1. The coordinates of three vertices of a parallelogram are $A(1,1), B(2,4)$, and $C(-5,1)$. Compute the area of the parallelogram.
Answer: 18
Solution: Note that the area of the parallelogram is double the area of triangle $A B C$. If we take $A C$ as the base of the triangle, the height is 3 , so the area is $\frac{3 \cdot 6}{2}=9$. Thus, the area of the parallelogram is 18 .
2. In a circle, chord $A B$ has length 5 and chord $A C$ has length 7 . Arc $A C$ is twice the length of arc $A B$, and both arcs have degree less than 180. Compute the area of the circle.
Answer: $\frac{625 \pi}{51}$
Solution: Draw B between A and C. Because $\overparen{A C}=2 \cdot \overparen{A B}, B C=5$ too. Let M be the midpoint of $A C$. Then

$$
B M=\sqrt{5^{2}-\left(\frac{7}{2}\right)^{2}}=\frac{\sqrt{51}}{2} .
$$

Drawing a radius to A and applying the Pythagorean Theorem,

$$
r^{2}=\left(\frac{7}{2}\right)^{2}+\left(\frac{\sqrt{51}}{2}-r\right)^{2} \Longrightarrow r=\frac{25}{\sqrt{51}}
$$

so the area is $\frac{625 \pi}{51}$.
3. Spencer eats ice cream in a right circular cone with an opening of radius 5 and a height of 10 . If Spencer's ice cream scoops are always perfectly spherical, compute the radius of the largest scoop he can get such that at least half of the scoop is contained within the cone.
Answer: $2 \sqrt{5}$
Solution: Since the cone is symmetric, the points of tangency of the ice cream scoop to the cone make a circle on the inside of the cone. Furthermore, the center of the ice cream scoop must coincide with the center of the base of the cone. The slant height of the cone is $\sqrt{5^{2}+10^{2}}=5 \sqrt{5}$, so from considering similar triangles within a cross section of the cone, we get

$$
\frac{5}{5 \sqrt{5}}=\frac{r}{10} \Longrightarrow r=2 \sqrt{5}
$$

4. Let $A B C$ be a triangle such that $A B=3, B C=4$, and $A C=5$. Let X be a point in the triangle. Compute the minimal possible value of $A X^{2}+B X^{2}+C X^{2}$.
Answer: $\frac{50}{3}$
Solution: Let the perpendicular distance from X to $B C$ and $B A$ be x and y, respectively. Then

$$
A X^{2}+B X^{2}+C X^{2}=x^{2}+y^{2}+(3-x)^{2}+(4-y)^{2}+x^{2}+y^{2}
$$

Completing the square gives $3\left(y-\frac{4}{3}\right)^{2}+3(x-1)^{2}+\frac{50}{3}$, which has minimum $\frac{50}{3}$.
5. Let $A B C$ be a triangle where $\angle B A C=30^{\circ}$. Construct D in $\triangle A B C$ such that $\angle A B D=$ $\angle A C D=30^{\circ}$. Let the circumcircle of $\triangle A B D$ intersect $A C$ at X. Let the circumcircle of $\triangle A C D$ intersect $A B$ at Y. Given that $D B-D C=10$ and $B C=20$, find $A X \cdot A Y$.
Answer: 150
Solution: Note that $A B D X$ and $A C D Y$ are isosceles trapezoids. Thus, $A X=D B$ and $A Y=$ $D C$. Furthermore, $\angle B D C=360^{\circ}-\left(360^{\circ}-30^{\circ}-30^{\circ}-30^{\circ}\right)=90^{\circ}$. Thus, $D B^{2}+D C^{2}=B C^{2}=$ 400, and $D B-D C=10$, so $A X \cdot A Y=D B \cdot D C=\frac{D B^{2}+D C^{2}-(D B-D C)^{2}}{2}=150$.
6. Let E be an ellipse with major axis length 4 and minor axis length 2 . Inscribe an equilateral triangle $A B C$ in E such that A lies on the minor axis and $B C$ is parallel to the major axis. Compute the area of $\triangle A B C$.
Answer: $\frac{192 \sqrt{3}}{169}$
Solution: Consider a transformation that scales along the major axis by a factor of $\frac{1}{2}$ so that the ellipse becomes a circle of radius 1 and the equilateral triangle becomes an isoceles triangle. Let the transformed triangle be denoted $A B^{\prime} C^{\prime}$.
Now, let $x=\frac{\left|B^{\prime} C^{\prime}\right|}{2}$. Then the original length $|B C|=4 x$ and since $\triangle A B C$ is equilateral, $|A B|=|B C|=4 x$. Next, we calculate the altitude dropped from A^{\prime} as $1+\sqrt{1-x^{2}}$. Applying Pythagoras's theorem, we get that $|A B|^{2}=\left(1+\sqrt{1-x^{2}}\right)^{2}+4 x^{2}$. Substitute $|A B|=4 x$ in and solving for x^{2}, we get that $x^{2}=\frac{48}{169}$.
Finally, we calculate the area of $\triangle A B C$. Since $\triangle A B C$ is equilateral, its area is given by $\frac{\sqrt{3}}{4}|B C|^{2}=\frac{\sqrt{3}}{4} 16 x^{2}$. Substituting in $x^{2}=\frac{48}{169}$ and simplifying, we obtain $\frac{192 \sqrt{3}}{169}$.
7. Let $A B C$ be a triangle with $A B=13, B C=14$, and $A C=15$. Let D and E be the feet of the altitudes from A and B, respectively. Find the circumference of the circumcircle of $\triangle C D E$.
Answer: $\frac{39 \pi}{4}$
Solution: Let X be the intersection of $A D$ and $B E$. Since $\angle C D X=\angle C E X=90^{\circ}, C D X E$ is a cyclic quadrilateral, and $C X$ is the diameter of the circumcircle of $C D E$. Using the Law of Cosines on $\angle C$, we get

$$
\begin{gathered}
A B^{2}=B C^{2}+A C^{2}-2(A B)(B C)(\cos \angle C) \\
169=196+225-2(14)(15)(\cos \angle C) \\
\cos \angle C=\frac{196+225-169}{2(14)(15)}=\frac{3}{5}
\end{gathered}
$$

Therefore $\triangle C D A$ and $\triangle C E B$ are similar to a 3-4-5 triangle, and so is $\triangle X D B$. Thus we have $C D=9, B D=5$, and $D X=\frac{15}{4}$. By the Pythagorean Theorem we have $C X=\frac{39}{4}$, so the circumference of the circumcircle is

$$
\pi d=\frac{39 \pi}{4}
$$

It is also possible to use Heron's Formula to calculate the area of the triangle and then find the lengths of the altitudes.
8. O is a circle with radius 1. A and B are fixed points on the circle such that $A B=\sqrt{2}$. Let C be any point on the circle, and let M and N be the midpoints of $A C$ and $B C$, respectively. As C travels around circle O, find the area of the locus of points on $M N$.
Answer: $\frac{\pi}{8}+\frac{\sqrt{2}}{2}+\frac{1}{4}$

Solution:

We introduce some auxilliary points which will be useful for describing the solution. It may also help to refer to the accompanying diagram. Extend $A O$ past O to intersect the circle again at point D, and extend $B O$ past O to intersect the circle again at point E. Note that $A B D E$ is a square of side length $\sqrt{2}$. Also let ℓ denote the perpendicular bisector of $A B$.
Consider what happens when C is on arc $\overparen{\mathrm{AE}}$ or $\overparen{\mathrm{BD}}$. Then, segment $M N$ does not cross ℓ. So, the two regions corresponding to C being on these two arcs are disjoint, so we can calculate their individual areas and add them up.
As C moves from A to E (for instance), M moves from A to the midpoint of $A E$, and hence travels a total distance of $\frac{\sqrt{2}}{2}$ units. $M N \perp A E$ always, so this region has the same area as a rectangle with height $\frac{\sqrt{2}}{2}$ and base $\frac{1}{2} A B=\frac{\sqrt{2}}{2}$, i.e. $\frac{1}{2}$. So, the cases when C lies either on $\overparen{A E}$ or BD together account for a region of area 1 .
Now we consider the other cases. Let P and Q be the midpoints of $O A$ and $O B$, respectively. We claim that as C moves around circle O, M traces out a circle of radius $\frac{1}{2}$ centered at P, and N traces out a circle of radius $\frac{1}{2}$ centered at Q. As proof, note that $M P$ is the midline of triangle $A O C$ that is parallel to $O C$. Since $O C=1, M P=\frac{1}{2}$ always (alternatively, note that we have a homothety from $C D$ to $M P$ with ratio $\frac{1}{2}$).
So, when C lies on $\overparen{\mathrm{DE}}$, we can see that the region covered by $M N$ consists of a circle segment of angle $\frac{\pi}{2}$ broken in the middle by a rectangle of width $\frac{\sqrt{2}}{2}$. The height of this rectangle can be quickly computed to be $\frac{1}{2}-\frac{\sqrt{2}}{4}$. Hence, the total area here is

$$
\frac{1}{4} \cdot \pi \cdot\left(\frac{1}{2}\right)^{2}-\frac{1}{2} \cdot\left(\frac{1}{2}\right)^{2}+\left(\frac{1}{2}-\frac{\sqrt{2}}{4}\right) \cdot \frac{\sqrt{2}}{2}=\frac{\pi}{16}+\frac{\sqrt{2}}{4}-\frac{3}{8}
$$

The case where C lies on $\overparen{A B}$ turns out to be equivalent. Hence, in total, the desired area is

$$
1+2\left(\frac{\pi}{16}+\frac{\sqrt{2}}{4}-\frac{3}{8}\right)=\frac{\pi}{8}+\frac{\sqrt{2}}{2}+\frac{1}{4}
$$

9. In cyclic quadrilateral $A B C D, A B \cong A D$. If $A C=6$ and $\frac{A B}{B D}=\frac{3}{5}$, find the maximum possible area of $A B C D$.
Answer: 5 $\sqrt{11}$
Solution: We claim that the area of $A B C D$ is constant, though the shape of $A B C D$ depends on the radius of the circumscribing circle.
First, by Ptolemy's, we have

$$
\begin{aligned}
A B \times C D+B C \times A D & =A B(B C+C D)=A C \times B D \\
& \Longrightarrow B C+C D=A C \times \frac{B D}{A B}=10
\end{aligned}
$$

Now, extend $C B$ past B to a point E such that $B E \cong C D$. Since $A B C D$ is cyclic, $\angle A B C$ and $\angle A D C$ are supplementary, so $\angle A D C \cong \angle A B E$. Hence, $\triangle A D C \cong \triangle A B E$, and so $A B C D$ has the same area as $A C E$.
$A C E$ is isosceles with leg 6 and base $C E=C B+B E=C B+D C=10$. Hence, the length of the altitude to the base is $\sqrt{6^{2}-5^{2}}=\sqrt{11}$, and the area is $5 \sqrt{11}$.
10. Let $A B C$ be a triangle with $A B=12, B C=5, A C=13$. Let D and E be the feet of the internal and external angle bisectors from B, respectively. (The external angle bisector from B bisects the angle between $B C$ and the extension of $A B$.) Let ω be the circumcircle of $\triangle B D E$; extend $A B$ so that it intersects ω again at F. Extend $F C$ to meet ω again at X, and extend $A X$ to meet ω again at G. Find $F G$.
Answer: $\frac{1560}{119}$
Solution: Note that $\angle D B E=90^{\circ}$, so $D E$ is the diameter of ω. Let $B C$ intersect ω at G^{\prime}. Since $\mathrm{G}^{\prime} \mathrm{E}=\overparen{\mathrm{FE}}=90^{\circ}, G^{\prime} X B F$ is an isosceles trapezoid by symmetry over the diameter $D E$. By the same symmetry, $\triangle A X C \cong \triangle A B C$, so $\angle A X C=\angle A B C=180^{\circ}-\angle G^{\prime} B F=180^{\circ}-\angle C X G^{\prime}$; thus A, X, and G^{\prime} are collinear, so $G=G^{\prime}$. Note that $\angle G B F=180^{\circ}-\angle A B C=90^{\circ}$, so $F G$ is a diameter; thus $F G=D E$. Now we calculate DE. Since BE is an external angle bisector,

$$
\begin{aligned}
\frac{C E}{A E} & =\frac{B C}{A B} \\
\frac{C E}{A C+C E} & =\frac{B C}{A B} \\
C E & =\frac{A C \cdot B C}{A B-B C}=\frac{65}{7} .
\end{aligned}
$$

Since BD is an internal angle bisector,

$$
\begin{aligned}
& \frac{C D}{A D}=\frac{B C}{A B} \\
& \frac{C D}{A C}=\frac{B C}{A B+B C} \\
& C D=\frac{A C \cdot B C}{A B+B C}=\frac{65}{17} .
\end{aligned}
$$

Thus, the answer is $D E=C E+C D=\frac{1560}{119}$.

