1. In a Super Smash Brothers tournament, $\frac{1}{2}$ of the contestants play as Fox, $\frac{1}{3}$ of the contestants play as Falco, and $\frac{1}{6}$ of the contestants play as Peach. Given that there were 40 more people who played either Fox or Falco than who played Peach, how many contestants attended the tournament?
Answer: 60
Solution: Let x denote the number of contestants in the tournament. Then $\frac{1}{2} x+\frac{1}{3} x-\frac{1}{6} x=40$. Thus, $\frac{2}{3} x=40$ and hence $x=60$ contestants attended the tournament.
2. Find all pairs (x, y) that satisfy

$$
\begin{aligned}
x^{2}+y^{2} & =1 \\
x+2 y & =2
\end{aligned}
$$

Answer: $(0,1)$ and $\left(\frac{4}{5}, \frac{3}{5}\right)$
Solution: The second equation tells us that $x=2-2 y$. Substituting this into the first equation, we have

$$
\begin{array}{r}
(2-2 y)^{2}+y^{2}=1 \\
5 y^{2}-8 y+3=0 \\
(5 y-3)(y-1)=0
\end{array}
$$

Thus, $y=\frac{3}{5}$ or $y=1$. Plugging in these values of y and solving for x, we find that the possible solutions to the system are $(0,1),\left(\frac{4}{5}, \frac{3}{5}\right)$.
3. Find the unique $x>0$ such that $\sqrt{x}+\sqrt{x+\sqrt{x}}=1$.

Answer: $\frac{1}{9}$
Solution: We solve

$$
\begin{aligned}
\sqrt{x}+\sqrt{x+\sqrt{x}} & =1 \\
\sqrt{x+\sqrt{x}} & =1-\sqrt{x} \\
x+\sqrt{x} & =(1-\sqrt{x})^{2} \\
x+\sqrt{x} & =1+x-2 \sqrt{x} \\
3 \sqrt{x} & =1 \\
x & =\frac{1}{9}
\end{aligned}
$$

4. Find the sum of all real roots of $x^{5}+4 x^{4}+x^{3}-x^{2}-4 x-1$.

Answer: - 3

Solution 1: Notice that $x^{5}+4 x^{4}+x^{3}-x^{2}-4 x-1=x^{3}\left(x^{2}+4 x+1\right)-\left(x^{2}+4 x+1\right)=$ $\left(x^{3}-1\right)\left(x^{2}+4 x+1\right)$. The only real root of $x^{3}-1$ is 1 , and the real roots of $x^{2}+4 x+1$ are $-2 \pm \sqrt{3}$ by the quadratic formula. Thus, the sum of all real roots of the polynomial is $1+(-2+\sqrt{3})+(-2-\sqrt{3})=-3$.
Solution 2: By the rational root theorem, we quickly discover that 1 is a root of the quintic polynomial. Factoring $x-1$ out, we are left with the quartic $x^{4}+5 x^{3}+6 x^{2}+5 x+1$. This polynomial is symmetric, so we may factor it as $x^{2}\left(\left(x+\frac{1}{x}\right)^{2}+5\left(x+\frac{1}{x}\right)+4\right)$. Thus, it suffices to find the roots of $\left(x+\frac{1}{x}\right)^{2}+5\left(x+\frac{1}{x}\right)+4$. Writing $y=x+\frac{1}{x}$, we have $y^{2}+5 y+4$ which has roots $y=-1,-4$. Thus, the roots of the quartic are the solutions to the equations $x+\frac{1}{x}=-1$ and $x+\frac{1}{x}=-4$. Solving the first equation, we have

$$
\begin{aligned}
x+\frac{1}{x} & =-1 \\
x^{2}+x+1 & =0
\end{aligned}
$$

which has no real roots. The second equation gives

$$
\begin{aligned}
x+\frac{1}{x} & =-4 \\
x^{2}+4 x+1 & =0
\end{aligned}
$$

which has the roots $x=-2 \pm \sqrt{3}$.
Therefore, the sum of all real roots of the polynomial is $1+(-2+\sqrt{3})+(-2-\sqrt{3})=-3$.
5. Let $f(a, b)=\frac{1}{a+b}$ when $a+b \neq 0$. Suppose that x, y, z are distinct integers such that $x+y+z=$ 2015 and $f(f(x, y), z)=f(x, f(y, z))$ (where both sides of the equation exist and are welldefined). Compute y.
Answer: - 2015
Solution: Since $f(f(x, y), z)=f(x, f(y, z))$, we have that

$$
\frac{1}{\frac{1}{x+y}+z}=\frac{1}{x+\frac{1}{y+z}}
$$

Simplifying, we have that

$$
\begin{aligned}
x+\frac{1}{y+z} & =\frac{1}{x+y}+z \\
x(y+z)(x+y)+(x+y) & =(y+z)+z(x+y)(y+z) \\
x((y+z)(x+y)+1) & =z((x+y)(y+z)+1) \\
(x-z)((y+z)(x+y)+1) & =0
\end{aligned}
$$

Since x and z are distinct, $x-z \neq 0$ so we may divide through by $x-z$ to obtain

$$
\begin{aligned}
(y+z)(x+y)+1 & =0 \\
(y+z)(x+y) & =-1
\end{aligned}
$$

Since $x+y+z=2015, y+z=2015-x$ and $x+y=2015-z$ so

$$
(2015-x)(2015-z)=-1
$$

Since x, y, z are integers, we have that $x=2014$ and $z=2016$ (or the other way around). In either case, $y=2015-x-z=2015-2014-2016=-2015$.
6. Compute all pairs of real numbers (a, b) such that the polynomial $f(x)=\left(x^{2}+a x+b\right)^{2}+a\left(x^{2}+\right.$ $a x+b)-b$ has exactly one real root and no complex roots.
Answer: $(0,0),\left(1,-\frac{1}{4}\right)$
Solution: Let $P(x)=x^{2}+a x+b$ and $Q(x)=x^{2}+a x-b$. Then we are looking for a, b such that $Q(P(x))$ has only a single real repeated root. The roots of $Q(P(x))$ are the solutions to the equations $P(x)=r_{1}$ and $P(x)=r_{2}$ where r_{1}, r_{2} are the roots of Q. Thus, a necessary condition is for $Q(x)$ to have a repeated root, so we require that the discriminant $a^{2}+4 b=0$. Then the repeated root of Q is $r=-\frac{a}{2}$.
Now, we require that $P(x)=-\frac{a}{2}$ have a repeated root, so the discriminant of $P(x)+\frac{a}{2}$ must be zero. Therefore, we require that $a^{2}-4\left(b+\frac{a}{2}\right)=0$. From earlier, we know that $a^{2}+4 b=0$, so we may substitute in $b=-\frac{a^{2}}{4}$. Hence, we have the equation

$$
\begin{aligned}
a^{2}-4\left(-\frac{a^{2}}{4}+\frac{a}{2}\right) & =0 \\
a^{2}-a & =0 \\
a(a-1) & =0
\end{aligned}
$$

So $a=0,1$ with corresponding $b=0,-\frac{1}{4}$. Thus, the desired pairs of a and b are $(0,0),\left(1,-\frac{1}{4}\right)$.
7. Let a, b, c, d be real numbers that satisfy

$$
\begin{aligned}
a b+c d & =11 \\
a c+b d & =13 \\
a d+b c & =17 \\
a b c d & =30
\end{aligned}
$$

Find the greatest possible value of a.

Answer: $\sqrt{30}$

Solution: Note that $a b, c d$ are roots of the quadratic equation $x^{2}-11 x+30$ because $a b+c d=11$ and $a b \cdot c d=a b c d=30$. But this clearly has roots 5,6 , thus $\{a b, c d\}=\{5,6\}$. Similarly, we must have that

$$
\{a b, c d\}=\{5,6\}, \quad\{a c, b d\}=\{3,10\}, \quad\{a d, b c\}=\{2,15\} .
$$

But we have that $a^{2}=\frac{a b \cdot a c \cdot a d}{a b c d}$ is maximized when we maximize $a b, a c, a d$. Using our previous result, we set $(a b, c d)=(6,5),(a c, b d)=(10,3),(a d, b c)=(15,2)$ and conclude that the maximum of a^{2} is $\frac{6 \cdot 10 \cdot 15}{30}=30$, thus $a \leq \sqrt{30}$. Note that $(a, b, c, d)=\left(\sqrt{30}, \sqrt{\frac{6}{5}}, \sqrt{\frac{10}{3}}, \sqrt{\frac{15}{2}}\right)$ satisfies the equation $\left(b^{2}, c^{2}, d^{2}\right.$ were found in analogous ways to a^{2}), thus we have $a=\sqrt{30}$ is the greatest possible value of a.
8. The polynomial $x^{7}+x^{6}+x^{4}+x^{3}+x+1$ has roots $r_{1}, r_{2}, r_{3}, r_{4}, r_{5}, r_{6}, r_{7}$. Calculate

$$
\sum_{n=1}^{7} r_{n}^{3}+\frac{1}{r_{n}^{3}}
$$

Answer: -8

Solution 1: First, notice that -1 is a root of the polynomial. Factoring, we obtain $x^{7}+x^{6}+$ $x^{4}+x^{3}+x+1=(x+1)\left(x^{6}+x^{3}+1\right)$. Now, since $\left(x^{6}+x^{3}+1\right)\left(x^{3}-1\right)=x^{9}-1$, it follows that the roots of $x^{6}+x^{3}+1$ are the ninth primitive roots of unity. That is, the roots are $x=e^{\frac{2 \pi k i}{9}}$ for integer k that are coprime with 9 . So the roots of $x^{6}+x^{3}+1$ are $e^{\frac{2 \pi i}{9}}, e^{\frac{4 \pi i}{9}}, e^{\frac{8 \pi i}{9}}, e^{\frac{10 \pi i}{9}}, e^{\frac{14 \pi i}{9}}, e^{\frac{16 \pi i}{9}}$. Now, since $\left(e^{\frac{2 \pi k i}{9}}\right)^{3}=e^{\frac{2 \pi k i}{3}}$ and $\left(e^{\frac{2 \pi k i}{9}}\right)^{-3}=e^{-\frac{2 \pi k}{3}}$. Next, since $e^{i \theta}=\cos \theta+i \sin \theta$, it follows that

$$
e^{\frac{2 \pi k i}{3}}+e^{-\frac{2 \pi k i}{3}}=2 \cos \left(\frac{2 \pi k}{3}\right)
$$

In addition, for the root -1 , we have $(-1)^{3}+(-1)^{-3}=-2$. Therefore, the sum we seek is equal to

$$
-2+2 \cos \left(\frac{2 \pi}{3}\right)+2 \cos \left(\frac{4 \pi}{3}\right)+2 \cos \left(\frac{8 \pi}{3}\right)+2 \cos \left(\frac{10 \pi}{3}\right)+2 \cos \left(\frac{14 \pi}{3}\right)+\cos \left(\frac{16 \pi}{3}\right)=-8
$$

Solution 2: We first make the observation that if r is a root of the polynomial, then so is r^{-1}. To see this, suppose r is a root of the polynomial. Then $r^{7}+r^{6}+r^{4}+r^{3}+r+1=0$. Dividing through by r^{7} (which is nonzero since 0 is not a root), we find that $1+r^{-1}+r^{-3}+r^{-4}+r^{-6}+r^{-7}=0$ so r^{-1} is also a root.
Therefore it follows that $\sum_{n=1}^{7} r_{n}^{3}=\sum_{n=1}^{7} r_{n}^{-3}$ so the sum desired is precisely $2 \cdot \sum_{n=1}^{7} r_{n}^{3}$. We now proceed to compute $\sum_{n=1}^{\gamma} r_{n}^{3}$ via Newton's identities. Let a_{k} denote the coefficient of x^{k} in the polynomial and let P_{k} denote the sum $\sum_{n=1}^{7} r_{n}^{k}$. Then Newton's identities gives us the following set of equations:

$$
\begin{aligned}
a_{7} P_{1}+a_{6} & =0 \\
a_{7} P_{2}+a_{6} P_{1}+2 a_{5} & =0 \\
a_{7} P_{3}+a_{6} P_{2}+a_{5} P_{1}+3 a_{4} & =0
\end{aligned}
$$

Substituting in $a_{7}=a_{6}=a_{4}=1$ and $a_{5}=0$, we get the system

$$
\begin{aligned}
P_{1}+1 & =0 \\
P_{2}+P_{1} & =0 \\
P_{3}+P_{2}+3 & =0
\end{aligned}
$$

which solves to $P_{1}=-1, P_{2}=1$, and $P_{3}=-4$. Thus, $P_{3}=\sum n=1^{7} r_{n}^{3}=-4$ and hence the desired sum is $2 \cdot-4=-8$.
9. Given that real numbers x, y satisfy the equation $x^{4}+x^{2} y^{2}+y^{4}=72$, what is the minimum possible value of $2 x^{2}+x y+2 y^{2}$?

Answer: $6 \sqrt{6}$

Solution 1: Let $a=x^{2}+x y+y^{2}$ and $b=x^{2}-x y+y^{2}$. Then $a b=x^{4}+x^{2} y^{2}+y^{4}=72$ and the expression we are trying to minimize is $\frac{a+b}{2}+a$. Substituting $b=\frac{72}{a}$, the expression we want to minimize becomes $\frac{3 a}{2}+\frac{36}{a}$. By AM-GM, this is greater than or equal to $2 \sqrt{\frac{3 a}{2} \cdot \frac{36}{a}}=2 \sqrt{54}=6 \sqrt{6}$.

Finally, we show $6 \sqrt{6}$ is achievable. In AM-GM, equality is only achieved when $\frac{3 a}{2}=\frac{36}{a}$ so $a=2 \sqrt{6}$. If we let $x=\sqrt{2 \sqrt{6}}$ and $y=-\sqrt{2 \sqrt{6}}$, then $a=2 \sqrt{6}$ so $6 \sqrt{6}$ is achievable. Hence, the minimum possible value is $6 \sqrt{6}$.
Solution 2: Let $a=x^{2}+y^{2}$ and $b=x y$. Then we are trying to minimize $2 a+b$. The expression $x^{4}+x^{2} y^{2}+y^{4}$ can be factored as $\left(x^{2}+y^{2}\right)^{2}-(x y)^{2}=(a-b)(a+b)$. Thus, we have the condition $(a-b)(a+b)=72$. Now, notice that $\left|x^{2}+y^{2}\right|>|x y|$ for any choice of x, y, so both $a-b$ and $a+b$ are always positive.
Now, suppose $a-b=r$. Then the condition $(a-b)(a+b)=72$ tells us that $a+b=\frac{72}{r}$. Hence, we can solve the system of equations

$$
\begin{aligned}
& a-b=r \\
& a+b=\frac{72}{r}
\end{aligned}
$$

to obtain $a=\frac{36}{r}+\frac{r}{2}$ and $b=\frac{36}{r}-\frac{r}{2}$. The expression we are trying to minimize is thus $2 a+b=\frac{108}{r}+\frac{r}{2}$. By AM-GM, this is greater than or equal to $2 \sqrt{\frac{108}{r} \cdot \frac{r}{2}}=6 \sqrt{6}$.
Finally, we show that this is achievable. Equality holds in AM-GM precisely when $\frac{108}{r}=\frac{r}{2}$ or when $r=6 \sqrt{6}$. Then $a=4 \sqrt{6}$ and $b=-2 \sqrt{6}$. So this is achievable by finding x, y such that $x^{2}+y^{2}=4 \sqrt{6}$ and $x y=-2 \sqrt{6}$. One such x, y is $x=\sqrt{2 \sqrt{6}}$ and $y=-\sqrt{2 \sqrt{6}}$. Thus, the minimum possible value is indeed $6 \sqrt{6}$.
10. Consider a sequence defined recursively by $a_{n}=1+\left(a_{0}+1\right)\left(a_{1}+1\right) \cdots\left(a_{n-1}+1\right)$. Let $-2<$ $a_{0}<-1$ such that

$$
\sum_{n=0}^{2015} \frac{a_{n}}{a_{n}^{2}-1}=-\frac{a_{0}+4}{a_{0}^{2}-1}
$$

What is the value of a_{0} ?
Answer: $3^{-\frac{1}{2^{2015}-1}}-2$ or $\frac{1}{3^{\frac{1}{2015}-1}}-2$
Solution: First, notice that for $n>1$,

$$
\begin{aligned}
a_{n} & =1+\left(a_{0}+1\right)\left(a_{1}+1\right) \cdots\left(a_{n-2}+1\right)\left(a_{n-1}+1\right) \\
& =1+\left(a_{n-1}-1\right)\left(a_{n-1}+1\right) \\
& =a_{n-1}^{2}
\end{aligned}
$$

and that $a_{1}=a_{0}+2$. Therefore, for $n \geq 1, a_{n}=\left(a_{0}+2\right)^{2^{n-1}}$.
Next, notice that for $n>0$

$$
\begin{aligned}
\frac{1}{a_{n}-1}-\frac{1}{a_{n+1}-1} & =\frac{1}{\left(a_{0}+1\right)\left(a_{1}+1\right) \cdots\left(a_{n-1}+1\right)}-\frac{1}{\left(a_{0}+1\right)\left(a_{1}+1\right) \cdots\left(a_{n}+1\right)} \\
& =\frac{a_{n}}{\left(a_{0}+1\right) \cdots\left(a_{n}+1\right)} \\
& =\frac{a_{n}}{\left(a_{n}-1\right)\left(a_{n}+1\right)} \\
& =\frac{a_{n}}{a_{n}^{2}-1}
\end{aligned}
$$

Therefore, our sum telescopes as follows

$$
\begin{aligned}
\frac{a_{0}}{a_{0}^{2}-1}+\sum_{n=1}^{2015} \frac{a_{n}}{a_{n}^{2}-1} & =\frac{a_{0}}{a_{0}^{2}-1}+\sum_{n=1}^{2015}\left(\frac{1}{a_{n}-1}-\frac{1}{a_{n+1}-1}\right) \\
& =\frac{a_{0}}{a_{0}^{2}-1}+\frac{1}{a_{1}-1}-\frac{1}{a_{2016}-1}
\end{aligned}
$$

Using the fact that $a_{1}=a_{0}+2$ and $a_{2016}=\left(a_{0}+2\right)^{2^{2015}}$, we can simplify the above expression to

$$
\frac{a_{0}}{a_{0}^{2}-1}+\frac{1}{a_{0}+1}-\frac{1}{\left(a_{0}+2\right)^{2^{2015}}-1}
$$

If we let $x=a_{0}+2$, then the condition in the problem statement becomes

$$
\begin{aligned}
\frac{x-2}{(x-2)^{2}-1}+\frac{1}{x-1}-\frac{1}{x^{2^{2015}}-1} & =-\frac{x+2}{(x-2)^{2}-1} \\
\frac{2 x}{(x-1)(x-3)}+\frac{1}{x-1}-\frac{1}{x^{2^{2015}}-1} & =0 \\
\frac{3 x-3}{(x-1)(x-3)}-\frac{1}{x^{2^{2015}}-1} & =0 \\
\frac{3}{x-3}-\frac{1}{x^{2^{2015}}-1} & =0 \\
3\left(x^{2^{2015}}-1\right)-(x-3) & =0 \\
3 x^{2^{2015}}-x & =0
\end{aligned}
$$

Since we want $-2<a_{0}, 0<x$, so we can divide through by x to get

$$
\begin{aligned}
3 x^{2^{2015}-1}-1 & =0 \\
x & =3^{-\frac{1}{2^{2015}-1}}
\end{aligned}
$$

And hence $a_{0}=3^{-\frac{1}{2^{2015}-1}}-2$.

