1. Let $f(x)=x^{4}$ and let $g(x)=x^{-4}$. Compute $f^{\prime \prime}(2) g^{\prime \prime}(2)$.

Answer: 15
Solution: We note that $f^{\prime \prime}(x)=12 x^{2}$ and $g^{\prime \prime}(x)=20 x^{-6}$. Then $f^{\prime \prime}(x) g^{\prime \prime}(x)=20 \cdot 12 \cdot x^{-4}$. Plugging in $x=2$ we get $f^{\prime \prime}(2) g^{\prime \prime}(2)=\frac{12 \cdot 20}{16}=3 \cdot 5=15$.
2. There is a unique positive real number a such that the tangent line to $y=x^{2}+1$ at $x=a$ goes through the origin. Compute a.
Answer: 1
Solution: The slope of the tangent line is $2 a$. The equation for the tangent line is $\left(y-\left(a^{2}+1\right)\right)=$ $2 a(x-a)$. Setting $x=y=0$ gives us $-a^{2}-1=-2 a^{2}$, which has solution $a=1$.
3. Moor has $\$ 1000$, and he is playing a gambling game. He gets to pick a number k between 0 and 1 (inclusive). A fair coin is then flipped. If the coin comes up heads, Moor is given $5000 k$ additional dollars. Otherwise, Moor loses $1000 k$ dollars. Moor's happiness is equal to the log of the amount of money that he has after this gambling game. Find the value of k that Moor should select to maximize his expected happiness.
Answer: $\frac{2}{5}$
Solution: Suppose that Moor chooses a value of k. We write down the expected value of Moor's happiness.
If the coin comes up heads, Moor now has $1000+1000(5 k)=1000(5 k+1)$ dollars. If the coin comes up tails, Moor now has $1000-1000 k=1000(1-k)$ dollars. Therefore, the expected value of Moor's happiness is

$$
H(k)=\frac{1}{2} \log (1000(5 k+1))+\frac{1}{2} \log (1000(1-k)) .
$$

We want to maximize this. To do this, we differentiate, set the derivative equal to zero, and look for critical values. Here,

$$
H^{\prime}(k)=\frac{1}{2}\left(\frac{5000}{1000(5 k+1)}-\frac{1000}{1000(1-k)}\right)=\frac{1}{2}\left(\frac{5}{5 k+1}-\frac{1}{1-k}\right)=0
$$

when $5 k+1=5(1-k)$, so $10 k=4$, and hence $k=\frac{2}{5}$ is the only critical value.
The maximal value of $H(k)$ for $k \in[0,1]$ must occur either at a critical value or an endpoint. Observe that among the three values $H(0), H(1)$, and $H\left(\frac{2}{5}\right)$, the largest is $H\left(\frac{2}{5}\right)$. Therefore, Moor maximizes his happiness by selecting $k=\frac{2}{5}$.
4. The set of points (x, y) in the plane satisfying $x^{2 / 5}+|y|=1$ form a curve enclosing a region. Compute the area of this region.
Answer: $\frac{8}{7}$
Solution: The set of points satisfying the equation form a closed curve that encloses a region. Observe that this curve is preserved if we transform $x \mapsto-x$ or $y \mapsto-y$, so it is symmetric in all 4 quadrants. In particular, we can find the area in the first quadrant, where $x, y>0$. In the quadrant, we can rewrite our equation as $y=1-x^{2 / 5}$. This curve intersects the coordinate axes at $(0,1)$ and $(1,0)$, and it is continuous, so the area is

$$
A=\int_{0}^{1} 1-x^{2 / 5} d x=\frac{2}{7} .
$$

The total area is therefore $4 A=8 / 7$.
5. Compute the improper integral

$$
\int_{0}^{2}\left(\sqrt{\frac{4-x}{x}}-\sqrt{\frac{x}{4-x}}\right) d x
$$

Answer: 4
Solution 1: First of all, we note the many symmetries of the given expression. Specifically, we have $\sqrt{\frac{4-x}{x}}$ and we subtract its reciprocal. We also recall that square roots, when we take their derivative, give us their reciprocal. This inspires the guess that the function $f(x)=\sqrt{x} \sqrt{4-x}$ is somehow important to our integral. Indeed, we find that $f^{\prime}(x)=\frac{1}{2}\left(\sqrt{\frac{4-x}{x}}-\sqrt{\frac{x}{4-x}}\right)$ so that $\int_{0}^{2} \sqrt{\frac{4-x}{x}}-\sqrt{\frac{x}{4-x}} d x=\left.2 \sqrt{x} \sqrt{4-x}\right|_{0} ^{2}=2(2-0)=4$.
Solution 2: Although solution 1 is, perhaps, the prettiest way of solving this problem, it is not necessarily easy to notice. A more direct approach uses a trig substitution. Specifically, noting the importance of $\frac{4-x}{x}$ and remembering the Pythagorean identity $\sin ^{2} x+\cos ^{2} x=1$, it makes sense to try the substitution $x=4 \sin ^{2} \theta$. Then $\sqrt{\frac{4-x}{x}}=\sqrt{\frac{\cos ^{2} x}{\sin ^{2} x}}=\cot x$. Also, $d x=8 \sin \theta \cos \theta d \theta, 4 \sin ^{2} \theta=0$ when $\theta=0$ and $4 \sin ^{2} \theta=2$ when $\theta=\frac{\pi}{4}$. The integral becomes

$$
\int_{0}^{\frac{\pi}{4}}(\cot \theta-\tan \theta) \cdot 8 \sin \theta \cos \theta d \theta=8 \int_{0}^{\frac{\pi}{4}} \cos ^{2} \theta-\sin ^{2} \theta d \theta=8 \int_{0}^{\frac{\pi}{4}} \cos 2 \theta d \theta
$$

This last integral may be easily computed by the substitution $2 \theta \mapsto \theta$:

$$
8 \int_{0}^{\frac{\pi}{4}} \cos 2 \theta d \theta=4 \int_{0}^{\frac{\pi}{2}} \cos \theta d \theta=\left.4(\sin \theta)\right|_{0} ^{\frac{\pi}{2}}=4(1-0)=4 .
$$

Solution 3: The simplest way to solve this problem is perhaps to write the integrand with a common denominator. This gives

$$
\int_{0}^{2} \frac{\sqrt{4-x}}{\sqrt{x}}-\frac{\sqrt{x}}{\sqrt{4-x}} d x=\int_{0}^{2} \frac{(4-x)-x}{\sqrt{x} \sqrt{4-x}} d x=\int_{0}^{2} \frac{4-2 x}{\sqrt{4 x-x^{2}}} d x
$$

Substitute $u=4 x-x^{2}, d u=(4-2 x) d x$. Then our integral becomes

$$
\int_{0}^{2} \frac{4-2 x}{\sqrt{4 x-x^{2}}} d x=\int_{0}^{4} \frac{1}{\sqrt{u}} d u=\left.2 \sqrt{u}\right|_{0} ^{4}=4 .
$$

6. Compute

$$
\lim _{x \rightarrow \infty}\left[x-x^{2} \ln \left(\frac{1+x}{x}\right)\right] .
$$

Answer: $\frac{1}{2}$

Solution: We rewrite this limit in a form that allows us to apply L'Hôpital's Rule. That is,

$$
\begin{aligned}
& \lim _{x \rightarrow \infty}\left[x-x^{2} \ln \left(\frac{1+x}{x}\right)\right]=\lim _{x \rightarrow \infty} \frac{\frac{1}{x}-\ln \left(\frac{1+x}{x}\right)}{\frac{1}{x^{2}}} \\
& =\lim _{x \rightarrow \infty} \frac{-\frac{1}{x^{2}}-\frac{x}{1+x}\left(-\frac{1}{x^{2}}\right)}{\frac{-2}{x^{3}}} \text { by L'Hôpital's Rule } \\
& =\lim _{x \rightarrow \infty} \frac{1}{2}\left(x-\frac{x^{2}}{1+x}\right)=\lim _{x \rightarrow \infty} \frac{1}{2}\left(\frac{x}{1+x}\right)=\lim _{x \rightarrow \infty} \frac{1}{2}\left(1-\frac{1}{1+x}\right)=\frac{1}{2}(1-0)=\frac{1}{2} .
\end{aligned}
$$

7. For a given $x>0$, let a_{n} be the sequence defined by $a_{1}=x$ for $n=1$ and $a_{n}=x^{a_{n-1}}$ for $n \geq 2$. Find the largest x for which the limit $\lim _{n \rightarrow \infty} a_{n}$ converges.
Answer: $e^{1 / e}$
Solution: In order for $\lim _{n \rightarrow \infty} a_{n}$ to have a limit L, it must be that $x^{L}=L$, so that $x=L^{1 / L}$. Otherwise, we would be able to extend the recurrence and converge to a different limiting value. Thus, we seek the maximum of the function $f(L)=L^{1 / L}$. To do this, we solve $\frac{d f}{d L}=0$. Since

$$
\frac{d f}{d L}=\frac{d}{d L} e^{\frac{\ln L}{L}}=L^{1 / L}\left(\frac{1}{L^{2}}-\frac{\ln L}{L^{2}}\right)
$$

we see that $L=e$. Thus, the maximum value for x is $f(e)=e^{1 / e}$. To be sure that this is a maximum, we check as follows:

$$
\left.\frac{d^{2} f}{d L^{2}}\right|_{e}=\left.L^{\frac{1}{L}-4}\left(-3 L+\ln ^{2}(L)+2(L-1) \ln (L)+1\right)\right|_{e}=-e^{\frac{1}{e}-3}<0
$$

8. Evaluate

$$
\int_{-2}^{2} \frac{1+x^{2}}{1+2^{x}} d x
$$

Answer: $\frac{14}{3}$
Solution: We substitute the variable x by $-x$ and add the resulting integral to the original integral to get

$$
\begin{aligned}
2 I & =\int_{-2}^{2} \frac{1+x^{2}}{1+2^{x}} d x+\int_{2}^{-2}-\frac{1+x^{2}}{1+2^{-x}} d x=\int_{-2}^{2} \frac{1+x^{2}}{1+2^{x}}+\frac{1+x^{2}}{1+2^{-x}} d x \\
& =\int_{-2}^{2} \frac{1+x^{2}}{1+2^{x}}+\frac{\left(1+x^{2}\right) 2^{x}}{1+2^{x}} d x=\int_{-2}^{2} \frac{\left(1+x^{2}\right) \cdot\left(1+2^{x}\right)}{1+2^{x}} d x=\int_{-2}^{2} 1+x^{2} d x=4+\frac{16}{3}=\frac{28}{3} .
\end{aligned}
$$

So the given integral is $I=\frac{14}{3}$.
Note that more generally, for even functions $f, \int_{-a}^{a} \frac{f(x)}{1+b^{x}} d x=\frac{1}{2} \int_{-a}^{a} f(x) d x$.
9. Let f satisfy $x=f(x) e^{f(x)}$. Calculate $\int_{0}^{e} f(x) d x$.

Answer: $e-1$
Solution 1: First, we compute the antiderivative. Make the substitution $u=f(x)$, so hence $d u=f^{\prime}(x) d x$. Note that $f^{\prime}(x)=\frac{d}{d x} x e^{-f}=e^{-f}-f^{\prime}(x) x e^{-f}$, so $f^{\prime}(x)=\frac{1}{e^{f}+x}=\frac{f}{x(1+f)}$. Thus,

$$
\begin{gathered}
f(x) d x=u\left(\frac{d u}{\frac{u}{x(1+u)}}\right)=x(1+u) d u=u e^{u}(1+u) d u \\
\int f(x) d x=\int u e^{u}(1+u) d u=e^{u}\left(u^{2}-u+1\right)=e^{f(x)}\left(f(x)^{2}-f(x)+1\right)
\end{gathered}
$$

To conclude, when $x=0, f(x)=0$ and when $x=e, f(x)=1$. Thus, $\int_{0}^{e} f(x) d x=e^{1}(1-1+$ 1) $-e^{0}(0-0+1)=e-1$.

Solution 2: Note that f is monotonically increasing and is the inverse of the function $g(y)=y e^{y}$. Since $f(e)=1$, the area under $f(x)$ from 0 to e is the area of the rectangle with vertices $(0,0),(e, 0),(0,1),(e, 1)$ minus the area to the left of $f(x)$ from 0 to 1 , and the latter is just the integral of $g(y)$ from 0 to 1 . So we have

$$
\begin{aligned}
& \int_{0}^{e} f(x) d x=e-\int_{0}^{1} g(y) d y=e-\int_{0}^{1} y e^{y} d y \\
= & e-\left[y e^{y}\right]_{0}^{1}+\int_{0}^{1} e^{y} d y=\int_{0}^{1} e^{y} d y=\left[e^{y}\right]_{0}^{1}=e-1 .
\end{aligned}
$$

10. Given that $\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}$, compute the sum

$$
\sum_{n=1}^{\infty} \frac{1}{2^{n} n^{2}}
$$

Answer: $\frac{\pi^{2}}{12}-\frac{\ln ^{2} 2}{2}$
Solution: First of all, for the sake of clarity, I omit details about certain calculations which are justifiable so there is a more clear focus on the actual computation. Specifically, I take derivatives and integrals of series without explaining, and I integrate functions with removable singularities, but the ordinary student would not pay attention to these technical issues anyway. I proceed now:
The first step to obtaining any insight on this problem is to replace $\frac{1}{2^{n}}$ with x^{n}. This allows us to take derivatives, getting rid of powers of n in the denominator. Thus, we write $f(x)=\sum_{n=1}^{\infty} \frac{x^{n}}{n^{2}}$ and what we want to find is $f\left(\frac{1}{2}\right)$ given that $f(0)=0$ and $f(1)=\frac{\pi^{2}}{6}$. As mentioned before, we first take $f^{\prime}(x)=\sum_{n=1}^{\infty} \frac{x^{n-1}}{n}$ and then we take $\left(x f^{\prime}(x)\right)^{\prime}=\sum_{n=1}^{\infty} x^{n-1}=\frac{1}{1-x}$. By reintegrating, $x f^{\prime}(x)=-\ln (1-x)+C$ but by plugging in $x=0$ it is easy to check that $C=0$. Then $f^{\prime}(x)=-\frac{\ln (1-x)}{x}$. Because $f(0)=0, f(x)=\int_{0}^{x}-\frac{\ln (1-t)}{t} d t$. Thus, the answer we are looking for is equal to $\int_{0}^{\frac{x}{2}}-\frac{\ln (1-t)}{t} d t$. This completes the first part of the solution. The second part consists of computing this integral.
We denote $I=\int_{0}^{\frac{1}{2}}-\frac{\ln 1-t}{t} d t$. There are two things we know about this integral: that finding the antiderivative, if it even exists, would be extremely challenging, and also a related formula
$\int_{0}^{1}-\frac{\ln (1-t)}{t} d t=\frac{\pi^{2}}{6}$ which is given. Noting that $\frac{1}{2}$ is the midpoint of the interval $[0,1]$ in which the integral formula is relevant, we note that there are several transformations which give integrals on the interval $\left[\frac{1}{2}, 1\right]$. Specifically, the substitution of $x \mapsto 1-x$ yields $I=\int_{\frac{1}{2}}^{1}-\frac{\ln t}{1-t} d t$. In addition, $I=\int_{0}^{1}-\frac{\ln (1-t)}{t} d t-\int_{\frac{1}{2}}^{1}-\frac{\ln (1-t)}{t} d t=\frac{\pi^{2}}{6}-\int_{\frac{1}{2}}^{1}-\frac{\ln (1-t)}{t} d t$. Thus, we may write $2 I=$ $\frac{\pi^{2}}{6}+\int_{\frac{1}{2}}^{1} \frac{\ln 1-t}{t}-\frac{\ln t}{1-t} d t$. The apparent symmetry of the integrand immediately brings to mind the function $g(x)=\ln x \ln (1-x)$ as a potential antiderivative: indeed, when we apply the product rule, we easily get $g^{\prime}(x)=\frac{\ln 1-x}{x}-\frac{\ln x}{1-x}$. Thus, $2 I=\frac{\pi^{2}}{6}+\left.\ln t \ln (1-t)\right|_{\frac{1}{2}} ^{1}$. Because plugging in $t=1$ is undefined, we resort to using limits and easily obtain 0 . Thus, $2 I=\frac{\pi^{2}}{6}-\ln ^{2} \frac{1}{2}=\frac{\pi^{2}}{6}-\ln ^{2} 2$ and $I=\frac{\pi^{2}}{12}-\frac{\ln ^{2} \frac{1}{2}}{2}=\frac{\pi^{2}}{12}-\frac{\ln ^{2} 2}{2}$ are both correct and equally valid answers.
Note, with only a little more work (and some formalizing), we can obtain the more general result that $\sum_{n=1}^{\infty} \frac{x^{n}}{n^{2}}+\sum_{n=1}^{\infty} \frac{(1-x)^{n}}{n^{2}}=\frac{\pi^{2}}{6}-\ln x \ln (1-x)$ when $x \in(0,1)$.

