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1. Let f(x) = x4 and let g(x) = x−4. Compute f ′′(2)g′′(2).

Answer: 15

Solution: We note that f ′′(x) = 12x2 and g′′(x) = 20x−6. Then f ′′(x)g′′(x) = 20 · 12 · x−4.
Plugging in x = 2 we get f ′′(2)g′′(2) = 12·20

16 = 3 · 5 = 15 .

2. There is a unique positive real number a such that the tangent line to y = x2 + 1 at x = a goes
through the origin. Compute a.

Answer: 1

Solution: The slope of the tangent line is 2a. The equation for the tangent line is (y−(a2+1)) =
2a(x− a). Setting x = y = 0 gives us −a2 − 1 = −2a2, which has solution a = 1 .

3. Moor has $1000, and he is playing a gambling game. He gets to pick a number k between 0
and 1 (inclusive). A fair coin is then flipped. If the coin comes up heads, Moor is given 5000k
additional dollars. Otherwise, Moor loses 1000k dollars. Moor’s happiness is equal to the log
of the amount of money that he has after this gambling game. Find the value of k that Moor
should select to maximize his expected happiness.

Answer: 2
5

Solution: Suppose that Moor chooses a value of k. We write down the expected value of Moor’s
happiness.

If the coin comes up heads, Moor now has 1000 + 1000(5k) = 1000(5k + 1) dollars. If the coin
comes up tails, Moor now has 1000−1000k = 1000(1−k) dollars. Therefore, the expected value
of Moor’s happiness is

H(k) =
1

2
log(1000(5k + 1)) +

1

2
log(1000(1− k)).

We want to maximize this. To do this, we differentiate, set the derivative equal to zero, and
look for critical values. Here,

H ′(k) =
1

2

(
5000

1000(5k + 1)
− 1000

1000(1− k)

)
=

1

2

(
5

5k + 1
− 1

1− k

)
= 0

when 5k + 1 = 5(1− k), so 10k = 4, and hence k = 2
5 is the only critical value.

The maximal value of H(k) for k ∈ [0, 1] must occur either at a critical value or an endpoint.
Observe that among the three values H(0), H(1), and H(25), the largest is H(25). Therefore,

Moor maximizes his happiness by selecting k =
2

5
.

4. The set of points (x, y) in the plane satisfying x2/5 + |y| = 1 form a curve enclosing a region.
Compute the area of this region.

Answer: 8
7

Solution: The set of points satisfying the equation form a closed curve that encloses a region.
Observe that this curve is preserved if we transform x 7→ −x or y 7→ −y, so it is symmetric in
all 4 quadrants. In particular, we can find the area in the first quadrant, where x, y > 0. In the
quadrant, we can rewrite our equation as y = 1−x2/5. This curve intersects the coordinate axes
at (0, 1) and (1, 0), and it is continuous, so the area is

A =

∫ 1

0
1− x2/5 dx =

2

7
.



RMT 2014 Calculus Test Solutions February 15, 2014

The total area is therefore 4A = 8/7 .

5. Compute the improper integral ∫ 2

0

(√
4− x
x
−
√

x

4− x

)
dx.

Answer: 4

Solution 1: First of all, we note the many symmetries of the given expression. Specifically, we

have
√

4−x
x and we subtract its reciprocal. We also recall that square roots, when we take their

derivative, give us their reciprocal. This inspires the guess that the function f(x) =
√
x
√

4− x
is somehow important to our integral. Indeed, we find that f ′(x) = 1

2

(√
4−x
x −

√
x

4−x

)
so that∫ 2

0

√
4−x
x −

√
x

4−x dx = 2
√
x
√

4− x
∣∣2
0

= 2(2− 0) = 4 .

Solution 2: Although solution 1 is, perhaps, the prettiest way of solving this problem, it is
not necessarily easy to notice. A more direct approach uses a trig substitution. Specifically,
noting the importance of 4−x

x and remembering the Pythagorean identity sin2 x + cos2 x = 1,

it makes sense to try the substitution x = 4 sin2 θ. Then
√

4−x
x =

√
cos2 x
sin2 x

= cotx. Also,

dx = 8 sin θ cos θ dθ, 4 sin2 θ = 0 when θ = 0 and 4 sin2 θ = 2 when θ = π
4 . The integral becomes∫ π

4

0
(cot θ − tan θ) · 8 sin θ cos θ dθ = 8

∫ π
4

0
cos2 θ − sin2 θ dθ = 8

∫ π
4

0
cos 2θ dθ.

This last integral may be easily computed by the substitution 2θ 7→ θ:

8

∫ π
4

0
cos 2θ dθ = 4

∫ π
2

0
cos θ dθ = 4(sin θ)

∣∣π2
0

= 4(1− 0) = 4 .

Solution 3: The simplest way to solve this problem is perhaps to write the integrand with a
common denominator. This gives∫ 2

0

√
4− x√
x
−
√
x√

4− x
dx =

∫ 2

0

(4− x)− x
√
x
√

4− x
dx =

∫ 2

0

4− 2x√
4x− x2

dx.

Substitute u = 4x− x2, du = (4− 2x) dx. Then our integral becomes∫ 2

0

4− 2x√
4x− x2

dx =

∫ 4

0

1√
u
du = 2

√
u
∣∣4
0

= 4 .

6. Compute

lim
x→∞

[
x− x2 ln

(
1 + x

x

)]
.

Answer: 1
2
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Solution: We rewrite this limit in a form that allows us to apply L’Hôpital’s Rule. That is,

lim
x→∞

[
x− x2 ln

(
1 + x

x

)]
= lim

x→∞

1
x − ln

(
1+x
x

)
1
x2

= lim
x→∞

− 1
x2
− x

1+x(− 1
x2

)
−2
x3

by L’Hôpital’s Rule

= lim
x→∞

1

2

(
x− x2

1 + x

)
= lim

x→∞

1

2

(
x

1 + x

)
= lim

x→∞

1

2

(
1− 1

1 + x

)
=

1

2
(1− 0) =

1

2
.

7. For a given x > 0, let an be the sequence defined by a1 = x for n = 1 and an = xan−1 for n ≥ 2.
Find the largest x for which the limit lim

n→∞
an converges.

Answer: e1/e

Solution: In order for lim
n→∞

an to have a limit L, it must be that xL = L, so that x = L1/L.

Otherwise, we would be able to extend the recurrence and converge to a different limiting value.
Thus, we seek the maximum of the function f(L) = L1/L. To do this, we solve df

dL = 0. Since

df

dL
=

d

dL
e

lnL
L = L1/L

(
1

L2
− lnL

L2

)
,

we see that L = e. Thus, the maximum value for x is f(e) = e1/e . To be sure that this is a
maximum, we check as follows:

d2f

dL2

∣∣∣∣
e

= L
1
L
−4 (−3L+ ln2(L) + 2(L− 1) ln(L) + 1

)∣∣∣
e

= −e
1
e
−3 < 0.

8. Evaluate ∫ 2

−2

1 + x2

1 + 2x
dx.

Answer: 14
3

Solution: We substitute the variable x by −x and add the resulting integral to the original
integral to get

2I =

∫ 2

−2

1 + x2

1 + 2x
dx+

∫ −2
2
− 1 + x2

1 + 2−x
dx =

∫ 2

−2

1 + x2

1 + 2x
+

1 + x2

1 + 2−x
dx

=

∫ 2

−2

1 + x2

1 + 2x
+

(1 + x2)2x

1 + 2x
dx =

∫ 2

−2

(1 + x2) · (1 + 2x)

1 + 2x
dx =

∫ 2

−2
1 + x2 dx = 4 +

16

3
=

28

3
.

So the given integral is I =
14

3
.

Note that more generally, for even functions f ,
∫ a
−a

f(x)
1+bx dx = 1

2

∫ a
−a f(x) dx.
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9. Let f satisfy x = f(x)ef(x). Calculate
∫ e
0 f(x) dx.

Answer: e − 1

Solution 1: First, we compute the antiderivative. Make the substitution u = f(x), so hence
du = f ′(x) dx. Note that f ′(x) = d

dxxe
−f = e−f − f ′(x)xe−f , so f ′(x) = 1

ef+x
= f

x(1+f) . Thus,

f(x) dx = u

(
du
u

x(1+u)

)
= x(1 + u) du = ueu(1 + u) du

∫
f(x)dx =

∫
ueu(1 + u)du = eu

(
u2 − u+ 1

)
= ef(x)

(
f(x)2 − f(x) + 1

)
To conclude, when x = 0, f(x) = 0 and when x = e, f(x) = 1. Thus,

∫ e
0 f(x) dx = e1(1 − 1 +

1)− e0(0− 0 + 1) = e− 1 .

Solution 2: Note that f is monotonically increasing and is the inverse of the function g(y) = yey.
Since f(e) = 1, the area under f(x) from 0 to e is the area of the rectangle with vertices
(0, 0), (e, 0), (0, 1), (e, 1) minus the area to the left of f(x) from 0 to 1, and the latter is just the
integral of g(y) from 0 to 1. So we have∫ e

0
f(x)dx = e−

∫ 1

0
g(y)dy = e−

∫ 1

0
yeydy

= e− [yey]10 +

∫ 1

0
eydy =

∫ 1

0
eydy = [ey]10 = e− 1.

10. Given that
∑∞

n=1
1
n2 = π2

6 , compute the sum

∞∑
n=1

1

2nn2
.

Answer: π2

12
− ln2 2

2

Solution: First of all, for the sake of clarity, I omit details about certain calculations which
are justifiable so there is a more clear focus on the actual computation. Specifically, I take
derivatives and integrals of series without explaining, and I integrate functions with removable
singularities, but the ordinary student would not pay attention to these technical issues anyway.
I proceed now:

The first step to obtaining any insight on this problem is to replace 1
2n with xn. This allows us to

take derivatives, getting rid of powers of n in the denominator. Thus, we write f(x) =
∑∞

n=1
xn

n2

and what we want to find is f(12) given that f(0) = 0 and f(1) = π2

6 . As mentioned before, we

first take f ′(x) =
∑∞

n=1
xn−1

n and then we take (xf ′(x))′ =
∑∞

n=1 x
n−1 = 1

1−x . By reintegrating,
xf ′(x) = − ln (1− x) + C but by plugging in x = 0 it is easy to check that C = 0. Then

f ′(x) = − ln (1−x)
x . Because f(0) = 0, f(x) =

∫ x
0 −

ln (1−t)
t dt. Thus, the answer we are looking for

is equal to
∫ 1

2
0 −

ln (1−t)
t dt. This completes the first part of the solution. The second part consists

of computing this integral.

We denote I =
∫ 1

2
0 − ln 1−t

t dt. There are two things we know about this integral: that finding
the antiderivative, if it even exists, would be extremely challenging, and also a related formula
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∫ 1
0 −

ln (1−t)
t dt = π2

6 which is given. Noting that 1
2 is the midpoint of the interval [0, 1] in which the

integral formula is relevant, we note that there are several transformations which give integrals
on the interval [12 , 1]. Specifically, the substitution of x 7→ 1 − x yields I =

∫ 1
1
2
− ln t

1−tdt. In

addition, I =
∫ 1
0 −

ln (1−t)
t dt −

∫ 1
1
2
− ln (1−t)

t dt = π2

6 −
∫ 1

1
2
− ln (1−t)

t dt. Thus, we may write 2I =

π2

6 +
∫ 1

1
2

ln 1−t
t − ln t

1−tdt. The apparent symmetry of the integrand immediately brings to mind the

function g(x) = lnx ln (1− x) as a potential antiderivative: indeed, when we apply the product

rule, we easily get g′(x) = ln 1−x
x − lnx

1−x . Thus, 2I = π2

6 + ln t ln (1− t)
∣∣1
1
2
. Because plugging in

t = 1 is undefined, we resort to using limits and easily obtain 0. Thus, 2I = π2

6 −ln2 1
2 = π2

6 −ln2 2

and I =
π2

12
−

ln2 1
2

2
=

π2

12
− ln2 2

2
are both correct and equally valid answers.

Note, with only a little more work (and some formalizing), we can obtain the more general result

that
∑∞

n=1
xn

n2 +
∑∞

n=1
(1−x)n
n2 = π2

6 − lnx ln (1− x) when x ∈ (0, 1).


