads remains robust.

Both bond age and bond issuance are known to be linked to liquidity.16 Our results show

that bond age remains an important liquidity variable above and beyond our γ measure. In

particular, a bond that is one year older is associated with an increase of 3.57 bps in average

yield spreads.

16See, for example, Houweling, Mentink, and Vorst (2003) and additional references therein.
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Including the bond trading variables reveals that bonds with higher turnover and a large

number of trades have higher average yield spreads. The slope coefficients for both variables

are statistically significant. If one believes that more frequently traded bonds are more liquid,

then this result would be puzzling. It is, however, arguable whether this variable actually

captures the liquidity of a bond. We also find that bonds with higher average trade size have

lower yield spreads, although the statistical significance is relatively weak (the t-stat is -1.95).

This result seems to be consistent with a liquidity explanation. Overall, these variables are

important control variables for us, since they are shown in Table 3 to be connected with our

illiquidity measure γ. Our results show that these variables do not have a strong impact on

the positive relation between our illiquidity measure γ and average yield spreads.

Finally, we examine the relative importance of the quoted bid-ask spreads and our illiq-

uidity measure γ. As shown in the last two columns of Table 6, the quoted bid-ask spreads

are negatively related average yield spreads. Using both the quoted bid-ask spreads and our

illiquidity measure γ, we find a robust result for γ and a statistically insignificant result for

the quoted bid-ask spread. This aspect of our result is curious since Chen, Lesmond, and Wei

(2007) report a positive relation between the quoted bid-ask spreads and yield spreads. We

find that this discrepancy is due to the junk bonds in our sample. This is not surprising given

that the Phase I and II bonds in TRACE are predominantly investment grades, and the junk

bonds covered by TRACE could be an unrepresentative pool. To make sure that our result is

not driven by a handful of unrepresentative junk bonds, we next repeat our analysis focusing

only on investment grade bonds.

The results for investment-grade bonds only are reported in Table 7. We find that our

illiquidity measure γ remains important. Compared with the full sample result, the magnitude

of the slope coefficient decreases from 0.4420 to 0.3538, which is to be expected since having

junk bonds in the sample creates a larger spread among yields. But given how large an

average spread junk bonds have relative to investment-grade bonds, this reduction in the slope

coefficient seems rather small. This new slope coefficient implies that for two investment-grade

bonds in the same rating category, if one bond has a γ that is higher than the other by 1, the

yield spread of this bond is on average 35.38 bps higher than the other. Within the investment

grades, this difference in yields is quite large. Moreover, we also find that the t-stat of the

slope coefficient is now 7.02, which is considerably higher than the full sample result. This

implies a sharper connection between γ and the average yield spreads for investment-grade

bonds.
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Table 7: Yield Spread and γ, for Investment Grades Only

Intercept 0.7095 0.5172 0.5128 0.3217 0.2631 0.5182 0.2906
[9.94] [6.43] [6.53] [3.43] [1.28] [5.73] [2.81]

γ 0.3548 0.3464 0.2271 0.3358
[7.02] [7.02] [4.01] [7.71]

Equity Vol 0.0101 0.0107 0.0103 0.0107
[2.61] [2.99] [2.74] [2.91]

Age 0.0186
[3.96]

Maturity 0.0156
[3.86]

ln(Issuance) -0.0030
[-0.15]

Quoted B/A Spread 0.7498 0.1441
[5.12] [1.92]

Call Dummy -0.0070 -0.0787 0.0317 -0.0514 -0.0668 -0.0676 -0.0633
[-0.14] [-1.99] [0.70] [-1.47] [-2.49] [-1.48] [-1.78]

A Dummy 0.1971 0.2029 0.1586 0.1628 0.1634 0.1923 0.1542
[4.47] [5.36] [4.07] [4.97] [5.28] [4.73] [4.78]

Baa Dummy 0.7875 0.6971 0.7059 0.6264 0.5831 0.7386 0.6180
[6.84] [7.71] [7.82] [8.68] [9.11] [6.57] [8.29]

R-sqd (%) 15.40 30.26 18.41 32.63 36.31 20.68 33.76

Monthly cross-sectional regressions with bond yield spread as the dependent variable. Only
investment-grade bonds are included in the regression. The reported estimates are the
time-series averages of the cross-sectional regression coefficients. The t-stats, reported in
square brackets, are calculated using Fama-MacBeth standard errors with serial correlation
corrected using Newey-West. The reported R-squareds are the time-series averages of the
cross-sectional R-squareds. See Table 6 for definitions of independent variables.

The result for equity volatility is much weaker now that we focus just on the investment-

grade bonds. It also has smaller cross-sectional explanatory power than our γ measure, as

well as weaker statistical significance. When it is used together with our γ measure, there is

hardly any change in the slope coefficient for γ. Adding age, maturity and issuance to the

regression, however, the slope coefficient for γ is now at 0.2271 with a t-stat of 4.01. The

result is weaker, but remains important both economically and statistically. It is interesting

to note that age remains an important variable. Bond maturity becomes important for this

sub-sample but not earlier for the full sample.

Turning to the quoted bid-ask spreads, we find a positive and significant relation between

the quoted bid-ask spreads and yield spreads, a result that has been documented by Chen,

Lesmond, and Wei (2007). Adding our γ measure as an additional explanatory variable,

however, reduces the economic and statistic significance of the quoted bid-ask spreads in
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explaining the cross-sectional average yield spreads. Specifically, the slope coefficient on the

quoted bid-ask spread reduces from 0.7498 to 0.1441 with t-statistics decreasing from 5.12 to

1.92. By contrast, our illiquidity measure γ remains important, and the slope coefficient on

γ is 0.3358 with a t-stat of 7.71. The relative economic significance of these two competing

explanatory variables can be gauged as follows. For the investment grade bonds in our sample

with available quoted bid-ask spreads data, the cross-sectional standard deviation of our γ

measure is on average 0.8397, and the cross-sectional standard deviation of the quoted bid-ask

spreads is on average 0.1686. So a one-standard-deviation difference in γ generates a difference

of 28.2 bps in average yields, while a one-standard-deviation difference in the quoted bid-ask

spread generates a difference of only 2.4 bps in average yields. The fact that our γ measure

remains more important, both economically and statistically, than the quoted bid-ask spreads

in explaining the cross-sectional average yield spreads is another indication that it captures

information about illiquidity above and beyond what is contained in the quoted bid-ask spread.

4 Further Analyses of Illiquidity

This section provides additional properties of our illiquidity measure. Section 4.1 details the

dynamic properties of our illiquidity measure. Section 4.2 documents the asymmetric mag-

nitude of our illiquidity measure conditioning on past price movements. Section 4.3 analyzes

the potential profit from exploiting the bond illiquidity. Section 4.4 investigates the differing

level of illiquidity by trade size.

4.1 Dynamic Properties of Illiquidity

To further examine the dynamic properties of the transitory component in corporate bonds,

we measure the autocovariance of price changes that are separated by a few trades or a few

days:

γτ = −Cov (ΔPt, ΔPt+τ ) . (3)

The illiquidity measure we have used so far is simply γ1. For τ > 1, γτ measures the extent

to which the mean-reversion persists after the initial price reversal at τ = 1. In Table 8, we

report the γτ for τ = 1, 2, 3, using trade-by-trade data. Clearly, the initial bounce back is the

strongest while the mean-reversion still persists after skipping a trade. In particular, γ2 is on

average 0.08 with a robust t-stat of 13.81. At the individual bond level, 67% of the bonds have

a statistically significant γ2. After skipping two trades, the amount of residual mean-reversion

dissipates further in magnitude. The cross-sectional average of γ3 is only 0.023, although it is
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still statistically significant with a robust t-stat of 10.70. At the individual bond level, fewer

than 12% of the bonds have a statistically significant γ3.

Table 8: Dynamics of Illiquidity: γτ = −Cov (Pt − Pt−1, Pt+τ − Pt+τ−1)

2003 2004 2005 2006 2007 Full
τ = 1 Mean γ 0.6546 0.6714 0.5717 0.4677 0.4976 0.5814

Median γ 0.4520 0.3928 0.3170 0.2588 0.2830 0.3598
Per t-stat ≥ 1.96 99.74 97.53 99.31 98.69 97.45 100.00
Robust t-stat 16.87 16.01 19.10 20.56 19.51 22.23

τ = 2 Mean γ 0.0808 0.0679 0.0824 0.0598 0.1012 0.0805
Median γ 0.0373 0.0236 0.0320 0.0261 0.0554 0.0395
Per t-stat ≥ 1.96 27.87 19.77 38.03 39.78 52.87 67.41
Robust t-stat 10.24 7.42 13.22 11.02 13.97 13.81

τ = 3 Mean γ 0.0105 0.0239 0.0221 0.0280 0.0277 0.0233
Median γ 0.0054 0.0048 0.0049 0.0049 0.0067 0.0065
Per t-stat ≥ 1.96 5.16 5.52 6.27 8.68 6.69 11.93
Robust t-stat 2.71 4.30 7.87 7.26 7.72 10.70

For each bond, its γτ , τ = 1, 2, 3, is calculated using trade-by-trade data. Per t-stat ≥ 1.96
reports the percentage of bond with statistically significant γ. Robust t-stat is a test on the
cross-sectional mean of γ with standard errors corrected for cross-sectional and time-series
correlations.

The fact that the mean-reversion persists for a few trades before fulling dissipating implies

that autocovariance at the daily level is stronger than at the trade-by-trade level as it captures

the effect cumulatively, as shown in Table 2. At the daily level, however, the mean-reversion

dissipates rather quickly, with an insignificant γ2 and γ3. For brevity, we omit these results.

4.2 Asymmetry in Price Reversals

One interesting question regarding the mean-reversion captured in our main result is whether

or not the magnitude of mean-reversion is symmetric in the sign of the initial price change.

Specifically, with ΔP properly demeaned, let γ− = E (ΔPtΔPt+1|ΔPt < 0) be a measure of

mean-reversion conditioning on an initial price change that is negative, and let γ+ be the

counterpart conditioning on a positive price change. In a simple theory of liquidity based

on costly market participation, Huang and Wang (2007) show that the bounce-back effect is

more severe conditioning on an initial price movement that is negative, predicting a positive

difference between γ− and γ+.

We test this hypothesis in Table 9, which shows that indeed there is a positive difference

between γ− and γ+. Using trade-by-trade data, the cross-sectional average of γ−−γ+ is 0.0802
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Table 9: Asymmetry in γ

Panel A: Using trade-by-trade data

2003 2004 2005 2006 2007 Full
τ = 1 Mean 0.1442 0.0674 0.0120 0.0455 0.0689 0.0802

Median 0.1347 0.0292 -0.0030 0.0257 0.0574 0.0347
CS t-stat 7.92 3.71 0.92 3.93 5.87 5.98
Robust t-stat 6.53 3.44 0.88 3.71 5.55 5.59

τ = 2 Mean 0.0351 0.0328 0.0444 0.0411 0.0508 0.0457
Median 0.0146 0.0077 0.0104 0.0160 0.0228 0.0145
CS t-stat 5.01 4.34 9.47 9.63 8.14 9.29
Robust t-stat 4.94 4.11 8.20 8.17 7.61 8.59

Panel B: Using daily data

2003 2004 2005 2006 2007 Full
τ = 1 Mean 0.2759 0.1628 0.1090 0.1232 0.1529 0.1753

Median 0.1948 0.0449 0.0173 0.0469 0.0952 0.0708
CS t-stat 9.92 5.50 4.82 5.77 6.22 9.63
Robust t-stat 8.92 4.85 4.40 5.01 5.65 8.89

τ = 2 Mean -0.0036 0.0026 0.0091 -0.0021 0.0154 0.0059
Median 0.0003 -0.0011 -0.0003 0.0012 0.0012 0.0009
CS t-stat -0.33 0.18 1.01 -0.26 1.26 0.96
Robust t-stat -0.28 0.18 0.86 -0.24 1.07 0.87

Asymmetry in γ is measured by the difference between γ− and γ+, where γ− =
E (ΔPt+1ΔPt|ΔPt < 0), with ΔP properly demeaned, measures the price reversal
conditioning on a negative price movement. Likewise, γ+ measures the price reversal
conditioning on a positive price movement. Robust t-stat is a pooled test on the
mean of γ− − γ+ with standard errors clustered by bond and day. CS t-stat is the
cross-sectional t-stat.

with a robust t-stat of 5.59. Skipping a trade, the asymmetry in γ2 is on average 0.0457 with

a robust t-stat of 8.59. Compared with how γτ dissipates across τ , this measure of asymmetry

does not exhibit the same dissipating pattern. In fact, in the later sample period, the level of

asymmetry for τ = 2 is almost as important for the first-order mean-reversion, with an even

higher statistical significance. Using daily data, the asymmetry is stronger, incorporating

the cumulative effect from the transaction level. The cross-sectional average of γ− − γ+ is

0.18, which is close to 20% of the observed level of mean reversion. Skipping a day, however,

produces no evidence of asymmetry, which is expected since there is very little evidence of

mean-reversion at this level in the first place.
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4.3 Profiting from Illiquidity

Given the large magnitude of negative autocovariance documented in this section, it is natural

to ask whether or not there is a feasible trading strategy to profit from this severe illiquidity

in corporate bonds. To address this question, we devise the simple contrarian strategy that

takes a long position in a bond when its price moves downward by more than a threshold,

and takes a short position when the price moves upward by more than the threshold. This

strategy entails supplying liquidity in the market. For comparison, we consider two values for

the threshold, zero and one dollar. Given our asymmetry result for γ, as well as the differing

implications of taking long or short positions in corporate bonds, we also report the profits

for the short and long positions separately. Table 10 reports the trading profits using trade-

by-trade data. For the full sample and for the trading strategy with a zero threshold in price

changes, the average daily profit per bond is $2.88 for a $100 notional position. The robust

t-stat (clustered by bond and day) for this profit is 16.90. On average, the bond is traded 7.53

times a day. Separating the signal to buy and sell separately, the buy signal yields a slightly

higher profit, which is consistent with our asymmetry result on price reversals.

It is important to note that only the market makers can trade at the price for which the

signal is observed. A realistic trading strategy is therefore to skip a trade after the signal

is observed and then buy and sell accordingly. As shown in the right panel of Table 10, the

average profit of this trading strategy is markedly lower. For the full sample and for the

trading strategy with the threshold of $1, the average profit is 25 cents on a $100 notional,

and it carries a robust t-stat of 16.12. The buy signal generates a profit that is twice as

large as the sell signal, consistent with the fact that the asymmetry remains important after

skipping a trade.

4.4 Trade Size and Illiquidity

Since our illiquidity measure is based on transaction prices, a natural question is how it

is related to the sizes of these transactions. In particular, are reversals in price changes

stronger for trades of larger or smaller sizes? In order to answer this question, we consider

the autocovariance of price changes conditional on different trade sizes.

For a change in price Pt − Pt−1, let Vt denote the size of the trade associated with price

Pt. The autocovariance of price changes conditional on trade size being in a particular range,

say, R, is defined as

Cov
(
Pt − Pt−1, Pt+1 − Pt,

∣
∣ Vt ∈ R

)
, (4)
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where six brackets of trade sizes are considered in our estimation: ($0, $5K], ($5K, $15K],

($15K, $25K], ($25K, $75K], ($75K, $500K], and ($500K, ∞), respectively. Our choice of

the number of brackets and their respective cutoffs is influenced by the sample distribution of

trade sizes. In particular, to facilitate the estimation of γ conditional on trade size, we need to

have enough transactions within each bracket for each bond to obtain a reliable conditional γ.

For the same reason, we construct our conditional γ using trade-by-trade data. Otherwise,

the data would be cut too thin at the daily level to provide reliable estimates of conditional γ.

For each bond, we categorize transactions by their time-t trade sizes into their respective

bracket s, with s = 1, 2, . . . , 6, and collect the corresponding pairs of price changes, Pt − Pt−1

and Pt+1 − Pt. Grouping such pairs of prices changes for each size bracket s and for each

bond, we can estimate the autocovariance of the price changes, the negative of which is our

conditional γ(s).

Equipped with the conditional γ, we can now explore the link between trade size and

illiquidity. In particular, does γ(s) vary with s and how? We answer this question by first

controlling for the overall liquidity of the bond. This control is important as we find in

Section 3.2 the average trade size of a bond is an important determinant of the cross-sectional

variation of γ. So we first sort all bonds by their unconditional γ into quintiles and then

examine the connection between γ(s) and s within each quintile.

As shown in Panel A of Table 11, for each γ quintile, there is a pattern of decreasing

conditional γ with increasing trade size and the relation is monotonic for all γ quintiles. For

example, quintile 1 consists of bonds with the highest γ and therefore the least liquid in our

sample. The mean γ is 2.1129 for trade-size bracket 1 (less than $5K) but it decreases to

0.6171 for trade-size bracket 6 (greater than $500K). The mean difference in γ between the

trade-size bracket 1 and 6 is 1.4292 and has a robust t-stat of 10.72. Likewise, for quintile 5,

which consists of bonds with the lowest γ measure and therefore are the most liquid, the same

pattern emerges. The average value of γ is 0.2172 for the smallest trades and then decreases

monotonically to 0.0202 for the largest trades. The difference between the two is 0.1976, with

a robust t-stat of 9.39, indicating that the conditional γ between small and large size trades

remains significant even for the most liquid bonds. To check the potential impact of outliers,

we also report the median γ for different trade sizes. Although the magnitudes are slightly

smaller, the general pattern remains the same.

We next examine the connection between trade sizes and conditional γτ for τ = 2. As

introduced in equation (3), we use γ2 to estimate the persistence of mean-reversion using price
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Table 11: Variation of γ with Trade Size

Panel A: Lag=1

γ Quint trade size= 1 2 3 4 5 6 1 - 6
1 Mean 2.1129 1.6404 1.4614 1.2703 0.8477 0.6171 1.4292

Median 1.8844 1.4902 1.3459 1.2088 0.7812 0.4835 1.3132
Robust t-stat 13.55 10.09 9.18 9.20 8.44 6.27 10.72

2 Mean 1.0974 0.9468 0.8440 0.6748 0.3330 0.1906 0.9064
Median 0.9990 0.8773 0.7962 0.6274 0.3138 0.1716 0.8272
Robust t-stat 10.49 9.42 9.53 10.44 13.35 11.54 8.92

3 Mean 0.6282 0.5545 0.4882 0.3544 0.1726 0.0804 0.5493
Median 0.5423 0.4989 0.4577 0.3327 0.1646 0.0723 0.4656
Robust t-stat 8.43 12.98 13.46 14.00 15.71 12.15 7.49

4 Mean 0.3881 0.3217 0.2662 0.1814 0.0971 0.0424 0.3472
Median 0.3242 0.2831 0.2308 0.1673 0.0893 0.0394 0.2879
Robust t-stat 8.25 12.77 12.98 14.47 16.70 12.52 7.46

5 Mean 0.2172 0.1652 0.1327 0.0895 0.0469 0.0202 0.1976
Median 0.1957 0.1490 0.1167 0.0833 0.0430 0.0175 0.1755
Robust t-stat 10.19 13.72 11.73 15.34 17.53 15.35 9.39

Panel B: Lag=2

γ Quint trade size= 1 2 3 4 5 6 1 - 6
1 Mean 0.3652 0.1774 0.1784 0.1622 0.1164 0.0936 0.3497

Median 0.3418 0.1995 0.1754 0.1341 0.1016 0.0495 0.2688
Robust t-stat 7.57 6.72 6.19 6.11 4.50 3.52 7.70

2 Mean 0.1997 0.1416 0.1043 0.0842 0.0566 0.0195 0.1806
Median 0.1503 0.0927 0.0865 0.0644 0.0410 0.0155 0.1275
Robust t-stat 8.37 6.06 7.49 7.12 8.19 3.84 7.70

3 Mean 0.0961 0.0721 0.0509 0.0420 0.0226 0.0086 0.0878
Median 0.0782 0.0542 0.0358 0.0285 0.0183 0.0060 0.0702
Robust t-stat 7.32 7.92 7.39 5.78 6.45 2.92 6.66

4 Mean 0.0647 0.0484 0.0341 0.0257 0.0083 0.0052 0.0599
Median 0.0474 0.0318 0.0191 0.0160 0.0066 0.0027 0.0432
Robust t-stat 6.75 7.88 6.88 8.08 5.50 2.85 6.20

5 Mean 0.0317 0.0219 0.0126 0.0122 0.0065 0.0016 0.0301
Median 0.0254 0.0146 0.0103 0.0084 0.0043 0.0014 0.0231
Robust t-stat 7.48 7.11 4.87 5.77 6.91 2.21 7.05

Trade size is categorized into 6 groups with cutoffs of $5K, $15K, $25K, $75K, and $500K.
For Lag=1, γ = −Cov(Pt − Pt−1, Pt+1 − Pt), and for Lag=2, γ = −Cov(Pt − Pt−1, Pt+2 −
Pt+1). In both cases, γ is calculated conditioning on the trade size associated with Pt. Bonds
are sorted by their “unconditional” γ into quintiles, and the variation of γ by trade size is
reported for each quintile group. The trade-by-trade data is used in the calculation. For
the daily data, the results are similar but stronger for Lag=1, and weaker and statistically
insignificant for Lag=2.
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changes after skipping a trade. The conditional version of γ2 can be calculated as the negative

of Cov
(
Pt − Pt−1, Pt+2 − Pt+1

∣
∣ Vt ∈ bracket s

)
, for s = 1, 2, . . . , 6. The empirical estimates

are reported in Panel B of Table 11. Again, we see a quite robust pattern of decreasing γ2(s)

with increasing trade size bracket s, indicating that even skipping a trade, there are weaker

reversals after large-size trades and stronger reversals after small-size trades.

Overall, our results demonstrate a clear negative relation between trade sizes and our

illiquidity measure. The interpretation of this result, however, requires caution. It would be

simplistic to infer from this pattern that larger trades face less illiquidity or have less impact on

prices. It is important to realize that both trades sizes and prices are endogenous variables.

Their relation arises from an equilibrium outcome in which traders optimally choose their

trading strategies, taking into account the price dynamics and the impact of their trades. For

example, when liquidity varies over time, traders may optimally break up their trades when

liquidity is low. Consequently, during less liquid times, we see more small trades and a larger

illiquidity measure γ.

5 Illiquidity and Bid-Ask Spread

It is well known that the bid-ask spread can lead to negative autocovariance in price changes.

For example, using a simple specification, Roll (1984) shows that when transactions prices

bounce between bid and ask prices, depending on whether they are sell or buy orders from

customers, their changes exhibit negative autocovariance even when the “underlying value”

follows a random walk. Thus, it is important to ask whether or not the negative autoco-

variances documented in this paper are simply a reflection of bid-ask bounce. Using quoted

bid-ask spreads, we show in Table 2 that the associated bid-ask bounce can only generate a

tiny fraction of the empirically observed autocovariance in corporate bonds. Quoted spreads,

however, are mostly indicative rather than binding. Moreover, the structure of the corpo-

rate bond market is mostly over-the-counter, making it even more difficult to estimate the

actual bid-ask spreads.17 Thus, a direct examination of how bid-ask spreads contribute to our

illiquidity measure γ is challenging.

We can, however, address this question to certain extent by taking advantage of the results

by Edwards, Harris, and Piwowar (2007) (EHP hereafter). Using a more detailed version of the

17The corporate bond market actually involves different trading platforms, which provide liquidity to differ-
ent clienteles. In such a market, a single bid-ask spread can be too simplistic in capturing the actual spreads
in the market.
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TRACE data that includes the side on which the dealer participated, they provide estimates

of effective bid-ask spreads for corporate bonds. To examine the extent to which our illiquidity

measure γ can be explained by the estimated bid-ask spread, we use our illiquidity measure γ to

compute the implied bid-ask spreads, and compare them with the estimated bid-ask spreads

reported by EHP. The actual comparison will not be exact, since our sample of bonds is

different from theirs. Later in the section, we will discuss how this could affect our analysis.

It is first instructive to understand the theoretical underpinning of how our estimate of γ

relates to the estimate of bid-ask spreads in EHP. In the Roll (1984) model, the transaction

price Pt takes the form of equation (1), in which P is the sum of the fundamental value and a

transitory component. Moreover, the transitory component equals to 1
2
S qt in the Roll model,

with S being the bid-ask spread and qt indicating the direction of trade. Specifically, q is +1

if the transaction is buyer initiated and −1 if it is seller initiated, assuming that the dealer

takes the other side. More specifically, in the Roll model, we have

Pt = Ft + 1
2
S qt . (5)

If we further assume that qt is i.i.d. over time, the autocovariance in price change then becomes

−(S/2)2, or γ = (S/2)2. Conversely, we have

SRoll = 2
√

γ , (6)

where we call SRoll the implied bid-ask spread.

EHP use an enriched Roll model, which allows the spreads to depend on trade sizes. In

particular, they assume

Pt = Ft + 1
2
S(Vt) qt , (7)

where Vt is the size of the trade at time t.18 Since the dataset used by EHP also contains

information about qt, they directly estimate the first difference of equation (7), assuming a

factor model for the increments of Ft.

Table 12 reproduces the results of EHP, who estimate percentage bid-ask spreads for

average trade sizes of $5K, $10K, $20K, $50K, $100K, $200K, $500K and $1M. The cross-

sectional medians of the percentage bid-ask spreads are 1.20%, 1.12%, 96 bps, 66 bps, 48

bps, 34 bps, 20 bps and 12 bps, respectively. To compare with their results, we form trade

18The model EHP use has an additional feature. It distinguishes customer-dealer trades from dealer-dealer
trades. The spread they estimate is for the customer-dealer trades. Thus, in (7), we simply do not identify
dealer-dealer trades. This decreases our estimate of γ relative to EHP since we are including inter-dealer
trades which have a smaller spread than customer-dealer trades.
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Table 12: Implied and Estimated Bid-Ask Spreads

Full Sample Period EHP Subperiod
γ-Implied γ-Implied EHP Estimated

trade size #bonds mean med #bonds mean med EHP size mean med
≤ 7, 500 1,201 2.05 1.76 956 2.06 1.81 5K 1.50 1.20
(7500, 15K] 1,209 1.82 1.61 1,069 1.98 1.79 10K 1.42 1.12
(15K, 35K] 1,211 1.69 1.41 1,067 1.81 1.60 20K 1.24 0.96
(35K, 75K] 1,210 1.43 1.15 925 1.39 1.20 50K 0.92 0.66
(75K, 150K] 1,183 1.13 0.90 831 1.00 0.89 100K 0.68 0.48
(150K, 350K] 1,088 0.82 0.70 701 0.67 0.66 200K 0.48 0.34
(350K, 750K] 1,126 0.69 0.59 801 0.60 0.57 500K 0.28 0.20
> 750K 1,144 0.64 0.55 982 0.52 0.54 1,000K 0.18 0.12

The bid-ask spreads are calculated as a percentage of the market value of the bond and are
reported in percentages. The EHP bid-ask spread estimates are from Table 4 of Edwards,
Harris, and Piwowar (2007), and the EHP subperiod is Jan. 2003 to Jan. 2005. Our bid-ask
spreads are obtained using Roll’s measure: 2

√
γ divided by the average market value of the

bond. The sample of bonds differs from that in EHP, and our selection criteria bias us toward
more liquid bonds with smaller bid-ask spreads.

size brackets that center around their reported trade sizes. For example, to compare with

their trade size $10K, we calculate our illiquidity measure γ conditional on trade sizes falling

between $7.5K and $15K, and then calculate the implied bid-ask spread. Using the average

price for the respective bond, we further convert the spread to percentage spread so as to

compare with the EHP result. The results are reported in Table 12, where to correct for the

difference in our respective sample periods, we also report our implied bid-ask spreads for the

period used by EHP. For the EHP sample period, the cross-sectional medians of our implied

percentage bid-ask spreads are 1.81%, 1.79%, 1.60%, 1.20%, 89 bps, 66 bps, 57 bps, and 54

bps, respectively. As we move on to compare our median estimates to those in EHP, it should

be mentioned that this is a simple comparison by magnitudes, not a formal statistical test.

Overall, our implied spreads are much higher than those estimated by EHP. For small

trades, our median estimates of implied spreads are over 50% higher than those by EHP.

Moving to larger trades, the difference becomes even more substantial. Our median estimates

are close to doubling theirs for the average sizes of $100K and $200K, close to tripling theirs for

the average size of $500K, and more than quadrupling theirs for the average size of $1,000K.

In fact, our estimates are biased downward for the trade size group around $1,000K, since our

estimated bid-ask spreads include all trade sizes above $750K, including trade sizes of $2M,

$5M, and $10M, whose median bid-ask spreads are estimated by EHP to be 6 bps, 2 bps,

and 2 bps, respectively. We have to group such trade sizes because in the publicly available
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TRACE data, the reported trade size is truncated at $1M for speculative grade bonds and at

$5M for investment grade bonds.

In addition to differing in sample periods, which is easy to correct, our sample is also

different from that used in EHP in the composition of the bonds that are used to estimate

the bid-ask spreads. In particular, our selection criteria bias our sample towards highly liquid

bonds. For example, to be included in our sample, the bond has to trade at least 75% of

business days, while the median frequency of days with a trade is only 48% for the bonds used

in EHP. The median average trade sizes is $467K in 2003 and $405K in 2004 for the bonds

used in our sample, compared with $240K for the bonds used in EHP; the median average

number of trades per month is 148 in 2003 and 118 in 2004 for the bonds in our sample,

while the median average number of trades per day is 1.1 for the bonds used in EHP. Given

that more liquid bonds typically have smaller bid-ask spreads, the difference between our

implied bid-ask spreads and EHP’s estimates would have been even more drastic had we been

able to match our sample of bonds to theirs. It is therefore our conclusion that the negative

autocovariance in price changes observed in the bond market is much more substantial than

merely the bid-ask effect. And our measure of illiquidity captures more broadly the impact of

illiquidity in the market.

Finally, one might be curious as to what is the exact mechanism that drives our estimates

apart from those by EHP. After all, within the Roll model as specified in equation (6), our

estimates should be identical to theirs. The fact that our results are so different is a clear

rejection of the model. Under the Roll model, using equation (5) to identify bid-ask spread S

implies regressing ΔPt on Δqt. But using our model specified in equation (1) as a reference,

it is possible that the transitory component ut does not take the simple form of 1
2
S qt. More

specifically, the residual of this regression of ΔPt on Δqt might still exhibit a high degree of

negative autocovariance, simply because ut is not fully captured by 1
2
S qt. If that is true,

then our measure of illiquidity captures the transitory component more completely: both the

bid-ask bounce associated with 1
2
S qt and the additional mean-reversion that is not related to

bid-ask bounce. Using a dataset from Market Access, we are able to confirm this conjecture

on the trades going through its trading platform.

6 Conclusions

The main objective of our paper is to gauge the level of illiquidity in the corporate bond

market and to examine its key properties and implications. Using a theoretically motivated
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measure of illiquidity, i.e., the amount of price reversals as captured by the negative of au-

tocovariance of prices changes, we show that this illiquidity measure is both statistically and

economically significant for a broad cross-section of corporate bonds examined in this paper.

We demonstrate that the magnitude of the reversals is beyond what can be explained by bid-

ask bounce. We also show that the reversals exhibit significant asymmetry: price reversals are

on average stronger after a price reduction than a price increase. Simple contrarian strategies

that take advantage of these price reversals yield substantial profits.

We find that a bond’s illiquidity is related to several bond characteristics. In particular,

illiquidity increases with a bond’s age and maturity, but decreases with its rating and issue

size. While a bond’s illiquidity shows little relation with its market risk exposures, as measured

by its beta with respect to the stock and bond market indices, it is positively related to its

idiosyncratic return volatility. We also find that price reversals are inversely related to trade

sizes. That is, prices changes accompanied by small trades exhibit stronger reversals than

those accompanied by large trades.

Furthermore, the illiquidity of individual bonds fluctuates substantially over time. More

interestingly, these time fluctuations display important commonalities. For example, the av-

erage illiquidity over all bonds, which represents a market-wide illiquidity, increases sharply

during the periods of market turmoil such as the downgrade of Ford and GM to junk status

around May of 2005 and the sub-prime market crisis starting in August 2007. Exploring the

relation between changes in the market-wide illiquidity and other market variables, we find

that changes in illiquidity are positively related to changes in VIX while negatively related

to lagged returns of the aggregate stock market. Surprisingly, there is only a weak relation

with changes in the default spread and lagged returns of the aggregate bond market. Using

principal component analysis, we further show that changes in illiquidity of individual bonds

share four principal components, which explain over 80% of the variation in the liquidity of

bond portfolios sorted on their characteristics.

We also find important pricing implications associated with bond illiquidity. Our result

shows that for two bonds in the same rating category, a one-standard-deviation difference in

their illiquidity measure would set their yield spreads apart by over 40 bps. This result re-

mains robust in magnitude and statistical significance, after controlling for bond fundamental

information and bond characteristics including those commonly related to bond liquidity.

Our results raise several questions concerning the liquidity of corporate bonds. First, what

are the underlying factors giving rise to the high level of illiquidity? This question is particu-
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larly pressing when we contrast the magnitude of our illiquidity measure in the corporate bond

market against that in the equity market. Second, what causes the fluctuations in the overall

level of illiquidity in the market? Are these fluctuations merely another manifestation of more

fundamental risks or a reflection of new sources of risks such as a liquidity risk? Third, does

the high level of illiquidity for the corporate bonds indicate any inefficiencies in the market?

If so, what would be the policy remedies? We leave these questions for future work.
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