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1. Clyde is making a Pacman sticker to put on his laptop. A Pacman sticker is a circular sticker
of radius 3 inches with a sector of 120◦ cut out. What is the perimeter of the Pacman sticker in
inches?

Answer: 4π + 6

Solution: The perimeter of a circle with radius 3 in is 2πr = 6π. The sector cut out decreases
the perimeter by 120

360 = 1
3 of its perimeter and adds in two lines of length 3. Thus, the perimeter

of the sticker is 2
3(6π) + 2 · 3 = 4π + 6 .

2. In a certain right triangle, dropping an altitude to the hypotenuse divides the hypotenuse into
two segments of length 2 and 3 respectively. What is the area of the triangle?

Answer: 5
√

6
2

Solution: Denote the right triangle ABC with hypotenuse BC. Let D be the intersection of
the altitude and BC and let CD = 2 and BD = 3. Triangle ACD is similar to triangle ABC
so AC

CD = BC
AC . Thus, AC =

√
BC · CD =

√
5 · 2 =

√
10. Triangle ABD is similar to triangle

ABC so AB
BD = BC

AB . Thus, AB =
√
BC ·BD =

√
5 · 3 =

√
15. Therefore, the area of ABC is

1
2 ·
√

10 ·
√

15 =
5
√

6

2
.

3. Consider a triangular pyramid ABCD with equilateral base ABC of side length 1. AD = BD =
CD and ∠ADB = ∠BDC = ∠ADC = 90◦. Find the volume of ABCD.

Answer:
√

2
24

Solution: Let E be the center of equilateral triangle ABC so that DE is the height of the
pyramid. Then AE is the distance from a vertices of equilateral triangle ABC to its centroid,
and so is 2

3
sqrt3

2 = 1√
3
. Since AD = BD and ∠ADB = 90◦, ADB is a 45-45-90 triangle and

hence AD = AB√
2

= 1√
2
. Thus, by Pythagoras, DE =

√
AD2 −AE2 = 1√

6
. Now, the area of the

base ABC is
√

3
4 so the volume of ABCD is 1

3 ·
1√
6
·
√

3
4 =

√
2

24
.

4. Two circles with centers A and B respectively intersect at two points C and D. Given that
A,B,C,D lie on a circle of radius 3 and circle A has radius 2, what is the radius of circle B?

Answer: 4
√
2

Solution: First, note that by symmetry, ∠ACB = ∠ADB. Next, since A,B,C,D lie on a
circle, the quadrilateral ACBD is cyclic and hence opposite corners ∠ACB and ∠ADB sum to
180◦. Therefore, it follows that ∠ACB = ∠ADB = 90◦ so AB must be the diameter of the
circle containing points A,B,C,D. Since this circle has radius 3, AB = 6. Next, AC is a radius
of circle A so AC = 2 and BC is a radius of circle B. Applying Pythagoras to the triangle ABC,
we have

AC2 +BC2 = AB2

22 +BC2 = 62

BC2 = 32

BC = 4
√

2
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5. Consider two concentric circles of radius 1 and 2. Up to rotation, there are two distinct equilateral
triangles with two vertices on the circle of radius 2 and the remaining vertex on the circle of
radius 1. The larger of these triangles has sides of length a, and the smaller has sides of length
b. Compute a+ b.

Answer:
√
15

Solution 1: Let a equilateral triangle ABC have A lie on the circle of radius 1 and B,C lie on
the circle of radius 2. Since ABC is equilateral and BC is a chord of the circle of radius 2, the
center of the circles and A must lie on the perpendicular bisector of BC. We see that the two
configurations correspond to where A,B,C all lie on the same semicircle and where A,B,C do
not all lie on the same semicircle.

We first solve for the side length when A,B,C do not all lie on the same semicircle. Let O
denote the center of circle and let D denote the midpoint of BC. In addition, let s denote the
side length of ABC. Since A,B,C do not all lie on the same semicircle, we must have O inside
A.

Since ABC is equilateral, it must have height AD =
√

3s
2 . In addition, we know that BD = s

2 ,

AO = 1, and BO = 2. Thus, DO = AD − AO =
√

3s−2
2 . Now, applying the Pythagorean

theorem to triangle BDO, we have

BD2 +DO2 = BO2

(s
2

)2
+

(√
3s− 2

2

)2

= 22

s2 + 3s2 − 4
√

3s+ 4 = 16

s2 −
√

3s− 3 = 0

Thus, it follows that s =
√

3±
√

3+4·3
2 . The side length of the equilateral triangle is thus the

positive value s =
√

3+
√

15
2 .

Next, suppose A,B,C all lie on the same semicircle. Then O does not lie inside ABC. Again,

let s denote the side length of ABC. We still have AD =
√

3s
2 , AO = 1, BO = 2, BD = s

2 ,

but this time DO = AD + AO =
√

3s+2
2 . Applying the Pythagorean theorem to triangle BDO

again, we have

BD2 +DO2 = BO2

(s
2

)2
+

(√
3s+ 2

2

)2

= 22

s2 + 3s2 + 4
√

3s+ 4 = 16

s2 +
√

3s− 3 = 0

So s = −
√

3+
√

15
2 . The sum of the two possible side lengths is therefore

√
3+
√

15
2 + −

√
3+
√

15
2 =

√
15 .

Solution 2: Let the smaller triangle be ABC and the larger triangle be A′B′C ′. Let the center
of the circles with O, and without loss of generality, let A and A′ be coincident. Finally, let B
and B′ be on opposite sides of the line AO. Then by symmetry we have that lines BB′ and CC ′
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form a pair of intersecting chords in the circle of radius 2, intersecting at A = A′. Let the side
length of ABC be a and the side length of A′B′C ′ be b. Draw the diameter OA, intersecting
the radius 2 circle at points X and Y , and use power of a point to see that the power of A = A′

is (AX)(AY ) = 3 · 1 = 3. Thus, (AB)(A′B′) = (AC)(A′C ′) = ab = 3.

Now consider the point E where A′B′ intersects the circle of radius 1. Drop a perpendicular
from O to the point D on A′B′. The triangle OA′D is then a 30-60-90 triangle with hypotenuse
of length 1. Thus, A′D =

√
3/2, and A′E =

√
3, as AOE is isosceles. Finally, note that by

symmetry, BA′ = EB′ = a. But since A′B′ = b = AE+EB′ =
√

3+a, we have that b =
√

3+a.

Plugging this in to ab = 3, we solve for a and b and find that a+ b =
√

15

6. In a triangle ABC, let D and E trisect BC, so BD = DE = EC. Let F be the point on AB

such that
AF

FB
= 2, and G on AC such that

AG

GC
=

1

2
. Let P be the intersection of DG and EF ,

and extend AP to intersect BC at a point X. Find
BX

XC
.

Answer:
2

3

Solution: Note that DG happens to be parallel to AB as BD
DC = AG

GC = 1
2 . Therefore triangles

DEP and BEF are similar so we have DP
BF = DE

BE = 1
2 . This implies that DP = BF

2 = AB
6 . Next,

triangles DPX and ABX are similar so we have BX
DX = AB

PD = 6. Hence, BX = 6
5BD = 2

5BC

and XC = BC −BX = 3
5BC. So we conclude that BX

XC =
2

3
.

7. A unit sphere is centered at (0, 0, 1). There is a point light source located at (1, 0, 4) that sends
out light uniformly in every direction but is blocked by the sphere. What is the area of the
sphere’s shadow on the x-y plane? (A point (a, b, c) denotes the point in three dimensions with
x-coordinate a, y-coordinate b, and z-coordinate c).

Answer: 3
√

2π
2

Solution: The region in space that is in shadow due to the sphere is a cone. Therefore, the
sphere’s shadow on the xy plane is the intersection of a cone and a plane, which is an ellipse.
We proceed to compute the major and minor axes of the ellipse.

First, note that since the y-coordinate of the sphere’s center and the light source both equal
0, one of the axes must lie along the x-axis. The axes of an ellipse are perpendicular to one
another, so the remaining axis must be parallel to the y-axis.

Now, consider projecting everything onto the xz plane (that is, simply disregard the y coordi-
nate). The sphere is projected onto a unit circle centerd at (0, 1), the light source is projected
to the point (1, 4), and the ellipse is projected onto its horizontal axis. Let ABC be the triangle
consisting of the light source A and let B,C be the two ends of the ellipse’s axis. The circle is
thus the incircle of ABC, and we see that ABC must be a right angle triangle with ∠ABC = 90◦.
Let D be the point where the incircle intersects AB, E be the point where the incircle intersects
BC, and F be the point where the incircle intersects AC. Then AD = AF = 3, BD = BE = 1
and CF = CE. By Pythagoras, AB2 + BC2 = AC2 so 42 + (1 + CE)2 = (3 + CE)2. Solving
for CE, we find CE = 2, so the horizontal axis of the ellipse BC = 3.

Next, we project everything onto the yz plane. This time, the ellipse is projected onto its vertical
axis. Again, let A be the light source and B,C be the endpoints of the ellipse’s axis. Then ABC
is a isoceles triangle with AB = BC and the unit sphere is projected onto the incircle of ABC.
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If we let D be the intersection of the incircle and AB, E be the intersection of the incircle and
AC, and F be the intersection of the incircle and BC, then we have CE = CF = BD = BF and
AD = AE. Let O denote the center of the incircle. Then OA = 3 and OD = OE = OF = 1.
By Pythagoras, AE2 + OD2 = OA2 so AE =

√
32 − 12 = 2

√
2. Applying Pythagoras again,

to ACF , we have AF 2 + CF 2 = AC2 so 42 + CF 2 = (2
√

2 + CF )2. Solving for CF , we have
CF =

√
2. Thus, the vertical axis BC is equal to 2 · CF = 2

√
2.

The sphere’s shadow on the xy plane is hence an ellipse with axes 3 and 2
√

2 so the area of the

shadow is 3
2 ·

2
√

2
2 · π =

3
√

2π

2
.

8. Consider the parallelogram ABCD such that CD = 8 and BC = 14. The diagonals AC and

BD intersect at E and AC = 16. Consider a point F on the segment ED with FD =
√

66
3 .

Compute CF .

Answer:
√

148
3

Solution 1: First, note that in a parallelogram the diagonals bisect each other so AE = CE =
AC
2 = 8 and BE = DE. Thus, triangle CDE is isoceles with CD = CE = 8. Drop an altitude
CG from C onto DE. Then DG = EG and BG = 3EG. Applying Pythagoras to triangles
CEG and CBG, we have CE2 − EG2 = CG2 = CB2 −BG2. Thus,

82 − EG2 = 142 − (3EG)2

8EG2 = 132

EG =

√
66

2

and the altitude is CG =
√
CE2 − EG2 =

√
64− 66

4 =
√

190
2 . Now, since FG = DG − FD =

EG− FD =
√

66
2 −

√
66
3 =

√
66
6 . Applying Pythagoras to triangle CFG, we have

CF 2 = FG2 + CG2

=
66

36
+

190

4

=
148

3

so CF =

√
148

3
.

Solution 2: By the parallelogram law,

(AD)2 + (BC)2 + (AB)2 + (CD)2 = (AC)2 + (BD)2

142 + 142 + 82 + 82 = 162 + (BD)2

(BD)2 = 264

BD = 2
√

66

Thus

EF =
2
√

66

3
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Let x = CF .

By Stewart’s Theorem:

8 ·
√

66

3
· 8 + 8 · 2

√
66

3
· 8 = x ·

√
66 · x+

√
66 · 2

√
66

3
·
√

66

3

64
√

66

3
+

128
√

66

3
= x2

√
66 +

132
√

66

9

64
√

66 = x2
√

66 +
44
√

66

3

64 = x2 +
44

3

x2 =
192− 44

3

x =

√
148

3

9. Triangle ABC is isoceles with AB = AC = 2 and BC = 1. Point D lies on AB such that the
inradius of ADC equals the inradius of BDC. What is the inradius of ADC?

Answer:
√

15−
√

3
8

Solution: Now, let y denote CD and let x denote BD so AD = 2 − x. Since the area of a
triangle is equal to its semiperimeter times its inradius and triangle ADC and BDC have the
same inradius, the ratio of their areas is the ratio of their semiperimeters. Thus, ∆ADC

∆BDC = 4−x+y
1+y+x .

However, the ratio of their areas is also equal to the ratio AD
BD . Thus, we have that

4− x+ y

1 + y + x
=

2− x
x

4x− x2 + xy = 2 + 2x+ 2y − x− x2 − xy
2y − 2xy = 3x− 2

y =
3x− 2

2− 2x

Next, note that cos(∠ABC) = 1
4 since the altitude from A bisects BC. Applying the law of

cosines to triangle BDC, we have

y2 = x2 + 12 − 2x cos(∠ABC)

= x2 − x

2
+ 1

Combining these two equations, we can solve for x:

x2 − x

2
+ 1 =

(
3x− 2

2− 2x

)2

(2− 2x)2(2x2 − x+ 2) = 2(3x− 2)2

8x4 − 20x3 + 24x2 − 20x+ 8 = 18x2 − 24x+ 8

8x4 − 20x3 + 6x2 + 4x = 0

4x4 − 10x3 + 3x2 + 2x = 0
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Now, notice that x = 0 and x = 2 are extraneous solutions so we may divide out by x and (x−2)

to obtain the quadratic 4x2 − 2x − 1 which has solutions x = 1±
√

5
4 . One solution is negative

so we may discard it and hence we conclude that x = 1+
√

5
4 . Plugging in x into the equation

y = 3x−2
2−2x , we see that y =

√
5

2 .

Now, let r denote the inradius of ADC, which is equal to the inradius of BDC. We have that

∆ADC + ∆BDC = ∆ABC. The height of triangle ABC is

√
22 −

(
1
2

)2
=
√

15
2 so the area of

ABC is 1
2 ·
√

15
2 · 1 =

√
15
4 . The area of ADC is its semiperimeter 4−x+y

2 times r and the area of

BDC is its semiperimeter 1+x+y
2 times r. Thus, we have that

4− x+ y

2
r +

1 + x+ y

2
r =

√
15

4

(5 + 2y)r =

√
15

2

(5 +
√

5)r =

√
15

2

r =

√
15

2(5 +
√

5)

r =

√
15−

√
3

8

10. For a positive real number k and an even integer n ≥ 4, the k-Perfect n-gon is defined to be the
equiangular n-gon P1P2 . . . Pn with PiPi+1 = Pn/2+iPn/2+i+1 = ki−1 for all i ∈ {1, 2, . . . , n/2},
assuming the convention Pn+1 = P1 (i.e. the numbering wraps around). If a(k, n) denotes the

area of the k-Perfect n-gon, compute a(2,24)
a(4,12) .

Answer: 5− 25
4

√
2 + 25

4

√
6

Solution 1: We find a general formula for
a(k, 4n)

a(k2, 2n)
.

Let P1P2 . . . P4n be the k-Perfect 4n-gon. Consider the 2n-gon P1P3 . . . P4n−1, obtained by
taking every other vertex starting with P1.

For any i, 1 ≤ i ≤ 2n− 2, 4P1P2P3 ∼ 4PiPi+1Pi+2 with a ratio of ki−1 : 1, by SAS similarity.
Therefore, PiPi+2 = kiP1P3 for any such i. Similarly, for i with 2n ≤ i ≤ 4n − 2, we have
PiPi+2 = ki−2n+1P1P3. So, we conclude that P1P3 . . . P4n−1 is similar to the k2-Perfect 2n-gon,
by a ratio of P1P3 : 1.

By the Law of Cosines,

P1P3 =

√
12 + k2 − 2 · 1 · k cos

(
π − 2π

4n

)
=

√
1 + k2 + 2k cos

( π
2n

)
.

Therefore, the area of P1P3 . . . P4n−1 is(
1 + k2 + 2k cos

( π
2n

))
a(k2, 2n).

If we remove this 2n-gon from our larger 4n-gon, we are left with 2n similar triangles. Each has
an angle of π − π

2n with incident edges in a ratio of 1 : k. For each i ∈ {0, 2, . . . , n − 1}, there



RMT 2015 Geometry Test Solutions February 14, 2015

are two such triangles where the edges incident have lengths k2i and k2i+1. We want to relate
the sum of the areas of these triangles to a(k2, 2n) somehow.

Let A be a point in the plane, and construct rays
−−→
AB0,

−−→
AB1,

−−→
AB2, . . . ,

−−→
ABn all emanating from

A such that
−−→
ABi is π

n radians clockwise with respect to
−−−−→
ABi−1. Note that this makes points B0,

Bn, and A collinear. Now, for each i ∈ {0, . . . , n}, let Ci be the point on
−−→
ABi that is k2i units

from A. Consider the n+ 1-gon C0C1 . . . Cn. For each i ∈ {0, . . . , n−1}, 4AC0C1 ∼ 4ACiCi+1

with ratio k2i. This implies that Ci−1Ci = k2iC0C1. Moreover, the similar triangles also give
us that ∠C0C1C2

∼= ∠Ci−1CiCi+1 = π −m∠C0AC1 = π − π
n for any i ∈ {1, . . . , n − 1}. This

is sufficient to demonstrate that C0C1 . . . Cn is similar to half of the k2-Perfect 2n-gon, with a
ratio of C0C1 : 1.

We can compute C0C1 also by the law of cosines, getting

C0C1 =

√
12 + k4 − 2 · 1 · k2 cos

(π
n

)
=

√
1 + k4 − 2k2 cos

(π
n

)
.

Hence, C0C1 . . . Cn has area

1 + k4 − 2k2 cos
(
π
n

)
2

· a(k2, 2n).

Our construction of C0C1 . . . Cn can be thought of as assembling the polygon from the n triangles
C0AC1, C1AC2, . . . , Cn−1ACn. These triangles are related to the ones left over from our 4n-gon.
For every triangle with edges k2i and k2i+1 meeting at an angle π − π

2n , there is a triangle with
edges k2i and k2i+2 meeting at an angle π

n . Since any triangle ABC has area 1
2ab sinC, the ratio

of the sum of areas of the triangles from the 4n-gon to the sum of the areas of the triangles we
just created is

2 sin
(
π − π

2n

)
k sin

(
π
n

) =
2 sin

(
π
2n

)
k sin

(
π
n

)
(recall that we had 2n triangles in the first set but n triangles in the second set, hence the factor
of 2). Therefore, the total area in the triangles left over from the 4n-gon is

2 sin
(
π
2n

)
k sin

(
π
n

) · 1 + k4 − 2k2 cos
(
π
n

)
2

· a(k2, 2n) =
sin
(
π
2n

) (
1 + k4 − 2k2 cos

(
π
n

))
k sin

(
π
n

) · a(k2, 2n).

Adding up, we get that

a(k, 4n)

a(k2, 2n)
= 1 + k2 + 2k cos

( π
2n

)
+

sin
(
π
2n

) (
1 + k4 − 2k2 cos

(
π
n

))
k sin

(
π
n

)
Finally, we can plug in k = 2 and n = 6. This gives us

5+4 cos
( π

12

)
+

sin
(
π
12

) (
17− 8 cos

(
π
6

))
2 sin

(
π
6

)
= 5 + 4 ·

√
6 +
√

2

4
+

√
6−
√

2

4
·
(

17− 4
√

3
)

= 5− 25

4

√
2 +

25

4

√
6 .
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Note: One might expect at first glance that for fixed k and as n goes to infinity, this ratio would
approach (k+ 1)2. In the limit, 2n-gon formed from taking every other vertex of the 4n-gon will
have side lengths that are k + 1-times that of the k2-Perfect 2n-gon, and the leftover triangles
look like their area will tend towards zero. However, we can see that their total area actually

tends to (k2−1)2

2k , which grows faster than (k + 1)2 as k goes to infinity. As k goes to 1 i.e. as
the polygons become regular, this quantity does approach 0.

Solution 2: The first solution gave us a decomposition of the k-Perfect 2n-gon into 2n similar
triangles (renaming k2 to k). We can use this decomposition to write out an explicit formula for
the area of the k-Perfect 2n-gon.

Recall that we used n similar triangles to construct a polygon of area

1 + k2 − 2k cos
(
π
n

)
2

a(k, 2n).

Triangle C0AC1 had AC0 = 1, AC1 = k, and m∠C0AC1 = π
n , so its area was

1

2
· 1 · k · sin

(π
n

)
=
k

2
sin
(π
n

)
.

The other triangles were similar, getting bigger in length by a factor of k each time, so the sum
of the areas of the n triangles is

k

2
sin
(π
n

)
(1 + k2 + · · ·+ k2(n−1)) =

k

2
sin
(π
n

) k2n − 1

k2 − 1

=
1 + k2 − 2k cos

(
π
n

)
2

a(k, 2n)

=⇒ a(k, 2n) =
k sin

(
π
n

)
(k2n − 1)

(k2 − 1)
(
1 + k2 − 2k cos

(
π
n

)) .
Hence, we have

a(k, 4n)

a(k2, 2n)
=
k sin

(
π
2n

)
(k4n − 1)(k4 − 1)

(
1 + k4 − 2k2 cos

(
π
n

))
k2 sin

(
π
n

)
(k4n − 1)(k2 − 1)

(
1 + k2 − 2k cos

(
π
2n

)) .
=

sin
(
π
2n

)
(k4 − 1)

(
1 + k4 − 2k2 cos

(
π
n

))
k sin

(
π
n

)
(k2 − 1)

(
1 + k2 − 2k cos

(
π
2n

)) .
Plugging in k = 2, n = 6 yields the same answer as before.

Note: This formula recapitulates our earlier finding that this ratio grows as O(k3) as k grows
large.

Aside: It may not be obvious that k-Perfect 2n-gons exist for any integer n and positive real k.
Here we give a constructive proof of their existence. In fact, we prove something stronger: given
any positive real numbers a1, . . . , an, we construct an equiangular 2n-gon P1P2 . . . P2n such that
PiPi+1 = Pn+iPn+i+1 = ai for all i ∈ {1, . . . , n}.
Start with P1P2 . . . P2n, a regular 2n-gon with side length a1. Now, translate the points P3

through Pn+2 by a2 − a1 units away from the other half of the points, in the direction parallel
to P2P3 (if a2 − a1 < 0, move them towards the other points). This maintains all angles and
all edge lengths, except that P2P3 = Pn+2Pn+3 = a2 now. Now do the same operation on the
points P4, P5, . . . , Pn+3, and so on. In the end, you will have constructed the desired polygon.


