1. Clyde is making a Pacman sticker to put on his laptop. A Pacman sticker is a circular sticker of radius 3 inches with a sector of 120° cut out. What is the perimeter of the Pacman sticker in inches?
Answer: $4 \pi+6$
Solution: The perimeter of a circle with radius 3 in is $2 \pi r=6 \pi$. The sector cut out decreases the perimeter by $\frac{120}{360}=\frac{1}{3}$ of its perimeter and adds in two lines of length 3 . Thus, the perimeter of the sticker is $\frac{2}{3}(6 \pi)+2 \cdot 3=4 \pi+6$.
2. In a certain right triangle, dropping an altitude to the hypotenuse divides the hypotenuse into two segments of length 2 and 3 respectively. What is the area of the triangle?
Answer: $\frac{5 \sqrt{6}}{2}$
Solution: Denote the right triangle $A B C$ with hypotenuse $B C$. Let D be the intersection of the altitude and $B C$ and let $C D=2$ and $B D=3$. Triangle $A C D$ is similar to triangle $A B C$ so $\frac{A C}{C D}=\frac{B C}{A C}$. Thus, $A C=\sqrt{B C \cdot C D}=\sqrt{5 \cdot 2}=\sqrt{10}$. Triangle $A B D$ is similar to triangle $A B C$ so $\frac{A B}{B D}=\frac{B C}{A B}$. Thus, $A B=\sqrt{B C \cdot B D}=\sqrt{5 \cdot 3}=\sqrt{15}$. Therefore, the area of $A B C$ is $\frac{1}{2} \cdot \sqrt{10} \cdot \sqrt{15}=\frac{5 \sqrt{6}}{2}$.
3. Consider a triangular pyramid $A B C D$ with equilateral base $A B C$ of side length 1. $A D=B D=$ $C D$ and $\angle A D B=\angle B D C=\angle A D C=90^{\circ}$. Find the volume of $A B C D$.
Answer: $\frac{\sqrt{2}}{24}$
Solution: Let E be the center of equilateral triangle $A B C$ so that $D E$ is the height of the pyramid. Then $A E$ is the distance from a vertices of equilateral triangle $A B C$ to its centroid, and so is $\frac{2}{3} \frac{\text { sqrt } 3}{2}=\frac{1}{\sqrt{3}}$. Since $A D=B D$ and $\angle A D B=90^{\circ}, A D B$ is a $45-45-90$ triangle and hence $A D=\frac{A B}{\sqrt{2}}=\frac{1}{\sqrt{2}}$. Thus, by Pythagoras, $D E=\sqrt{A D^{2}-A E^{2}}=\frac{1}{\sqrt{6}}$. Now, the area of the base $A B C$ is $\frac{\sqrt{3}}{4}$ so the volume of $A B C D$ is $\frac{1}{3} \cdot \frac{1}{\sqrt{6}} \cdot \frac{\sqrt{3}}{4}=\frac{\sqrt{2}}{24}$.
4. Two circles with centers A and B respectively intersect at two points C and D. Given that A, B, C, D lie on a circle of radius 3 and circle A has radius 2 , what is the radius of circle B ?

Answer: $4 \sqrt{2}$

Solution: First, note that by symmetry, $\angle A C B=\angle A D B$. Next, since A, B, C, D lie on a circle, the quadrilateral $A C B D$ is cyclic and hence opposite corners $\angle A C B$ and $\angle A D B$ sum to 180°. Therefore, it follows that $\angle A C B=\angle A D B=90^{\circ}$ so $A B$ must be the diameter of the circle containing points A, B, C, D. Since this circle has radius $3, A B=6$. Next, $A C$ is a radius of circle A so $A C=2$ and $B C$ is a radius of circle B. Applying Pythagoras to the triangle $A B C$, we have

$$
\begin{aligned}
A C^{2}+B C^{2} & =A B^{2} \\
2^{2}+B C^{2} & =6^{2} \\
B C^{2} & =32 \\
B C & =4 \sqrt{2}
\end{aligned}
$$

5. Consider two concentric circles of radius 1 and 2 . Up to rotation, there are two distinct equilateral triangles with two vertices on the circle of radius 2 and the remaining vertex on the circle of radius 1. The larger of these triangles has sides of length a, and the smaller has sides of length b. Compute $a+b$.
Answer: $\sqrt{15}$
Solution 1: Let a equilateral triangle $A B C$ have A lie on the circle of radius 1 and B, C lie on the circle of radius 2. Since $A B C$ is equilateral and $B C$ is a chord of the circle of radius 2 , the center of the circles and A must lie on the perpendicular bisector of $B C$. We see that the two configurations correspond to where A, B, C all lie on the same semicircle and where A, B, C do not all lie on the same semicircle.

We first solve for the side length when A, B, C do not all lie on the same semicircle. Let O denote the center of circle and let D denote the midpoint of $B C$. In addition, let s denote the side length of $A B C$. Since A, B, C do not all lie on the same semicircle, we must have O inside A.
Since $A B C$ is equilateral, it must have height $A D=\frac{\sqrt{3} s}{2}$. In addition, we know that $B D=\frac{s}{2}$, $A O=1$, and $B O=2$. Thus, $D O=A D-A O=\frac{\sqrt{3} s-2}{2}$. Now, applying the Pythagorean theorem to triangle $B D O$, we have

$$
\begin{aligned}
B D^{2}+D O^{2} & =B O^{2} \\
\left(\frac{s}{2}\right)^{2}+\left(\frac{\sqrt{3} s-2}{2}\right)^{2} & =2^{2} \\
s^{2}+3 s^{2}-4 \sqrt{3} s+4 & =16 \\
s^{2}-\sqrt{3} s-3 & =0
\end{aligned}
$$

Thus, it follows that $s=\frac{\sqrt{3} \pm \sqrt{3+4 \cdot 3}}{2}$. The side length of the equilateral triangle is thus the positive value $s=\frac{\sqrt{3}+\sqrt{15}}{2}$.
Next, suppose A, B, C all lie on the same semicircle. Then O does not lie inside $A B C$. Again, let s denote the side length of $A B C$. We still have $A D=\frac{\sqrt{3} s}{2}, A O=1, B O=2, B D=\frac{s}{2}$, but this time $D O=A D+A O=\frac{\sqrt{3} s+2}{2}$. Applying the Pythagorean theorem to triangle $B D O$ again, we have

$$
\begin{aligned}
& B D^{2}+D O^{2}=B O^{2} \\
&\left(\frac{s}{2}\right)^{2}+\left(\frac{\sqrt{3} s+2}{2}\right)^{2}=2^{2} \\
& s^{2}+3 s^{2}+4 \sqrt{3} s+4=16 \\
& s^{2}+\sqrt{3} s-3=0
\end{aligned}
$$

So $s=\frac{-\sqrt{3}+\sqrt{15}}{2}$. The sum of the two possible side lengths is therefore $\frac{\sqrt{3}+\sqrt{15}}{2}+\frac{-\sqrt{3}+\sqrt{15}}{2}=$ $\sqrt{15}$.
Solution 2: Let the smaller triangle be $A B C$ and the larger triangle be $A^{\prime} B^{\prime} C^{\prime}$. Let the center of the circles with O, and without loss of generality, let A and A^{\prime} be coincident. Finally, let B and B^{\prime} be on opposite sides of the line $A O$. Then by symmetry we have that lines $B B^{\prime}$ and $C C^{\prime}$
form a pair of intersecting chords in the circle of radius 2 , intersecting at $A=A^{\prime}$. Let the side length of $A B C$ be a and the side length of $A^{\prime} B^{\prime} C^{\prime}$ be b. Draw the diameter $\overline{O A}$, intersecting the radius 2 circle at points X and Y, and use power of a point to see that the power of $A=A^{\prime}$ is $(A X)(A Y)=3 \cdot 1=3$. Thus, $(A B)\left(A^{\prime} B^{\prime}\right)=(A C)\left(A^{\prime} C^{\prime}\right)=a b=3$.

Now consider the point E where $A^{\prime} B^{\prime}$ intersects the circle of radius 1 . Drop a perpendicular from O to the point D on $\overline{A^{\prime} B^{\prime}}$. The triangle $O A^{\prime} D$ is then a $30-60-90$ triangle with hypotenuse of length 1 . Thus, $A^{\prime} D=\sqrt{3} / 2$, and $A^{\prime} E=\sqrt{3}$, as $A O E$ is isosceles. Finally, note that by symmetry, $B A^{\prime}=E B^{\prime}=a$. But since $A^{\prime} B^{\prime}=b=A E+E B^{\prime}=\sqrt{3}+a$, we have that $b=\sqrt{3}+a$.
Plugging this in to $a b=3$, we solve for a and b and find that $a+b=\sqrt{15}$
6. In a triangle $A B C$, let D and E trisect $B C$, so $B D=D E=E C$. Let F be the point on $A B$ such that $\frac{A F}{F B}=2$, and G on $A C$ such that $\frac{A G}{G C}=\frac{1}{2}$. Let P be the intersection of $D G$ and $E F$, and extend $A P$ to intersect $B C$ at a point X. Find $\frac{B X}{X C}$.

Answer: $\frac{2}{3}$

Solution: Note that $D G$ happens to be parallel to $A B$ as $\frac{B D}{D C}=\frac{A G}{G C}=\frac{1}{2}$. Therefore triangles $D E P$ and $B E F$ are similar so we have $\frac{D P}{B F}=\frac{D E}{B E}=\frac{1}{2}$. This implies that $D P=\frac{B F}{2}=\frac{A B}{6}$. Next, triangles $D P X$ and $A B X$ are similar so we have $\frac{B X}{D X}=\frac{A B}{P D}=6$. Hence, $B X=\frac{6}{5} B D=\frac{2}{5} B C$ and $X C=B C-B X=\frac{3}{5} B C$. So we conclude that $\frac{B X}{X C}=\frac{2}{3}$.
7. A unit sphere is centered at $(0,0,1)$. There is a point light source located at $(1,0,4)$ that sends out light uniformly in every direction but is blocked by the sphere. What is the area of the sphere's shadow on the $x-y$ plane? (A point (a, b, c) denotes the point in three dimensions with x-coordinate a, y-coordinate b, and z-coordinate c).
Answer: $\frac{3 \sqrt{2} \pi}{2}$
Solution: The region in space that is in shadow due to the sphere is a cone. Therefore, the sphere's shadow on the $x y$ plane is the intersection of a cone and a plane, which is an ellipse. We proceed to compute the major and minor axes of the ellipse.
First, note that since the y-coordinate of the sphere's center and the light source both equal 0 , one of the axes must lie along the x-axis. The axes of an ellipse are perpendicular to one another, so the remaining axis must be parallel to the y-axis.

Now, consider projecting everything onto the $x z$ plane (that is, simply disregard the y coordinate). The sphere is projected onto a unit circle centerd at (0,1), the light source is projected to the point $(1,4)$, and the ellipse is projected onto its horizontal axis. Let $A B C$ be the triangle consisting of the light source A and let B, C be the two ends of the ellipse's axis. The circle is thus the incircle of $A B C$, and we see that $A B C$ must be a right angle triangle with $\angle A B C=90^{\circ}$. Let D be the point where the incircle intersects $A B, E$ be the point where the incircle intersects $B C$, and F be the point where the incircle intersects $A C$. Then $A D=A F=3, B D=B E=1$ and $C F=C E$. By Pythagoras, $A B^{2}+B C^{2}=A C^{2}$ so $4^{2}+(1+C E)^{2}=(3+C E)^{2}$. Solving for $C E$, we find $C E=2$, so the horizontal axis of the ellipse $B C=3$.

Next, we project everything onto the $y z$ plane. This time, the ellipse is projected onto its vertical axis. Again, let A be the light source and B, C be the endpoints of the ellipse's axis. Then $A B C$ is a isoceles triangle with $A B=B C$ and the unit sphere is projected onto the incircle of $A B C$.

If we let D be the intersection of the incircle and $A B, E$ be the intersection of the incircle and $A C$, and F be the intersection of the incircle and $B C$, then we have $C E=C F=B D=B F$ and $A D=A E$. Let O denote the center of the incircle. Then $O A=3$ and $O D=O E=O F=1$. By Pythagoras, $A E^{2}+O D^{2}=O A^{2}$ so $A E=\sqrt{3^{2}-1^{2}}=2 \sqrt{2}$. Applying Pythagoras again, to $A C F$, we have $A F^{2}+C F^{2}=A C^{2}$ so $4^{2}+C F^{2}=(2 \sqrt{2}+C F)^{2}$. Solving for $C F$, we have $C F=\sqrt{2}$. Thus, the vertical axis $B C$ is equal to $2 \cdot C F=2 \sqrt{2}$.
The sphere's shadow on the $x y$ plane is hence an ellipse with axes 3 and $2 \sqrt{2}$ so the area of the shadow is $\frac{3}{2} \cdot \frac{2 \sqrt{2}}{2} \cdot \pi=\frac{3 \sqrt{2} \pi}{2}$.
8. Consider the parallelogram $A B C D$ such that $C D=8$ and $B C=14$. The diagonals $\overline{A C}$ and $\overline{B D}$ intersect at E and $A C=16$. Consider a point F on the segment $\overline{E D}$ with $F D=\frac{\sqrt{66}}{3}$. Compute CF.
Answer: $\sqrt{\frac{148}{3}}$
Solution 1: First, note that in a parallelogram the diagonals bisect each other so $A E=C E=$ $\frac{A C}{2}=8$ and $B E=D E$. Thus, triangle $C D E$ is isoceles with $C D=C E=8$. Drop an altitude $C G$ from C onto $D E$. Then $D G=E G$ and $B G=3 E G$. Applying Pythagoras to triangles $C E G$ and $C B G$, we have $C E^{2}-E G^{2}=C G^{2}=C B^{2}-B G^{2}$. Thus,

$$
\begin{aligned}
8^{2}-E G^{2} & =14^{2}-(3 E G)^{2} \\
8 E G^{2} & =132 \\
E G & =\frac{\sqrt{66}}{2}
\end{aligned}
$$

and the altitude is $C G=\sqrt{C E^{2}-E G^{2}}=\sqrt{64-\frac{66}{4}}=\frac{\sqrt{190}}{2}$. Now, since $F G=D G-F D=$ $E G-F D=\frac{\sqrt{66}}{2}-\frac{\sqrt{66}}{3}=\frac{\sqrt{66}}{6}$. Applying Pythagoras to triangle $C F G$, we have

$$
\begin{aligned}
C F^{2} & =F G^{2}+C G^{2} \\
& =\frac{66}{36}+\frac{190}{4} \\
& =\frac{148}{3}
\end{aligned}
$$

so $C F=\sqrt{\frac{148}{3}}$.
Solution 2: By the parallelogram law,

$$
\begin{gathered}
(A D)^{2}+(B C)^{2}+(A B)^{2}+(C D)^{2}=(A C)^{2}+(B D)^{2} \\
14^{2}+14^{2}+8^{2}+8^{2}=16^{2}+(B D)^{2} \\
(B D)^{2}=264 \\
B D=2 \sqrt{66}
\end{gathered}
$$

Thus

$$
E F=\frac{2 \sqrt{66}}{3}
$$

Let $x=C F$.
By Stewart's Theorem:

$$
\begin{gathered}
8 \cdot \frac{\sqrt{66}}{3} \cdot 8+8 \cdot \frac{2 \sqrt{66}}{3} \cdot 8=x \cdot \sqrt{66} \cdot x+\sqrt{66} \cdot \frac{2 \sqrt{66}}{3} \cdot \frac{\sqrt{66}}{3} \\
\frac{64 \sqrt{66}}{3}+\frac{128 \sqrt{66}}{3}=x^{2} \sqrt{66}+\frac{132 \sqrt{66}}{9} \\
64 \sqrt{66}
\end{gathered}=x^{2} \sqrt{66}+\frac{44 \sqrt{66}}{3} .
$$

9. Triangle $A B C$ is isoceles with $A B=A C=2$ and $B C=1$. Point D lies on $A B$ such that the inradius of $A D C$ equals the inradius of $B D C$. What is the inradius of $A D C$?
Answer: $\frac{\sqrt{15}-\sqrt{3}}{8}$
Solution: Now, let y denote $C D$ and let x denote $B D$ so $A D=2-x$. Since the area of a triangle is equal to its semiperimeter times its inradius and triangle $A D C$ and $B D C$ have the same inradius, the ratio of their areas is the ratio of their semiperimeters. Thus, $\frac{\triangle A D C}{\triangle B D C}=\frac{4-x+y}{1+y+x}$. However, the ratio of their areas is also equal to the ratio $\frac{A D}{B D}$. Thus, we have that

$$
\begin{aligned}
\frac{4-x+y}{1+y+x} & =\frac{2-x}{x} \\
4 x-x^{2}+x y & =2+2 x+2 y-x-x^{2}-x y \\
2 y-2 x y & =3 x-2 \\
y & =\frac{3 x-2}{2-2 x}
\end{aligned}
$$

Next, note that $\cos (\angle A B C)=\frac{1}{4}$ since the altitude from A bisects $B C$. Applying the law of cosines to triangle $B D C$, we have

$$
\begin{aligned}
y^{2} & =x^{2}+1^{2}-2 x \cos (\angle A B C) \\
& =x^{2}-\frac{x}{2}+1
\end{aligned}
$$

Combining these two equations, we can solve for x :

$$
\begin{aligned}
x^{2}-\frac{x}{2}+1 & =\left(\frac{3 x-2}{2-2 x}\right)^{2} \\
(2-2 x)^{2}\left(2 x^{2}-x+2\right) & =2(3 x-2)^{2} \\
8 x^{4}-20 x^{3}+24 x^{2}-20 x+8 & =18 x^{2}-24 x+8 \\
8 x^{4}-20 x^{3}+6 x^{2}+4 x & =0 \\
4 x^{4}-10 x^{3}+3 x^{2}+2 x & =0
\end{aligned}
$$

Now, notice that $x=0$ and $x=2$ are extraneous solutions so we may divide out by x and $(x-2)$ to obtain the quadratic $4 x^{2}-2 x-1$ which has solutions $x=\frac{1 \pm \sqrt{5}}{4}$. One solution is negative so we may discard it and hence we conclude that $x=\frac{1+\sqrt{5}}{4}$. Plugging in x into the equation $y=\frac{3 x-2}{2-2 x}$, we see that $y=\frac{\sqrt{5}}{2}$.
Now, let r denote the inradius of $A D C$, which is equal to the inradius of $B D C$. We have that $\triangle A D C+\triangle B D C=\triangle A B C$. The height of triangle $A B C$ is $\sqrt{2^{2}-\left(\frac{1}{2}\right)^{2}}=\frac{\sqrt{15}}{2}$ so the area of $A B C$ is $\frac{1}{2} \cdot \frac{\sqrt{15}}{2} \cdot 1=\frac{\sqrt{15}}{4}$. The area of $A D C$ is its semiperimeter $\frac{4-x+y}{2}$ times r and the area of $B D C$ is its semiperimeter $\frac{1+x+y}{2}$ times r. Thus, we have that

$$
\begin{aligned}
\frac{4-x+y}{2} r+\frac{1+x+y}{2} r & =\frac{\sqrt{15}}{4} \\
(5+2 y) r & =\frac{\sqrt{15}}{2} \\
(5+\sqrt{5}) r & =\frac{\sqrt{15}}{2} \\
r & =\frac{\sqrt{15}}{2(5+\sqrt{5})} \\
r & =\frac{\sqrt{15}-\sqrt{3}}{8}
\end{aligned}
$$

10. For a positive real number k and an even integer $n \geq 4$, the k-Perfect n-gon is defined to be the equiangular n-gon $P_{1} P_{2} \ldots P_{n}$ with $P_{i} P_{i+1}=P_{n / 2+i} P_{n / 2+i+1}=k^{i-1}$ for all $i \in\{1,2, \ldots, n / 2\}$, assuming the convention $P_{n+1}=P_{1}$ (i.e. the numbering wraps around). If $a(k, n)$ denotes the area of the k-Perfect n-gon, compute $\frac{a(2,24)}{a(4,12)}$.
Answer: $5-\frac{25}{4} \sqrt{2}+\frac{25}{4} \sqrt{6}$
Solution 1: We find a general formula for $\frac{a(k, 4 n)}{a\left(k^{2}, 2 n\right)}$.
Let $P_{1} P_{2} \ldots P_{4 n}$ be the k-Perfect $4 n$-gon. Consider the $2 n$-gon $P_{1} P_{3} \ldots P_{4 n-1}$, obtained by taking every other vertex starting with P_{1}.
For any $i, 1 \leq i \leq 2 n-2, \triangle P_{1} P_{2} P_{3} \sim \triangle P_{i} P_{i+1} P_{i+2}$ with a ratio of $k^{i-1}: 1$, by SAS similarity. Therefore, $P_{i} P_{i+2}=k^{i} P_{1} P_{3}$ for any such i. Similarly, for i with $2 n \leq i \leq 4 n-2$, we have $P_{i} P_{i+2}=k^{i-2 n+1} P_{1} P_{3}$. So, we conclude that $P_{1} P_{3} \ldots P_{4 n-1}$ is similar to the k^{2}-Perfect $2 n$-gon, by a ratio of $P_{1} P_{3}: 1$.
By the Law of Cosines,

$$
P_{1} P_{3}=\sqrt{1^{2}+k^{2}-2 \cdot 1 \cdot k \cos \left(\pi-\frac{2 \pi}{4 n}\right)}=\sqrt{1+k^{2}+2 k \cos \left(\frac{\pi}{2 n}\right)} .
$$

Therefore, the area of $P_{1} P_{3} \ldots P_{4 n-1}$ is

$$
\left(1+k^{2}+2 k \cos \left(\frac{\pi}{2 n}\right)\right) a\left(k^{2}, 2 n\right) .
$$

If we remove this $2 n$-gon from our larger $4 n$-gon, we are left with $2 n$ similar triangles. Each has an angle of $\pi-\frac{\pi}{2 n}$ with incident edges in a ratio of $1: k$. For each $i \in\{0,2, \ldots, n-1\}$, there
are two such triangles where the edges incident have lengths $k^{2 i}$ and $k^{2 i+1}$. We want to relate the sum of the areas of these triangles to $a\left(k^{2}, 2 n\right)$ somehow.
Let A be a point in the plane, and construct rays $\overrightarrow{A B_{0}}, \overrightarrow{A B_{1}}, \overrightarrow{A B_{2}}, \ldots, \overrightarrow{A B_{n}}$ all emanating from A such that $\overrightarrow{A B_{i}}$ is $\frac{\pi}{n}$ radians clockwise with respect to $\overrightarrow{A B_{i-1}}$. Note that this makes points B_{0}, B_{n}, and A collinear. Now, for each $i \in\{0, \ldots, n\}$, let C_{i} be the point on $\overrightarrow{A B_{i}}$ that is $k^{2 i}$ units from A. Consider the $n+1$-gon $C_{0} C_{1} \ldots C_{n}$. For each $i \in\{0, \ldots, n-1\}, \triangle A C_{0} C_{1} \sim \triangle A C_{i} C_{i+1}$ with ratio $k^{2 i}$. This implies that $C_{i-1} C_{i}=k^{2 i} C_{0} C_{1}$. Moreover, the similar triangles also give us that $\angle C_{0} C_{1} C_{2} \cong \angle C_{i-1} C_{i} C_{i+1}=\pi-m \angle C_{0} A C_{1}=\pi-\frac{\pi}{n}$ for any $i \in\{1, \ldots, n-1\}$. This is sufficient to demonstrate that $C_{0} C_{1} \ldots C_{n}$ is similar to half of the k^{2}-Perfect $2 n$-gon, with a ratio of $C_{0} C_{1}: 1$.
We can compute $C_{0} C_{1}$ also by the law of cosines, getting

$$
C_{0} C_{1}=\sqrt{1^{2}+k^{4}-2 \cdot 1 \cdot k^{2} \cos \left(\frac{\pi}{n}\right)}=\sqrt{1+k^{4}-2 k^{2} \cos \left(\frac{\pi}{n}\right)} .
$$

Hence, $C_{0} C_{1} \ldots C_{n}$ has area

$$
\frac{1+k^{4}-2 k^{2} \cos \left(\frac{\pi}{n}\right)}{2} \cdot a\left(k^{2}, 2 n\right) .
$$

Our construction of $C_{0} C_{1} \ldots C_{n}$ can be thought of as assembling the polygon from the n triangles $C_{0} A C_{1}, C_{1} A C_{2}, \ldots, C_{n-1} A C_{n}$. These triangles are related to the ones left over from our $4 n$-gon. For every triangle with edges $k^{2 i}$ and $k^{2 i+1}$ meeting at an angle $\pi-\frac{\pi}{2 n}$, there is a triangle with edges $k^{2 i}$ and $k^{2 i+2}$ meeting at an angle $\frac{\pi}{n}$. Since any triangle $A B C$ has area $\frac{1}{2} a b \sin C$, the ratio of the sum of areas of the triangles from the $4 n$-gon to the sum of the areas of the triangles we just created is

$$
\frac{2 \sin \left(\pi-\frac{\pi}{2 n}\right)}{k \sin \left(\frac{\pi}{n}\right)}=\frac{2 \sin \left(\frac{\pi}{2 n}\right)}{k \sin \left(\frac{\pi}{n}\right)}
$$

(recall that we had $2 n$ triangles in the first set but n triangles in the second set, hence the factor of 2). Therefore, the total area in the triangles left over from the $4 n$-gon is

$$
\frac{2 \sin \left(\frac{\pi}{2 n}\right)}{k \sin \left(\frac{\pi}{n}\right)} \cdot \frac{1+k^{4}-2 k^{2} \cos \left(\frac{\pi}{n}\right)}{2} \cdot a\left(k^{2}, 2 n\right)=\frac{\sin \left(\frac{\pi}{2 n}\right)\left(1+k^{4}-2 k^{2} \cos \left(\frac{\pi}{n}\right)\right)}{k \sin \left(\frac{\pi}{n}\right)} \cdot a\left(k^{2}, 2 n\right) .
$$

Adding up, we get that

$$
\frac{a(k, 4 n)}{a\left(k^{2}, 2 n\right)}=1+k^{2}+2 k \cos \left(\frac{\pi}{2 n}\right)+\frac{\sin \left(\frac{\pi}{2 n}\right)\left(1+k^{4}-2 k^{2} \cos \left(\frac{\pi}{n}\right)\right)}{k \sin \left(\frac{\pi}{n}\right)}
$$

Finally, we can plug in $k=2$ and $n=6$. This gives us

$$
\begin{aligned}
5+ & 4 \cos \left(\frac{\pi}{12}\right)+\frac{\sin \left(\frac{\pi}{12}\right)\left(17-8 \cos \left(\frac{\pi}{6}\right)\right)}{2 \sin \left(\frac{\pi}{6}\right)} \\
& =5+4 \cdot \frac{\sqrt{6}+\sqrt{2}}{4}+\frac{\sqrt{6}-\sqrt{2}}{4} \cdot(17-4 \sqrt{3}) \\
& =5-\frac{25}{4} \sqrt{2}+\frac{25}{4} \sqrt{6} .
\end{aligned}
$$

Note: One might expect at first glance that for fixed k and as n goes to infinity, this ratio would approach $(k+1)^{2}$. In the limit, $2 n$-gon formed from taking every other vertex of the $4 n$-gon will have side lengths that are $k+1$-times that of the k^{2}-Perfect $2 n$-gon, and the leftover triangles look like their area will tend towards zero. However, we can see that their total area actually tends to $\frac{\left(k^{2}-1\right)^{2}}{2 k}$, which grows faster than $(k+1)^{2}$ as k goes to infinity. As k goes to 1 i.e. as the polygons become regular, this quantity does approach 0 .
Solution 2: The first solution gave us a decomposition of the k-Perfect $2 n$-gon into $2 n$ similar triangles (renaming k^{2} to k). We can use this decomposition to write out an explicit formula for the area of the k-Perfect $2 n$-gon.
Recall that we used n similar triangles to construct a polygon of area

$$
\frac{1+k^{2}-2 k \cos \left(\frac{\pi}{n}\right)}{2} a(k, 2 n) .
$$

Triangle $C_{0} A C_{1}$ had $A C_{0}=1, A C_{1}=k$, and $m \angle C_{0} A C_{1}=\frac{\pi}{n}$, so its area was

$$
\frac{1}{2} \cdot 1 \cdot k \cdot \sin \left(\frac{\pi}{n}\right)=\frac{k}{2} \sin \left(\frac{\pi}{n}\right) .
$$

The other triangles were similar, getting bigger in length by a factor of k each time, so the sum of the areas of the n triangles is

$$
\begin{aligned}
\frac{k}{2} \sin \left(\frac{\pi}{n}\right)\left(1+k^{2}+\cdots+k^{2(n-1)}\right) & =\frac{k}{2} \sin \left(\frac{\pi}{n}\right) \frac{k^{2 n}-1}{k^{2}-1} \\
& =\frac{1+k^{2}-2 k \cos \left(\frac{\pi}{n}\right)}{2} a(k, 2 n) \\
& \Longrightarrow a(k, 2 n)=\frac{k \sin \left(\frac{\pi}{n}\right)\left(k^{2 n}-1\right)}{\left(k^{2}-1\right)\left(1+k^{2}-2 k \cos \left(\frac{\pi}{n}\right)\right)} .
\end{aligned}
$$

Hence, we have

$$
\begin{aligned}
\frac{a(k, 4 n)}{a\left(k^{2}, 2 n\right)} & =\frac{k \sin \left(\frac{\pi}{2 n}\right)\left(k^{4 n}-1\right)\left(k^{4}-1\right)\left(1+k^{4}-2 k^{2} \cos \left(\frac{\pi}{n}\right)\right)}{k^{2} \sin \left(\frac{\pi}{n}\right)\left(k^{4 n}-1\right)\left(k^{2}-1\right)\left(1+k^{2}-2 k \cos \left(\frac{\pi}{2 n}\right)\right)} . \\
& =\frac{\sin \left(\frac{\pi}{2 n}\right)\left(k^{4}-1\right)\left(1+k^{4}-2 k^{2} \cos \left(\frac{\pi}{n}\right)\right)}{k \sin \left(\frac{\pi}{n}\right)\left(k^{2}-1\right)\left(1+k^{2}-2 k \cos \left(\frac{\pi}{2 n}\right)\right)} .
\end{aligned}
$$

Plugging in $k=2, n=6$ yields the same answer as before.
Note: This formula recapitulates our earlier finding that this ratio grows as $O\left(k^{3}\right)$ as k grows large.
Aside: It may not be obvious that k-Perfect $2 n$-gons exist for any integer n and positive real k. Here we give a constructive proof of their existence. In fact, we prove something stronger: given any positive real numbers a_{1}, \ldots, a_{n}, we construct an equiangular $2 n$-gon $P_{1} P_{2} \ldots P_{2 n}$ such that $P_{i} P_{i+1}=P_{n+i} P_{n+i+1}=a_{i}$ for all $i \in\{1, \ldots, n\}$.
Start with $P_{1} P_{2} \ldots P_{2 n}$, a regular $2 n$-gon with side length a_{1}. Now, translate the points P_{3} through P_{n+2} by $a_{2}-a_{1}$ units away from the other half of the points, in the direction parallel to $P_{2} P_{3}$ (if $a_{2}-a_{1}<0$, move them towards the other points). This maintains all angles and all edge lengths, except that $P_{2} P_{3}=P_{n+2} P_{n+3}=a_{2}$ now. Now do the same operation on the points $P_{4}, P_{5}, \ldots, P_{n+3}$, and so on. In the end, you will have constructed the desired polygon.

