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1. Given that the three points where the parabola y = bx2−2 intersects the x-axis and y-axis form
an equilateral triangle, compute b.

Answer:
3

2

Solution: Note that the three points are (−a, 0) and (a, 0) for some a, and (0,−2). We therefore

have that 2a =
√
a2 + 4, so a =

√
4

3
, meaning that

4b

3
− 2 = 0 so b =

3

2
.

2. Compute the last digit of 2

(
3(4

...2014)
)

.

Answer: 2

Solution: The exponent of 2 is equivalent to 1 (mod 4). Since 2x (mod 10) has period 4, we
have that 21 ≡ 2 (mod 10).

3. A math tournament has a test which contains 10 questions, each of which come from one of
three different subjects. The subject of each question is chosen uniformly at random from the
three subjects, and independently of the subjects of all the other questions. The test is unfair
if any one subject appears at least 5 times. Compute the probability that the test is unfair.

Answer:
4111

6561

Solution: A fair (not unfair) test can either have 4, 3, and 3 questions in each subject, or 4,
4, and 2 questions. Thus there are 3 ·

(
10
4

)
·
(
6
3

)
+ 3 ·

(
10
4

)
·
(
6
4

)
= 22050 distinct fair tests. This

means the probability that the test is fair is
22050

310
=

2450

6561
, so the probability that the test is

unfair is 1− 2450

6561
=

4111

6561
.

4. Let Sn be the sum Sn = 1 + 11 + 111 + 1111 + . . .+ 111 . . . 11 where the last number 111 . . . 11
has exactly n 1’s. Find b102017/S2014c.
Answer: 8100

Solution: First we want to find an explicit formula for Sn. This is not too difficult: noting that
111 . . . 11 = 10n−1

9 , our sum is equal to

Sn =
n∑

i=1

10i − 1

9
=

1

9

(
n∑

i=1

10i −
n∑

i=1

1

)
=

1

9

(
10n+1 − 1

9
− n

)
=

10n+1 − 1− 9n

81
.

So, 102017

S2014
= 81·102017

102015−1−9·2014 is just a tiny bit larger than 81·102017
102015

= 8100. So, the answer is 8100 .

5. ABC is an equilateral triangle with side length 12. Let OA be the point inside ABC that is
equidistant from B and C and is

√
3 units from A. Define OB and OC symmetrically. Find the

area of the intersection of triangles OABC, AOBC, and ABOC .

Answer: 162
√

3
7

Solution: Let (ABC) denote the area of the polygon ABC. The Principle of Inclusion-
Exclusion, along with the symmetry between OABC, AOBC, and ABOC tells us that

(OABC ∪AOBC ∪ABOC) = 3(OABC)− 3(OABC ∩AOBC) + (OABC ∩AOBC ∩ABOC).
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OABC ∪ AOBC ∪ ABOC is simply ABC, whose area is 122
√
3

4 = 36
√

3. The area of OABC is
also easy to compute. The altitude from A to BC goes through OA, since A and OA are both
on the perpendicular bisector of BC. Since the altitude from A to BC has length 6

√
3, OABC

is a triangle with height 5
√

3 and base 12, and hence has area 30
√

3.

Now, we calculate (OABC ∩AOBC). Let O be the orthocenter of ABC. As we showed earlier,
OA is on AO and OB is on BO. Let AOB and BOA intersect at D. It is easy to see that
AD ∼= BD, so D lies on the perpendicular bisector of AB, which is CO. We can also see
without too much work that OABC ∩AOBC = COADOB, and triangles COAD and COBD are
congruent, so we just need to find the area of COAD and multiply by two.

Since OABC = OACD ∪ DCB, it suffices to find the area of DCB. Properties of medians or
direct computation with 30-60-90 triangles tells us that AO = BO = 4

√
3. Since OD bisects

∠OAOB, we have

BD

BO
=
OAD

OAO
=⇒ BD

4
√

3
=
OAD

3
√

3

=⇒ OAD

BD
=

3

4

=⇒ OAD

OAB
=

3

7
.

Now, we have that

(COAD) =
3

7
(COAB) =

3

7
· 30
√

3 =
90
√

3

7
=⇒ (COADOB) =

180
√

3

7
.

Finally, plugging into PIE, we get

(OABC ∩AOBC ∩ABOC) = 36
√

3− 3 · 30
√

3 + 3 · 180
√

3

7
=

540− 54 · 7
7

√
3 =

162
√

3

7
.

6. A composition of a natural number n is a way of writing it as a sum of natural numbers, such
as 3 = 1 + 2. Let P (n) denote the sum over all compositions of n of the number of terms in the
composition. For example, the compositions of 3 are 3, 1+2, 2+1, and 1+1+1; the first has one
term, the second and third have two each, and the last has 3 terms, so P (3) = 1 + 2 + 2 + 3 = 8.
Compute P (9).

Answer: 1280

Solution: First, for 1 ≤ k ≤ n, the number of compositions with k parts is
(
n−1
k−1
)
. This is

because every composition can be described uniquely by collapsing 1 + 1 + 1 + · · · + 1 into k
terms. This amounts to choosing a subset of k−1 + signs to keep from the original n−1. Thus,

P (n) =
n∑

k=1

k

(
n− 1

k − 1

)
=

n∑
k=1

(
n− 1

k − 1

)
+

n∑
k=1

(k − 1)

(
n− 1

k − 1

)

= 2n−1 +

n∑
k=2

(n− 1)

(
n− 2

k − 2

)
= 2n−1 + (n− 1)2n−2 = (n+ 1)2n−2.

Thus, P (9) = 10 · 27 = 1280 .
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7. Let ABC be a triangle with AB = 7, AC = 8, and BC = 9. Let the angle bisector of A intersect
BC at D. Let E be the foot of the perpendicular from C to line AD. Let M be the midpoint
of BC. Find ME.

Answer:
1

2
Solution: Extend CE and AB until they intersect at F . Note that AE is both an angle bisector
and an altitude of 4ACF , so 4ACF is isosceles with AF ∼= AC, and E is the midpoint of CF .
M is the midpoint of BC, so ME is a midline of 4CBF . Since AC = AF = AB + BF , we

have BF = 8− 7 = 1. Hence, ME = 1
2BF =

1

2
.

8. Call a function g lower-approximating for f on the interval [a, b] if for all x ∈ [a, b], f(x) ≥
g(x). Find the maximum possible value of

∫ 2
1 g(x)dx where g(x) is a linear lower-approximating

function for f(x) = xx on [1, 2].

Answer: 3
√

6
4

Solution: We note that, because g is linear, the integral is actually the area of a trapezoid.
The area of a trapezoid is given by A = 1

2h(b1 + b2) = hM where M is the length of the midline.

Next, g(x) ≤ f(x) for all x ∈ [1, 2], and the midline has length g(32) ≤ f(32) = (3/2)3/2 = 3
√
6

4 .

Then
∫ 2
1 g(x)dx ≤ hM = 3

√
6

4 . We note that this maximum is achieved, for example, when g(x)
is the tangent line to f(x) at x = 3

2 (which works because f is convex), so the answer must be

3
√

6

4
.

9. Determine the smallest positive integer x such that 1.24x is the same number as the number
obtained by taking the first (leftmost) digit of x and moving it to be the last (rightmost) digit
of x.

Answer: 11415525

Solution: Let A be an n-digit number with digits a1a2 · · · an, i.e. A = an + 10an−1 + · · · +
10n−1a1. The operation of taking the first digit and moving it to the last digit results in
a1 + 10(an + 10an−1 + · · · + 10n−2a2) = a1 + 10(A − 10n−1a1). We need this to equal 1.24A.
Rearranging, we get

A =
10n − 1

10− 1.24
a1 =

100(10n − 1)

876
a1.

876 = 22·3·73, and a1 ≤ 9, so in order for A to be an integer, we must have 73 | 10n−1⇔ 10n ≡ 1
(mod 73). We can compute that 104 ≡ −1 (mod 73), so n = 8 is the smallest n for which 10n ≡ 1
(mod 73). Plugging in n = 8, we get

100(108 − 1)

876
= 11415525,

which is in fact an integer. Hence, the smallest possible value of A occurs when a1 = 1, yielding
A = 11415525 .

10. Let a and b be real numbers chosen uniformly and independently at random from the interval
[−10, 10]. Find the probability that the polynomial x5+ax+b has exactly one real root (ignoring
multiplicity).

Answer: 45−8
4√
2

45
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Solution: Let f(x) = x5− ax+ b (flipping the sign of a makes the analysis a bit easier without
changing the answer), and consider f ′(x) = 5x4 − a. First, if f is monotonically increasing, it
must have one real root. This case occurs if and only if a ≤ 0.

We now consider a > 0, and for simplicity let α = (a/5)1/4, the positive root of f ′. f is increasing
on (−∞,−α), decreasing on (−α, α), and increasing on (α,∞). Hence, the only way it can have
more than one root is if one such root occurs in the range [−α, α]. This will happen if and only
if 0 ∈ [f(α), f(−α)], by the Intermediate Value Theorem.

Rewrite f(x) as (5x4−a)x+b−4x5, so that we can easily see that f(α) = b−4α5, f(−α) = b+4α5.
f has multiple roots if and only if b − 4α5 ≤ 0 and b + 4α5 ≥ 0, i.e. b ∈ [−4α5, 4α5]. We can
find the probability that b falls in this range, then take the complement to find the probability
that f has exactly one root.

The area of the region satisfying this condition is twice the area under the curve g(a) = 4(a/5)5/4

from a = 0 to a = 10 (note that g(10) = 4 · 25/4 < 10 because (5/4)4 = 625
256 > 2, so this is all

within the valid range for b). Thus, we find

2 · 4
∫ 10

0

(a
5

)5/4
da =

8

55/4
· 4

9
109/4 =

640

9
4
√

2.

The entire feasible region for a and b is a square with area 202 = 400, while the only region that
yields a polynomial with multiple roots has area 640

9
4
√

2. So, report

1− 640 4
√

2

400 · 9
= 1− 8 4

√
2

45
=

45− 8 4
√

2

45
.

11. Let b be a positive real number, and let an be the sequence of real numbers defined by a1 =
a2 = a3 = 1, and an = an−1 + an−2 + ban−3 for all n > 3. Find the smallest value of b such that

∞∑
n=1

√
an

2n

diverges.

Answer: 44

Solution: Consider the polynomial P (x) = x3−x2−x−b. First, we notice that this has exactly
one positive root; the quickest proof is by Descartes’s Rule of Signs. Let r be this root.

We now claim that there exist positive constants c1 and c2 such that c1r
n ≤ an ≤ c2r

n for all
n ∈ N. We proceed by induction. It is easy to find such c1 and c2 to satisfy the base cases
n = 1, 2, 3. Now, take n > 3, and assume that c1r

i ≤ ai ≤ c2ri for all i < n. We see that

an = an−1+an−2+ban−3 ≥ c1rn−1+c1r
n−2+c1br

n−3 = c1r
n−3 ·(r2+r+b) = c1r

n−3 ·r3 = c1r
n.

The upper bound follows for exactly the same reason.

Finally, we examine
∞∑
n=1

√
an

2n
.
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If r < 4, then this is bounded above by

∞∑
n=1

√
c2r

n/2

2n
=
√
c2

∞∑
n=1

(√
r

2

)n

,

which is a geometric series with common ratio
√
r/2 < 1, therefore convergent. However, when

r ≥ 4, the sum is bounded below by

∞∑
n=1

√
c1r

n/2

2n
=
√
c1

∞∑
n=1

(√
r

2

)n

≥
√
c1

∞∑
n=1

1,

since
√
r/2 ≥ 1. As c1 > 0, this clearly diverges.

Hence, we want to find the smallest value of b for which r ≥ 4. Plugging in x = 4 to P (x), we

get P (4) = 64− 16− 4− b = 0 =⇒ b = 44 . It is clear that if we chose a larger value of r, the
corresponding value of b would only increase, so this is the smallest value of b that makes the
sum diverge.

12. Find the smallest L such that(
1− 1

a

)b(
1− 1

2b

)c(
1− 1

3c

)a

≤ L

for all real numbers a, b, and c greater than 1.

Answer: e
− 3
√

9
2

Solution: Let y =
(
1− 1

a

)b (
1− 1

2b

)c (
1− 1

3c

)a
.

Then,

log y = b log

(
a− 1

a

)
+ c log

(
2b− 1

2b

)
a log

(
3c− 1

3c

)
.

We know that for any x,

log(x− 1)− log(x) =

∫ x−1

x

1

t
dt = −

∫ x

x−1

1

t
dt ≤ −

∫ x

x−1

1

x
dt = −1

x
.

Applying this yields

log y ≤ − b
a
− c

2b
− a

3c
≤ − 3

3
√

6

by AM-GM. Equality holds in AM-GM if we set b = a
3√6

, c = 2a
3√36

. We also know that

lim
x→∞

x(log(x− 1)− log(x)) = lim
x→∞

log(x− 1)− log(x)
1
x

= lim
x→∞

1
x−1 −

1
x

− 1
x2

= lim
x→∞

− x2

x2 − x
= −1.

Hence, as a, b, and c tend to infinity in these ratios, log y will approach, but will always be

bounded above by, − 3
3√6

= − 3

√
9
2 So, the answer is e

− 3
√

9
2 .
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13. Find the number of distinct ways in which 30(3030) can be written in the form a(b
c), where a, b,

and c are integers greater than 1.

Answer: 7041

Solution: First, it is clear that a = 30n for some n ∈ N. This means we have bc = 3030/n. In
other words, bc = 2i3j5k for integers 0 ≤ i, j, k ≤ 30. Note that for a particular choice of i, j,
and k, the possible values of c are exactly the factors of the GCD of i, j, and k (except for c = 1,
which is not permitted by the problem statement). For each c > 1, c divides the GCD (i, j, k)
if and only if each of i, j, and k is a multiple of c. This can happen in exactly (b30/cc+ 1)3 − 1
ways, since i = j = k = 0 is not allowed. Hence, the answer is

30∑
c=2

(b30/cc+ 1)3 − 1 = 163 + 113 + 83 + 73 + 63 + 53 + 3 · 43 + 5 · 33 + 15 · 23 − 29 = 7041 .

14. Convex quadrilateral ABCD has sidelengths AB = 7, BC = 9, CD = 15. A circle with center I
lies inside the quadrilateral, and is tangent to all four of its sides. Let M and N be the midpoints
of AC and BD, respectively. It can be proven that I always lies on segment MN . If I is in fact
the midpoint of MN , find the area of quadrilateral ABCD.

Answer: 11
√
101

Solution: First, note that DA = 13. Let P , Q, R, S and P ′, Q′, R′, S′ be the midpoints and
points of tangency of AB, BC, CD, and DA respectively. Let r be the radius of circle I.

Now looking at triangle ABC, we see that QM is parallel to and half the length of AB, while
looking at triangle ABD, we see that NS is also parallel to and half the length of AB. Therefore
QMNS is a parallelogram, so QS and MN bisect each other, which implies that they intersect
at I the midpoint of MN , and QI = IS. As we have IQ′ = IS′ = r and IQ = IS, 4IQQ′ and
4ISS′ should be congruent. If Q′ and S′ were on different sides of line QS, then we would have
that BC and AD are parallel, but this cannot happen, as then sliding BA and CD together
would result in a triangle with side lengths 7, 15 and 4(= 13− 9). Thus, Q′ and S′ are at same
side of line QS. Let QQ′ = SS′ = d, so BQ′ + AS′ = (4.5 − d) + (6.5 − d) = AB = 7. Solving
for d gives d = 2, so the lengths of the tangents from A, B, C, and D are 4.5, 2.5, 6.5, and 8.5
respectively.

Now, let α, β, γ, and δ denote angles AIP ′, BIQ′, CIR′, and DIS′, respectively. We have

tanα =
4.5

r
, tanβ =

2.5

r
, tan γ =

6.5

r
, tan δ =

8.5

r

and α+ β + γ + δ = π, so by solving tan(α+ γ) = − tan(β + δ) for tangent angle sum identity
we have

4.5
r + 6.5

r

1− 4.5·6.5
r2

= −
2.5
r + 8.5

r

1− 2.5·8.5
r2

,

2 =
1

r2
(2.5 · 8.5 + 4.5 · 6.5)

so finally r =
√

101/2. The area formula A = pr/2 (p being the perimeter) gives the answer of

11
√

101 .
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15. Marc has a bag containing 10 balls, each with a different color. He draws out two balls uniformly
at random and then paints the first ball he drew to match the color of the second ball. Then he
places both balls back in the bag. He repeats until all the balls are the same color. Compute
the expected number of times Marc has to perform this procedure before all the balls are the
same color.

Answer: 81

Solution 1: We solve the general problem where there are n balls, and claim that the answer
is (n− 1)2.

Let’s define some terms. A path is a fixed sequence of moves, as described in the problem
statement, that terminates when all the balls are the same color. For example, one possible
path might begin, “Make ball 2 color 3. Make ball 5 color 8. Make ball 8 color 1” and so on.
For a path p, let l(p) be the length of the path, i.e. how many moves it takes to make all balls
the same color. We say that in a path, color i wins if, at the end of that path, all balls are of
color i. Each path p also has an associated probability P (p), the probability that the path will
occur in this game.

Now, by definition, we are trying to compute∑
p

l(p)P (p).

We can break this expression into n parts by rewriting it as

n∑
i=1

∑
p: color i wins in p

l(p)P (p).

By symmetry, the inner sum has the same value no matter the value of i. Hence, the problem
reduces to computing this inner sum, then multiplying that by n.

Since we are conditioning on color i winning, all colors not i are indistinguishable. So, this
simplifies to the same game, but with just two colors, say colors 1 and 2. The current state
can be denoted by an ordered pair (m,n−m), which denotes how many balls of color 1 and 2,
respectively, are present in the bag. We start in state (1, n−1), i.e. one ball of color 1 and n−1
balls of color 2, and are interested in ∑

p: starts at (1,n−1) and color 1 wins

l(p)P (p).

Let
f(m) =

∑
p: starts at (m,n−m) and color 1 wins

l(p)P (p),

so that we want to solve for f(1). Also, let

g(m) =
∑

p: starts at (m,n−m) and color 1 wins

P (p),

the probability that color 1 wins the two-color game if it starts at state (m,n−m).

We now get some recurrence relations for f and g. For g, it is clear that we have g(n) = 1 and
g(0) = 0. Now, for 0 < m < n, we see that

g(m) =
m(n−m)

n(n− 1)
g(m− 1) +

m(n−m)

n(n− 1)
g(m+ 1) +

(
1− 2m(n−m)

n(n− 1)

)
g(m),
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since there’s a m(n−m)
n(n−1) probability of transitioning to (m− 1, n−m+ 1), that same probability

of transitioning to (m+ 1, n−m− 1), and otherwise you stay at the same state. Rearranging,
this becomes

2g(m) = g(m− 1) + g(m+ 1).

From here, it is clear that g(m) = m
n . The quickest solution is to note that g(1) = 1

n by symmetry
in the original n-color game, and to use this to compute g(2), g(3), etc.

Now, for f , it is clear that f(n) = 0 (if you start at (n, 0), your path immediately halts after
zero steps) and f(0) = 0 (because the sum is empty, as color 1 can never win). For 0 < m < n,
we have

f(m) =
∑

p: starts at (m,n−m) and color 1 wins

l(p)P (p)

=
m(n−m)

n(n− 1)

∑
p: starts at (m−1,n−m+1) and color 1 wins

(l(p) + 1)P (p)

+
m(n−m)

n(n− 1)

∑
p: starts at (m+1,n−m−1) and color 1 wins

(l(p) + 1)P (p)

+

(
1− 2m(n−m)

n(n− 1)

) ∑
p: starts at (m,n−m) and color 1 wins

(l(p) + 1)P (p).

Here, we consider taking one step from the current state. The l(p) terms become l(p) + 1 to
account for this step. Recognizing expressions for f and g, and applying our recurrence relation
for g, this simplifies to

f(m) =
m(n−m)

n(n− 1)
(f(m− 1) + g(m− 1)) +

m(n−m)

n(n− 1)
(f(m+ 1) + g(m+ 1))

+

(
1− 2m(n−m)

n(n− 1)

)
(f(m) + g(m))

=
m(n−m)

n(n− 1)
(f(m− 1) + f(m+ 1) + 2g(m)) +

(
1− 2m(n−m)

n(n− 1)

)
(f(m) + g(m))

=
m(n−m)

n(n− 1)
(f(m− 1) + f(m+ 1)) +

(
1− 2m(n−m)

n(n− 1)

)
f(m) + g(m)

=
m(n−m)

n(n− 1)
(f(m− 1) + f(m+ 1)) +

(
1− 2m(n−m)

n(n− 1)

)
f(m) +

m

n
.

Rearranging terms, we get

2f(m) = f(m− 1) + f(m+ 1) +
n− 1

n−m
.

Since our goal is to solve for f(1), we start by eliminating f(n− 1) and work down to f(1). We
can do this by multiplying the above equation by the right factor, for each m. In particular, we
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choose

2f(n− 1) = f(n− 2) + f(n) +
n− 1

1

2 ·
(

2f(n− 2) = f(n− 3) + f(n− 1) +
n− 1

2

)
3 ·
(

2f(n− 3) = f(n− 4) + f(n− 2) +
n− 1

3

)
. . .

(n−m) ·
(

2f(m) = f(m− 1) + f(m+ 1) +
n− 1

n−m

)
. . .

(n− 2) ·
(

2f(2) = f(1) + f(3) +
n− 1

n− 2

)
(n− 1) ·

(
2f(1) = f(0) + f(2) +

n− 1

n− 1

)
.

Adding these up, note that all the f(m)’s cancel except for f(n), f(1), and f(0). In particular,
we are left with

nf(1) = f(n) + (n− 1)f(0) + (n− 1)2.

Since f(0) = f(n) = 0, we have f(1) = (n−1)2
n . Plugging back into our very first equation, we

get that the desired answer is nf(1) = (n− 1)2 .

Solution 2: Let λ1, ..., λ41 be all the partitions of 10 other than 10. Notice that each coloring
of the balls gives rise to a partition. Let A be the matrix whose i, j-th entry is the probability
that a bag of balls in state λj becomes a bag of balls in state λi through one iteration of this
process. Let x be the vector whose i-th entry is the expected number of repititions starting from
state λi. Notice that x satisfies the recurrence x = Ax + 1. So all we need to do is solve the
linear system (I −A)x = 1.

After calculating the 1681 entries of A and solving the linear system in 41 variables, we find
that the answer is 81 expected repititions from the initial state.


