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Global Warming

I have been lecturing on this subject to my classes for 39 years, so this
lecture was condensed from my course lectures and updated with the
most current information.

My point of view is most certainly that of the scientific community - that
global warming is real, it is happening now and will continue into the
future, and that the distractors of global warming fail to (or do not wish
to) understand the fundamental science of global warming.

In this current form of the lecture I have added voiceover to the slides.
The commentary is synchronized with the slides; when the audio stops
the slides will automatically advance to the next slide.
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You can pause the slide show at any time using the “f” key (for freeze);

to restart use any key.



Part 1;

General discussion of temperature and warming, and why
there is a disconnect between the scientist and the nonscientist.

Part 2;

The science of global warming, this is how it works.



Do We Understand Temperature?
What is the temperature of this room?

Where would you measure the temperature of this room?
How would you measure the temperature?
When do you measure the temperature of the room?
Can we call this measurement the “average” room temperature?
We have illustrated some complexities in the meaning of temperature. Temperature is a
point measurement, and when applied to an extended object, we must agree on the specifics

of where, how, and when to make a consensus “room temperature” measurement. Beyond
this we must also reach a consensus on what averages we want to know.

You can pause the slide show at any time using the “f” key (for freeze); to restart use any key.



So, what is the temperature of the Earth?

Where do we place the thermometers?

How do you average these spatially diverse measurements?

How long should the record be to give a significant average measurement?

Difficult as it might be there are experts that labor over the global data set
and carefully weigh the quality and distribution of the data to achieve the
mean global temperature and its changes over time. These are peer
reviewed and become consensus determinations. The following slide
provides a summary of the many attempts to determine the global
temperature.

I recommend that you pause the next slide after the commentary is
finished and study the slides details.

You can pause the slide show at any time using the “f” key (for freeze); to restart use any key.
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In order to make any sense out of global temperature data sets, the
measurements must be “massaged”- calibrated, adjusted, smoothed,
averaged, etc. This is not an easy task, but once this is done with historical
data, new data sets can be added using the consensus methodology.

I think there is a more convincing way to measure global
warming; that is to let the Earth do the averaging for us. We
can observe changes in glaciers. Changes in sea ice, land ice,
and snow cover. Changes in insect populations. Changes in
soil moisture. Changes in vegetation. These and many other
Earth System components respond to changes in climate.

Before we examine some of these Earth-integrated observed
changes let’s look at another obstacle in the communication
between the scientist and the nonscientists.



Do We Understand Warming?

We will perform a gedanken experiment. This is a virtual or thought experiment. I
think that we are all sufficiently familiar with the behavior of the experiment that we
can bypass actually doing it.

We have a block of ice into which we drill a hole to its center and insert a
thermometer. We next place the block of ice into a pot and place the pot on a burner of
a stove. We turn the burner on and record the temperature. We are warming the pot!
Now, you tell me what happens initially?
The temperature does not change (it is 0°C), but we are warming the pot.
Now what happens next?
When the ice melts the temperature increases; we are still warming the pot.

What happens next?

When the water starts boiling the temperature is again constant (100°C). And we are
still warming the pot.

Conclusion. Increasing temperature is not a necessary test of warming. The Earth
system is much much more complex than our pot of ice/water. The “mean global
temperature” may not always reflect global warming The most frequent
misunderstanding made by nonscientists is to interpret global warming as increasing
temperatures. How often I have heard people say things like, “ How can this be
global warming when we have had such a cold winter here in the mid-west?”



In my opinion, the scientific community made a mistake
decades ago when trying to convince the general public of
the dangers of global warming by focusing upon global
temperature. It simply doesn’t convey the proper message.

Suppose you tell your Houston business persons that by 2020
the global average temperature will increase by 1°C. What
probably goes through their mind is, “Gosh, will I be able to
play golf in January?”

The global average temperature does not properly convey the
real message of global warming, and mayj, in fact, be
misleading to the general public.

Take this example: the oceans have a hugh heat capacity
compared to the atmosphere and land (the part that interacts
with weather and climate changes). For a 1°C change in the
“global average temperature” the oceans might change by
0.2°C while the land change would be 3°C. I can assure you
the increasing our average mid-continent land temperature
3°C will lead to droughts and extensive agriculture failures.

The scientific community has now realized the importance of
forecasting regional impacts of global warming and pointing
to the observed changes that are already taking place.



Some Observed Consequences of Global Warming
(IPCC Report AR4, November 2007, and AR3, September 2001)

Eleven of the last twelve years (1995-2006) rank among the twelve warmest years in the
instrumental record of global surface temperature (since 1850).

Rising sea level is consistent with warming.

Observed decreases in snow and ice extent are also consistent with warming. Arctic sea ice
extent has shrunk by ~3% per decade, with larger decreases in summer of ~7% per decade.

It is very likely that over the past 50 years: cold days, cold nights and frosts have become
less frequent over most land areas, and hot days and hot nights have become more
frequent.

There is observational evidence of an increase in intense tropical cyclone activity in the
North Atlantic since about 1970.

Average Northern Hemisphere temperatures during the second half of the 20th century
were very likely higher than during any other 50-year period in the last 500 years and likely
the highest in at least the past 1300 years.

Changes in snow, ice and frozen ground have with high confidence increased the number
and size of glacial lakes, increased ground instability in mountain and other permafrost
regions and led to changes in some Arctic and Antarctic ecosystems.

In terrestrial ecosystems, earlier timing of spring events and poleward and upward shifts
in plant and animal ranges are with very high confidence linked to recent warming,.



There has been a widespread retreat of mountain glaciers in non-polar regions during
the 20th century.

It is likely that there has been about a 40% decline in Arctic sea-ice thickness during
late summer to early autumn in recent decades and a considerably slower decline in
winter sea-ice thickness.

Tide gauge data show that global average sea level rose between 0.1 and 0.2 meters
during the 20th century.

Warm episodes of the El Nifio-Southern Oscillation (ENSO) phenomenon (which
consistently affects regional variations of precipitation and temperature over much of
the tropics, sub-tropics and some mid-latitude areas) have been more frequent,
persistent and intense since the mid-1970s, compared with the previous 100 years.

Ocean waters are becoming more acidic as they soak up carbon dioxide, the main
global warming gas. And while there's evidence that coral reefs can find ways to adapt
to waters warmed by global climate change, there's no proof that they can cope with
more-acidic oceans. But a new research paper in the journal Science says their
problems may be getting worse. The paper says as much as a third of the world's coral
species may now be headed toward extinction.

Climate change is "largely irreversible" for the next 1,000 years even if carbon dioxide
(CO2) emissions could be abruptly halted, according to a new study published in this
week's Proceedings of the National Academy of Sciences (1/29/09). This is because the
oceans are currently soaking up a lot of the planet's excess heat — and a lot of the
carbon dioxide put into the air. The carbon dioxide and heat will eventually start
coming out of the ocean. And that will take place for many hundreds of years.



Some Personal Observations.

Drunken Trees

Missing Glacier
(Turnagain Arm & Portage Glacier; also Glacier National Park and Kilimanjaro)

Grosbeaks & Crossbeaks
House Finches
Yellowjackets

Pine Bark Beetles

(Entomologist say 4 consecutive days Of -10°F required to kill a beetle larva.)
Ips Bark Beetle

Gulf Coast Hurricanes
Ike, Gustav, Dolly, Humberto, Dean, Ernesto, Cindy, Dennis, Emily, Katrina, Rita, Stan,
Wilma, Beta, 2005 used up the alphabet then switched to Greek - alpha through zeta.

Wildfires
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FAQ 1.1, Figure 1. Estimate of the Earth's annual and global mean energy balance. Over the long term, the amount of incoming solar radiation absorbed by the Earth and
atmaosphere is balanced by the Earth and atmosphere releasing the same amount of outgoing longwave radiation. About half of the incoming solar radiation is absorbed by the
Earth’s surface. This energy is transferred to the atmosphere by warming the air in contact with the surface (thermals), by evapotranspiration and by longwave radiation that is
absorbed by clouds and greenhouse gases. The atmosphere in tum radiates longwave energy back to Earth as well as out to space. Source: Kiehl and Trenberth (1997).

Also, the
global
mean
includes
the polar
regions.
By the
way, the
tropical
cloud
tops are
colder
than the
polar
regions.

7

— o —




Reflected Solar Incoming 235 Outgoing
Radiation Solar Longwave
107 Wm? Radiation Radiation

342 Wm* 235 Wm?

Reflected by Clouds,
Aerosol and .
Atmospheric Emitted by 40
Gases Aimosphoere g Atmospheric
77 Window
Emitted by Clouds

Absorbed by Greenhouse
67 Atmosphere Gases

FAQ 1.1, Figure 1. Estimate of the Earth's annual and global mean energy balance. Over the long term, the amount of incoming solar radiation absorbed by the Earth and
atmaosphere is balanced by the Earth and atmosphere releasing the same amount of outgoing longwave radiation. About half of the incoming solar radiation is absorbed by the
Earth’s surface. This energy is transferred to the atmosphere by warming the air in contact with the surface (thermals), by evapotranspiration and by longwave radiation that is
absorbed by clouds and greenhouse gases. The atmosphere in tum radiates longwave energy back to Earth as well as out to space. Source: Kiehl and Trenberth (1997).

17% of
IR out

Also, the
global
mean
includes
the polar
regions.
By the
way, the
tropical
cloud
tops are
colder
than the
polar
regions.

7

— o —




83% of
IR out

Reflected Solar Incoming 235 Outgoing
Radiation Solar Longwave
107 Wm? Radiation Radiation

342 Wm* 235 Wm?

Reflected by Clouds,
Aerosol and .
Atmospheric Emitted by 40
Gases Aimosphoere g Atmospheric
77 Window
Emitted by Clouds

Absorbed by Greenhouse
67 Atmosphere Gases

FAQ 1.1, Figure 1. Estimate of the Earth's annual and global mean energy balance. Over the long term, the amount of incoming solar radiation absorbed by the Earth and
atmaosphere is balanced by the Earth and atmosphere releasing the same amount of outgoing longwave radiation. About half of the incoming solar radiation is absorbed by the
Earth’s surface. This energy is transferred to the atmosphere by warming the air in contact with the surface (thermals), by evapotranspiration and by longwave radiation that is
absorbed by clouds and greenhouse gases. The atmosphere in tum radiates longwave energy back to Earth as well as out to space. Source: Kiehl and Trenberth (1997).

17% of
IR out

Also, the
global
mean
includes
the polar
regions.
By the
way, the
tropical
cloud
tops are
colder
than the
polar
regions.

7

— o —




Reflected Solar
Radiation
107 Wm??

Reflected by Clouds,
Aerosol and
Atmospheric

Gases

77

83% of
IR out

Incoming
Solar
Radiation
342 Wm*

Emitted by
Atmosphere 165

Emitted by Clouds

Absorbed by
67 Atmosphere

Outgoing
Longwave
Radiation
235 Wm™?

40
Atmospheric
Window

Greenhouse
Gases

FAQ 1.1, Figure 1. Estimate of the Earth's annual and global mean energy balance. Over the long term, the amount of incoming solar radiation absorbed by the Earth and
atmaosphere is balanced by the Earth and atmosphere releasing the same amount of outgoing longwave radiation. About half of the incoming solar radiation is absorbed by the
Earth’s surface. This energy is transferred to the atmosphere by warming the air in contact with the surface (thermals), by evapotranspiration and by longwave radiation that is
absorbed by clouds and greenhouse gases. The atmosphere in tum radiates longwave energy back to Earth as well as out to space. Source: Kiehl and Trenberth (1997).

When viewing the Earth from space in the infrared, you see mostly the

atmosphere and clouds; the surface contributes but a small fraction. The

atmosphere and clouds are much colder than the surface.

17% of
IR out

Also, the
global
mean
includes
the polar
regions.
By the
way, the
tropical
cloud
tops are
colder
than the
polar
regions.

7
\_/



This component is the albedo.
72% is from the atmosphere.
28% is from the surface.
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Most of the solar
radiation that is not
reflected (albedo)
passes though the
atmosphere and warms
the Earth’s surface.
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A small fraction of
the surface radiation
passes through the
atmosphere to space.

Most of the surface
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atmosphere.
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The final result of this interaction of the atmosphere with the upward and
downward radiation is that the surface is warmed by both the Sun and the
atmosphere. This is global warming. When the greenhouse gasses increase, the
warming increases - the law of radiation transfer. This result is unavoidable.
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Simplified greenhouse model of two internally isothermal atmospheric layers but
with different temperatures. The upward and downward fluxes at each level must be
equal. Start at the top level; one F down must be matched by one F up. Each layer
must radiate the same flux down that it radiates up; thus the top layer radiates one F
down. Now there are two Fs down into the bottom layer, which must be matched by
two Fs up and down. This makes three Fs down to the surface, which must radiate
three Fs up. The temperature must increase downward because the lower layers must
radiate more flux than the higher layers.



The next step is to use
a multilevel model for
an atmosphere.
Current large
numerical models for
Earth use at least 15
layers. Consider the
2-layer model here.

Venus: A=0.75 Teg=232K
Earth: A=0.30 Tg= 255K
Venus: Ts=737K
Earth: Ts= 288K

F \l/ /ﬂ‘ F Greenhouse V =505K( or C)

Greenhouse E = 33K (or C)
Using the simple model on

this slide for Venus requires 19
F \l/ /ﬂ\ 2F layers of atmospheres!

UF
FJ 1 3F
UoF

Simplified greenhouse model of two internally isothermal atmospheric layers but

with different temperatures. The upward and downward fluxes at each level must be

equal. Start at the top level; one F down must be matched by one F up. Each layer

must radiate the same flux down that it radiates up; thus the top layer radiates one F
down. Now there are two Fs down into the bottom layer, which must be matched by
two Fs up and down. This makes three Fs down to the surface, which must radiate
three Fs up. The temperature must increase downward because the lower layers must
radiate more flux than the higher layers.

In this model of surface warming, adding greenhouse
gasses is analogous to adding layers to this model.
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When the Earth is viewed from space in visible radiation,
we mostly see clouds (19 units, white)
and air (6 units, blue);
least is the surface (3 units, various colors).
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important to the energy balance between the surface and the atmosphere.
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Of the 114 units of IR radiated upward from the surface, 5 units pass through the OCEAN CURRENTS
atmosphere to space while 109 units are absorbed by the atmosphere. Sensible
heat and latent heat add 29 units of upward energy into the atmosphere.
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When the Earth is viewed from space in infrared radiation,
we mostly see air and clouds (67 units),
and a small surface contribution (5 units).

Note the following:

The downward IR radiation from the atmosphere (96 units) is larger than the downward
solar radiation (47 units) by a factor more than 2.

More solar radiation arrives at the surface after atmospheric scattering processes (25 units)
than by direct sunlight (22).

Energy balance at the surface is only achieved when sensible and latent heats are included.
Solar in 22 + 25 =47
IR in 96
IR out -114; Sensible and Latent out -29; Total out = -143
Net = -47
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FAQ 2.1, Figure 2. Summary of the principal components of the radiative forcing of climate change. All these
radiative forcings result from one or more factors that affect climate and are associated with human activities or
natural processes as discussed in the text. The values represent the forcings in 2005 relative to the start of the
industrial era (about 1750). Human activities cause significant changes in long-lived gases, ozone, water vapour,
surface albedo, aerosols and contrails. The only increase in natural forcing of any significance between 1750 and
2005 occurred in solar irradiance. Positive forcings lead to warming of climate and negative forcings lead to a
cooling. The thin black line attached to each coloured bar represents the range of uncertainty for the respective
value. (Figure adapted from Figure 2.20 of this report.)
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Not shown is water vapor, a
strong greenhouse gas; the
lifetime for water vapor in

the atmosphere is 7-10 days.

Although a natural
atmospheric component
evaporation increases with
surface warming; this is a
positive feedback process
that responds to carbon
dioxide increases.
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FAQ 2.1, Figure 2. Summary of the principal components of the radiative forcing of climate change. All these
radiative forcings result from one or more factors that affect climate and are associated with human activities or
natural processes as discussed in the text. The values represent the forcings in 2005 relative to the start of the
industrial era (about 1750). Human activities cause significant changes in long-lived gases, ozone, water vapour,
surface albedo, aerosols and contrails. The only increase in natural forcing of any significance between 1750 and
2005 occurred in solar irradiance. Positive forcings lead to warming of climate and negative forcings lead to a
cooling. The thin black line attached to each coloured bar represents the range of uncertainty for the respective
value. (Figure adapted from Figure 2.20 of this report.)
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Frequently Asked Question 7.1

Are the Increases in Atmospheric Carbon Dioxide

and Other Greenhouse Gases During the Industrial Era
Caused by Human Activities?

Yes, the increases in atmospheric carbon dioxide (CO,) and
other greenhouse gases during the industrial era are caused by hu-
man activities. In fact, the observed increase in atmospheric CO,
concentrations does not reveal the full extent of human emissions in
that it accounts for only 55% of the CO, released by human activity
since 1959. The rest has been taken up by plants on land and by
the oceans. In all cases, atmospheric concentrations of greenhouse
gases, and their increases, are determined by the balance between
sources (emissions of the gas from human activities and natural
systems) and sinks (the removal of the gas from the atmosphere
by conversion to a different chemical compound). Fossil fuel com-
bustion (plus a smaller contribution from cement manufacture] is
responsible for more than 75% of human-caused CO, emissions.
Land use change (primarily deforestation] is responsible for the re-
mainder. For methane, another important greenhouse gas, emis-
sions generated by human activities exceeded natural emissions
over the last 25 years. For nitrous oxide, emissions generated by
human activities are equal to natural emissions to the atmosphere.
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Carbon dioxide is the primary villain!

Two important greenhouse gasses for the past 440 years; CO; and CHas.

ey — 800
=
-4 600 g
=
4400 §
300 4 200
z
S 250
2
N
O 200 I —
: 0
150 a5 ©
@
L
40 8
3
4 -5 g
Q
e
R: 1 1 1 1 1 1 1 e _10 )
0 50 100 150 200 250 300 350 400 =

Age (thousands of years)

Fig. 2.31 Comparison of methane, carbon dioxide, and estimated temperature (from oxygen and deuterium isotope ratios) from
the Vostok ice core, Antarctica, over the last 440 thousand years. The location of Vostok is indicated by the red dot in Fig. 2.13.
Note that the time axis runs from right to left. [Adapted from J. R. Petit et al., “Climate and atmospheric history of the past
420,000 years from the Vostok ice core, Antarctica.” Nature, 399, p. 431, 1999. Courtesy of Eric Steig.]
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The Earth has not experienced this level of CO:; in the last 440 thousand years; other ice cores
go back 650 thousand and show the same result.
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The Earth has not experienced this level of CO: in the last 440 thousand years; other ice cores
go back 650 thousand and show the same result.



Variations of the Earth's surface temperature for:

(a) the past 140 years
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Simulated annual global mean surface temperatures

(a) Natural (b) Anthropogenic
1.0 1.0

model
— observations

model
— observations

O
ol
o
o

Temperature anomalies (°C)
o
o

Temperature anomalies (°C)
o
o

-0.5 -05 | i
=20k . ! g 10! | | |
1850 1900 1950 2000 1850 1900 1950 2000
Year Year

(c) All forcings

Natural: volcanos,

Year

sy 160 r '
O i model solar
oy - — observations
% 0.5 F Anthropogenic:
= i greenhouse gasses,
- B .
S 0.0} AU A pollution, land use
= _
e iE : The modeling is
= L E improving
D
" ot - “
] 24 | I
1850 1800 1950 2000

Figure 4: Simulating the Earth’s temperature variations, and comparing the results to measured changes, can provide insight into the
underlying causes of the major changes.
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Figure 1.1. Yearly global average surface temperature {Brohan et al., 2006), rela-
five to the mean 1961 to 1990 values, and as projected in the FAR (IPCC, 1990), SAR
(IPCC, 1996) and TAR (IPCC, 2001a). The ‘best estimate” mode! projections from the
FAR and SAR are in solid lines with their range of estimated projections shown by the
shaded areas. The TAR did not have ‘best estimate’ model projections but rather a
range of projections. Annual mean observations (Section 3.2) are depicted by biack
circles and the thick biack line shows decadal vanations obtained by smoothing the
fime series using a 13-point filter.
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This is the measurement from Mauna Loa.
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This is the measurement from Mauna Loa.
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This is the measurement from Mauna Loa.
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From IPCC 2001
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From Schlesinger 1991

Simplified using only the most active exchanges; no very long time scale exchanges.
Small quantitative differences.
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We can create a simple computer model using STELLA to test the carbon cycle as given.
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This is the measurement from Mauna Loa.
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Model Runs changing the Unknown Sink
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Model Runs changing the Unknown Sink
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The previous result with
Unknown Sink =0
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The previous result with
Unknown Sink =0
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output, but we are still not in
agreement with measurements.
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Our “Net carbon to the atmosphere” was 5 Gt/yr; yet with an unknown sink = 2
Gt/yr we are not yet matching the measurement. What are we missing?



Temporarily ighore the red curve.
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Temporarily ighore the red curve.
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Temporarily ighore the red curve.
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Temporarily ighore the red curve.

The previous results with
Unknown Sink =0
Unknown Sink =2

Setting the Unknown Sink to 4
Gt/yr improves the model
output, but we are still not in
agreement with measurements.
Note the large deviation from
the measurements in the last
half of the model run.
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The previous results with
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Unknown Sink =2
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The previous results with
Unknown Sink =0
Unknown Sink =2

Setting the Unknown Sink to 4
Gt/yr improves the model
output, but we are still not in
| . agreement with measurements.
M{\WW _ Note the large deviation from

| MW\NWW‘ the measurements in the last

half of the model run.
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On this model run we have also displayed the carbon in the Land Plants,
which we now see is decreasing significantly because of deforestation.
When Land Plants decrease, the photosynthesis also decreases and a major
natural carbon sink decreases, so the Unknown Sink = 4 is insufficient.



8 oz
4004

B 3501
&
)
hI
1: 0
1958.00 1969.50 1981.00 1992.50 2004.00
Page 5 Years 12:54 PM  Wed, Jul 27, 2005

q 8 @ ? Unknown Sink = 0.0 and Deforestation = -0.5



The previous results with
Unknown Sink =0
Unknown Sink =2
Unknown Sink =4
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Hypothesis. Deforestation seems to be inconsistent with the CO, measurements. What if the
“Unknown Sink” is going into enhanced forest growth to compensate for the deforestation?
This next model run sets Unknown Sink = 0 and “Deforestation” = -0.5, a small net gain.
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This is a very simple modeling exercise, but it can provide powerful
insights into how the Earth system interacts with human perturbations.



Summary

* Greenhouse gasses warm the Earth’s surface. Increasing greenhouse gasses
increases the warming. This is a consequence of the Laws of Radiation Transfer

and is unavoidable.
* Humankind’s emissions of greenhouse gasses have increased the atmospheric

load of these gasses beyond anything the Earth has experienced in 650,000 years.

 The Earth’s global temperature is very difficult to determine; temperature is
influenced by other processes in the Earth system, and the range of

temperature change is so small (< 1°C) that it is an unconvincing parameter to
use for public discussions. Sea level rise is only slightly better.

* More convincing evidence of global warming is available from changes in the
Earth system that integrate the impacts of surface warming such as glaciers, ice
sheets, sea ice, snow cover, ecological changes, etc. All of these measures point to
a warming Earth.

* Humanity is currently emitting 7 Gt C/yr (fourteen trillion (14,000,000,000,000) pounds per
year) into the atmosphere. The Earth can only handle half that quantity at best;
the rest is accumulating in the atmosphere and is producing observable
greenhouse warming of the Earth’s surface.

* The way that the Earth is dealing with this part CO; overload is in increased
forest growth and over saturation of oceanic CO». Eventually, the oceans will
release its excess CO; back into the atmosphere, and the new forest growth will
mature and no longer be a sink for CO..



So, what do we do?

* The usual litany: energy conservation, renewable energy, etc. These will help and
are good directions to move, but they are insufficient - too little, too late, but necessary.
* More oil and gas production: This is the wrong direction but unavoidable.

* Nuclear: Probably unavoidable - very expensive.

* Geoengineering;:

(1)Fertilizing the oceans - probably won’t work.

(2)Seeding clouds - questionable and expensive.

(3)Sequestering CO2 underground - questionable reservoirs and expensive.
(4)Sequestering CO- on the ocean bottom - dangerous and expensive.

My suggestion.

* Listen to what the Earth is telling us. Put it in the oceans and forests.

* QOcean storage is temporary and acidifying the ecosystem.

* Reforestation and afforestation is also temporary unless managed continuously.
Mature trees must be cut and and used so as to remove the wood from the decay cycle.
(1)Pulped wood will return to the atmosphere in short time.

(2)Construction wood will be sequestered for much longer time.

(3)Wood used for energy can displace fossil fuel thus is a permanent reduction in
released CO2.
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The figure shows cumulative carbon-stock changes for a scenario involving afforestation and
harvest for a mix of traditional forest products with some of the harvest being used as a fuel.
Values are illustrative of what might be observed in the southeastern USA or Central Europe.
Regrowth restores carbon to the forest and the (hypothetical) forest stand is harvested every 40
years, with some litter left on the ground to decay, and products accumulate or are disposed of
in landfills. These are net changes in that, for example, the diagram shows savings in fossil fuel
emissions with respect to an alternative scenario that uses fossil fuels and alternative, more
energy-intensive products to provide the same services.



