Time limit: 50 minutes.
Instructions: This test contains 10 short answer questions. All answers must be expressed in simplest form unless specified otherwise. Only answers written on the answer sheet will be considered for grading.
No calculators.

1. The coordinates of three vertices of a parallelogram are $A(1,1), B(2,4)$, and $C(-5,1)$. Compute the area of the parallelogram.
2. In a circle, chord $A B$ has length 5 and chord $A C$ has length 7 . Arc $A C$ is twice the length of arc $A B$, and both arcs have degree less than 180 . Compute the area of the circle.
3. Spencer eats ice cream in a right circular cone with an opening of radius 5 and a height of 10 . If Spencer's ice cream scoops are always perfectly spherical, compute the radius of the largest scoop he can get such that at least half of the scoop is contained within the cone.
4. Let $A B C$ be a triangle such that $A B=3, B C=4$, and $A C=5$. Let X be a point in the triangle. Compute the minimal possible value of $A X^{2}+B X^{2}+C X^{2}$.
5. Let $A B C$ be a triangle where $\angle B A C=30^{\circ}$. Construct D in $\triangle A B C$ such that $\angle A B D=$ $\angle A C D=30^{\circ}$. Let the circumcircle of $\triangle A B D$ intersect $A C$ at X. Let the circumcircle of $\triangle A C D$ intersect $A B$ at Y. Given that $D B-D C=10$ and $B C=20$, find $A X \cdot A Y$.
6. Let E be an ellipse with major axis length 4 and minor axis length 2 . Inscribe an equilateral triangle $A B C$ in E such that A lies on the minor axis and $B C$ is parallel to the major axis. Compute the area of $\triangle A B C$.
7. Let $A B C$ be a triangle with $A B=13, B C=14$, and $A C=15$. Let D and E be the feet of the altitudes from A and B, respectively. Find the circumference of the circumcircle of $\triangle C D E$.
8. O is a circle with radius 1. A and B are fixed points on the circle such that $A B=\sqrt{2}$. Let C be any point on the circle, and let M and N be the midpoints of $A C$ and $B C$, respectively. As C travels around circle O, find the area of the locus of points on $M N$.
9. In cyclic quadrilateral $A B C D, A B \cong A D$. If $A C=6$ and $\frac{A B}{B D}=\frac{3}{5}$, find the maximum possible area of $A B C D$.
10. Let $A B C$ be a triangle with $A B=12, B C=5, A C=13$. Let D and E be the feet of the internal and external angle bisectors from B, respectively. (The external angle bisector from B bisects the angle between $B C$ and the extension of $A B$.) Let ω be the circumcircle of $\triangle B D E$; extend $A B$ so that it intersects ω again at F. Extend $F C$ to meet ω again at X, and extend $A X$ to meet ω again at G. Find $F G$.
