
RMT 2016 Advanced Topics Test Solutions February 20, 2016

1. List all triples of positive integers {p1, p2, p3} where p1, p2, and p3 are all prime, p1 < p2 < p3,
and p1, p2 differ by 2, p2, p3 differ by 2. For example {6, 8, 10} is a triple that satisfies the last
two properties, but not the first one, so it is not included in the answer.

Answer: {3, 5, 7}
Solution: Let a be the smallest element of such a triple, so the triple is {a, a+2, a+4}. Looking
at the remainders mod 3, our triple becomes {a, a+2, a+1}, and it is clear that no matter what
a is, exactly one element in the triple will be divisible by 3. Since the only prime divisible by
3 is 3, one of the numbers in the triple must be 3. {−1, 1, 3} and {1, 3, 5} do not work because
1 is not a prime (and −1 is not positive), but {3, 5, 7} does, and it is the only triplet with the
required properties, so {3, 5, 7} is the answer.

2. An ant is walking on the edges of an icosahedron of side length 1. Compute the length of the
longest path that he can take if he never crosses the same edge twice, but is allowed to revisit
vertices.

Answer: 25

Solution: For any vertex except the starting and ending vertices, the ant can only visit 4 of the
adjacent 5 edges. (The number of times the ant enters must be the number of times he exist,
hence even.)

There are 12 vertices, so the sum over all vertices of the number of adjacent edges the ant
transverses is at most: 2 · 5 + 4 · 10 = 50 .

This counts each edge twice, so any such path has length bounded by 25. It remains to construct
such a path.

3. Compute the number of trailing zeros of 2016!.

Answer: 502

Solution: Each trailing zero is formed from a factor of 2 and a factor of 5. There are more
factors of 2 than factors of 5 in 2016!, so we need only to count the number of factors of 5.

• 2016
5 = 403.2, so 403 numbers contribute one factor of 5

• 2016
25 = 80.6, so of the 403 numbers that contribute one 5, 80 contribute another factor of 5.

• 2016
125 = 16.13, so of the 80 numbers contributing 2 factors of 5, 16 contribute another one.

• 2016
625 = 3.226, so of the 16 numbers contributing 3 factors of 5, 3 contribute another one.

• 2016
3125 < 1, so no number less than or equal to 2016 contributes 5 factors of 5.

We therefore have 403 + 80 + 16 + 3 = 502 trailing zeros.

4. A positive integer n > 1 is called multiplicatively perfect if the product of its proper divisors
(divisors excluding the number itself) is n. For example, 6 is multiplicatively perfect since
6 = 1× 2× 3. Compute the number of multiplicatively perfect integers less than 100.

Answer: 32

Solution: Let n > 1 be a multiplicatively perfect integer. Then we can write it in the form
n = mp where m is any integer (possibly 1) and p is prime. If m = 1, then n is prime and its
only proper divisor is 1 so it cannot be multiplicatively perfect.

Next, suppose m = p. Then n = p2 for some prime p and its proper divisors are 1 and p.
However, the product of 1 and p cannot equal p2, so it follows that m 6= p. Since m 6= 1 and
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m 6= p, the proper divisors of n must contain at least 1, m, and p. Since 1×m× p = n already,
n cannot have any other proper divisors, or else the product would be greater than n.

If r is a proper divisor of m, then it is also a proper divisor of n. Since we reasoned that the
only proper divisors of n are 1,m, p, it follows that either r = 1 or r = p (r 6= m since r is a
proper divisor of m). Therefore, the only proper divisors of m are 1 or p so there are only two
possibilities. Either m = p2 or m = q for some prime q 6= p. Thus, n is multiplicatively perfect
if and only if n = p3 or n = pq for distinct primes p, q.

Counting all integers 1 < n < 100 of the form p3 or pq gives us 32 multiplicatively perfect
numbers less than 100.

5. Let d(n) be the number of positive integer divisors of a positive integer n. For example, d(6) = 4,
because the divisors of 6 are 1, 2, 3, and 6. Compute

∞∑
n=1

d(n)

n2
,

given that
∞∑
n=1

1
n2 = π2

6 .

Answer: π4

36

Solution: We have that d(n) =
∑
d|n

1, so
∞∑
n=1

d(n)
n2 =

∞∑
n=1

∑
d|n

1
n2 =

∞∑
i=1

∞∑
j=1

1
(ij)2

=
∞∑
i=1

1
i2

∞∑
j=1

1
j2

=(
π2

6

)2
= π4

36 .

6. Suppose n > 0 is an integer which, when written in base 10, has all digits either 0 or 1. If 17
evenly divides n, find the smallest possible value of n.

Answer: 11101

Solution: We find this n in an algorithmic way. We start with the number 1 and construct a tree
of remainders modulo 17; the first time we encounter a 0 we will get the smallest number which
is divisible by 17 and which has decimal representation using only 0, 1. This is the construction
of the tree: each node containing the integer k splits off into two nodes, the left node contains
10k mod 17 and the right node contains 10k + 1 mod 17. Whenever a node appears with a
remainder that has already been seen, we do not have to continue computation for that node
because it will only result in a larger number divisible by 17. If we call 1 the base of the tree,
we find 0 at the location 2 right, 1 left, 1 right from the base. This corresponds to the number
11101 because we started with 1 and as we traverse the tree, we append digits to the right of

our number. Every time we move to the right we append a 1 and every time we move to the left
we append a 0. Then number 11101 is indeed divisible by 17, and no smaller number is divisible
by 17 because the numbers in the tree increase with each level and within levels they increase
left to right.

7. Lennart and Eddy are playing a betting game. Lennart starts with 7 dollars and Eddy starts
with 3 dollars. Each round, both Lennart and Eddy bet an amount equal to the amount of the
player with the least money. For example, on the first round, both players will bet 3 dollars. A
fair coin is then tossed. If it lands heads, Lennart wins all the money bet; if it lands tails, Eddy
wins all the money bet. They continue playing this game until someone has no money. What is
the probability that Eddy ends with 10 dollars?
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Answer: 3
10

.

Solution: We note that each player has expected winnings of 0 dollars per round. Therefore,
each player has expected winnings of 0 dollars for the entire game. Note that Eddy can only
end the game with 0 or 10 dollars, which are respectively −3 and 7 dollars in winnings. Since
Eddy should have expected winnings of 0, his probability of winning 7 dollars is 3

10 .

Solution: There is a brute force solution. Let px denote the probability Eddy wins given that
he has x dollars. Then, note that

p3 =
1

2
p6,

p6 =
1

2
+

1

2
p2,

p2 =
1

2
p4,

p4 =
1

2
p8,

p8 =
1

2
+

1

2
p6.

Doing lots of substitutions, we get that

p6 =
1

2
+

1

2

(
1

2

(
1

2

(
1

2
+

1

2
p6

)))
=

9

16
+

1

16
p6.

Therefore, p6 = 3
5 and p3 = 3

10 .

8. Consider a 2011 × 2012 grid of points from (1, 1) to (2011, 2012) with the point (1066, 1453)
removed. Starting at (1, 1) and only moving up or to the right at each step, compute the
number of different ways you can get to (2011, 2012). You may express your answer using
multiple binomial coefficients.

Answer:
(4021
2010

)
−
(2517
1065

)(1504
945

)
Note that

(4021
2010

)
=
(4021
2011

)
,
(2517
1065

)
=
(2517
1452

)
,
(1504
945

)
=
(1504
559

)
.

Solution: Thinking of a path from (1, 1) to (m,n) as the m+n− 2-term sequence where m− 1
elements are Right and n−1 elements are Up, each possible sequence generates a different path,
and every path can be represented by one such sequence. Thus, there are

(
m+n−2
m−1

)
such paths.

Letting m = 2011 and n = 2012 yields us
(
4021
2010

)
from (1, 1) to (2011, 2012). From these paths

we must subtract the ones that go through (1066, 1453). Any such first goes from (1, 1) to
(1066, 1453) (with

(
2517
1065

)
possibilities) and then must go from (1066, 1453) to (2011, 2012) (with(

1504
945

)
possibilities). Thus the answer is

(
4021
2010

)
−
(
2517
1065

)(
1504
559

)
.

9. Let X1, X2, X3, .. be a sequence of strings of 0s and 1s derived in the following manner: X1 =
“1”, and Xn+1 is formed by replacing every “0” in Xn with a “1”, and replacing every “1” in Xn

with “11000”. Thus X1 = “1”, X2 = “11000”, X3 = “1100011000111”, and so on. How many
times does “01” occur in X2016?

Answer: 32015−3
4

Solution: Let un be the number of “0”s in Xn, and let vn be the number of “1”s in Xn. From
the formula given for Xn+1, it is clear that the “0” from each occurence of “01” in Xn+1 comes
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from a unique “1” in Xn, so there are at most vn occurences of “01” in Xn+1. Furthermore,
since “0” and “1” are both replaced by strings beginning with “1”, for each “1” in Xn, if it is
followed by either a “0” (“10”) or a “1” (“11”), it produces a “01” instance in Xn+1. Thus the
only way a “1” in Xn does not lead to a “01” in Xn+1 is if it is the last digit in Xn, because
there are no “1”s to follow the “11000”. We conclude that “01” occurs vn times in Xn+1 if Xn

ends with a “0”, and it occurs vn − 1 times when Xn ends with a “1”. Since “1” is replaced by
a string ending in “0” and “0” is replaced by a string ending in “1”, it follows that Xn ends in
a “1” for odd n and ends in a “0” for even n. Thus the occurences of “01” in Xn is vn−1 for n
odd and vn−1 − 1 for n even.

To calculate vn, we note that the formula for Xn tells us immediately that un+1 = 3vn and
vn+1 = 2vn + un = 2vn + 3vn−1, and so

vn+1 = 2vn + 3vn−1.

Suppose a number a satisfies a2 = 2a + 3. Then a3 = 2a2 + 3a = 2(2a + 3) + 3a = 7a + 6.
By induction, it follows that an = vna + Dn. The value of Dn is irrelevant because there are
2 numbers a with this property, and they are the solutions to a2 − 2a − 3 = 0, which are -1,3.
Thus for each n, we have

3n = 3vn + Dn

(−1)n = (−1)vn + Dn,

where Dn is the same for both equations. Subtracting the second equation from the first, we get

3n − (−1)n = (3− (−1))vn + Dn −Dn,

which yields

vn =
3n − (−1)n

3− (−1)
=

3n − (−1)n

4
.

Since 2016 is even, we get that “01” occurs v2015 − 1 = 32015−3
4 times in X2016.

10. A continuous real-valued function f on the positive real numbers has the property that for all
positive x and y, f(xy) = xf(y) + yf(x). Determine all such functions f .

Answer: cx log x

Solution: For any positive a and any positive integer n, f(an) = nan−1f(a), which may be
verified by induction. The n = 1 case is trivially true. If f(ak) = kak−1f(a) for some positive
integer k, then f(ak+1) = f(ak · a) = akf(a) + af(ak) = (k + 1)akf(a). f(1) = f(1 · 1) =
1f(1) + 1f(1) = 2f(1), so f(1) = 0. For any positive a, 0 = f(1) = f(a · 1a) = af( 1a) + 1

af(a), so
f( 1a) = − 1

a2
f(a). Thus f(a−n) = f(( 1a)n) = n( 1a)n−1f( 1a) = na−n+1(− 1

a2
f(a)) = −na−n−1f(a).

Therefore, for all positive a and all integers n, f(an) = nan−1f(a). Additionally, f(a) =

f((a
1
n )n) = n(a

1
n )n−1f(a

1
n ) = na1−

1
n f(a

1
n ), so f(a

1
n ) = 1

na
1
n
−1f(a). Thus for all rational

numbers q = m
n , where m and n are integers, and all positive a, f(aq) = f(a

m
n ) = f((a

1
n )m) =

m(a
1
n )m−1f(a

1
n ) = ma

m
n
− 1

n ( 1
na

1
n
−1f(a)) = m

n a
m
n
−1f(a) = qaq−1f(a). Because f is continuous,

ar is continuous in r for any fixed positive a, and any real number can be approximated to
arbitrary precision by rational numbers (i.e. any real number can be written as the limit of a
sequence of rational numbers), for all real numbers r and all positive real numbers a, f(ar) =

rar−1f(a). Therefore, for all positive x, f(x) = f(elog x) = (log x)elog x−1f(e) = x log x · f(e)e =

cx log x, where c = f(e)
e can be any real constant.


